| Commit message (Collapse) | Author | Age |
|
|
|
| |
Backpatch-through: 13
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When resetting a HashJoin node for rescans, if it is a single-batch
join and there are no parameter changes for the inner subnode, we can
just reuse the existing hash table without rebuilding it. However,
for join types that depend on the inner-tuple match flags in the hash
table, we need to reset these match flags to avoid incorrect results.
This applies to right, right-anti, right-semi, and full joins.
When I introduced "Right Semi Join" plan shapes in aa86129e1, I failed
to reset the match flags in the hash table for right-semi joins in
rescans. This oversight has been shown to produce incorrect results.
This patch fixes it.
Author: Richard Guo
Discussion: https://postgr.es/m/CAMbWs4-nQF9io2WL2SkD0eXvfPdyBc9Q=hRwfQHCGV2usa0jyA@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit ac04aa84a put the shutoff for this into the planner, which is
not ideal because it doesn't prevent us from re-using a previously
made parallel plan. Revert the planner change and instead put the
shutoff into InitializeParallelDSM, modeling it on the existing code
there for recovering from failure to allocate a DSM segment.
However, that code path is mostly untested, and testing a bit harder
showed there's at least one bug: ExecHashJoinReInitializeDSM is not
prepared for us to have skipped doing parallel DSM setup. I also
thought the Assert in ReinitializeParallelWorkers is pretty
ill-advised, and replaced it with a silent Min() operation.
The existing test case added by ac04aa84a serves fine to test this
version of the fix, so no change needed there.
Patch by me, but thanks to Noah Misch for the core idea that we
could shut off worker creation when !INTERRUPTS_CAN_BE_PROCESSED.
Back-patch to v12, as ac04aa84a was.
Discussion: https://postgr.es/m/CAC-SaSzHUKT=vZJ8MPxYdC_URPfax+yoA1hKTcF4ROz_Q6z0_Q@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Here we add ExprState support for obtaining a 32-bit hash value from a
list of expressions. This allows both faster hashing and also JIT
compilation of these expressions. This is especially useful when hash
joins have multiple join keys as the previous code called ExecEvalExpr on
each hash join key individually and that was inefficient as tuple
deformation would have only taken into account one key at a time, which
could lead to walking the tuple once for each join key. With the new
code, we'll determine the maximum attribute required and deform the tuple
to that point only once.
Some performance tests done with this change have shown up to a 20%
performance increase of a query containing a Hash Join without JIT
compilation and up to a 26% performance increase when JIT is enabled and
optimization and inlining were performed by the JIT compiler. The
performance increase with 1 join column was less with a 14% increase
with and without JIT. This test was done using a fairly small hash
table and a large number of hash probes. The increase will likely be
less with large tables, especially ones larger than L3 cache as memory
pressure is more likely to be the limiting factor there.
This commit only addresses Hash Joins, but lays expression evaluation
and JIT compilation infrastructure for other hashing needs such as Hash
Aggregate.
Author: David Rowley
Reviewed-by: Alexey Dvoichenkov <alexey@hyperplane.net>
Reviewed-by: Tels <nospam-pg-abuse@bloodgate.com>
Discussion: https://postgr.es/m/CAApHDvoexAxgQFNQD_GRkr2O_eJUD1-wUGm%3Dm0L%2BGc%3DT%3DkEa4g%40mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For an inner_unique join, we always assume that the executor will stop
scanning for matches after the first match. Therefore, for a mergejoin
that is inner_unique and whose mergeclauses are sufficient to identify a
match, we set the skip_mark_restore flag to true, indicating that the
executor need not do mark/restore calls. However, merge-right-anti-join
did not get this memo and continues scanning the inner side for matches
after the first match. If there are duplicates in the outer scan, we
may incorrectly skip matching some inner tuples, which can lead to wrong
results.
Here we fix this issue by ensuring that merge-right-anti-join also
advances to next outer tuple after the first match in inner_unique
cases. This also saves cycles by avoiding unnecessary scanning of inner
tuples after the first match.
Although hash-right-anti-join does not suffer from this wrong results
issue, we apply the same change to it as well, to help save cycles for
the same reason.
Per bug #18522 from Antti Lampinen, and bug #18526 from Feliphe Pozzer.
Back-patch to v16 where right-anti-join was introduced.
Author: Richard Guo
Discussion: https://postgr.es/m/18522-c7a8956126afdfd0@postgresql.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Hash joins can support semijoin with the LHS input on the right, using
the existing logic for inner join, combined with the assurance that only
the first match for each inner tuple is considered, which can be
achieved by leveraging the HEAP_TUPLE_HAS_MATCH flag. This can be very
useful in some cases since we may now have the option to hash the
smaller table instead of the larger.
Merge join could likely support "Right Semi Join" too. However, the
benefit of swapping inputs tends to be small here, so we do not address
that in this patch.
Note that this patch also modifies a test query in join.sql to ensure it
continues testing as intended. With this patch the original query would
result in a right-semi-join rather than semi-join, compromising its
original purpose of testing the fix for neqjoinsel's behavior for
semi-joins.
Author: Richard Guo
Reviewed-by: wenhui qiu, Alena Rybakina, Japin Li
Discussion: https://postgr.es/m/CAMbWs4_X1mN=ic+SxcyymUqFx9bB8pqSLTGJ-F=MHy4PW3eRXw@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
as determined by include-what-you-use (IWYU)
While IWYU also suggests to *add* a bunch of #include's (which is its
main purpose), this patch does not do that. In some cases, a more
specific #include replaces another less specific one.
Some manual adjustments of the automatic result:
- IWYU currently doesn't know about includes that provide global
variable declarations (like -Wmissing-variable-declarations), so
those includes are being kept manually.
- All includes for port(ability) headers are being kept for now, to
play it safe.
- No changes of catalog/pg_foo.h to catalog/pg_foo_d.h, to keep the
patch from exploding in size.
Note that this patch touches just *.c files, so nothing declared in
header files changes in hidden ways.
As a small example, in src/backend/access/transam/rmgr.c, some IWYU
pragma annotations are added to handle a special case there.
Discussion: https://www.postgresql.org/message-id/flat/af837490-6b2f-46df-ba05-37ea6a6653fc%40eisentraut.org
|
|
|
|
|
|
|
|
| |
Reported-by: Michael Paquier
Discussion: https://postgr.es/m/ZZKTDPxBBMt3C0J9@paquier.xyz
Backpatch-through: 12
|
|
|
|
|
|
|
| |
Additionally, add a missing "the" in a couple of places.
Author: Vignesh C, Dagfinn Ilmari Mannsåker
Discussion: http://postgr.es/m/CALDaNm28t+wWyPfuyqEaARS810Je=dRFkaPertaLAEJYY2cWYQ@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit removes unnecessary ExecExprFreeContext() calls in
ExecEnd* routines because the actual cleanup is managed by
FreeExecutorState(). With no callers remaining for
ExecExprFreeContext(), this commit also removes the function.
This commit also drops redundant ExecClearTuple() calls, because
ExecResetTupleTable() in ExecEndPlan() already takes care of
resetting and dropping all TupleTableSlots initialized with
ExecInitScanTupleSlot() and ExecInitExtraTupleSlot().
After these modifications, the ExecEnd*() routines for ValuesScan,
NamedTuplestoreScan, and WorkTableScan became redundant. So, this
commit removes them.
Reviewed-by: Robert Haas
Discussion: https://postgr.es/m/CA+HiwqFGkMSge6TgC9KQzde0ohpAycLQuV7ooitEEpbKB0O_mg@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Run pgindent, pgperltidy, and reformat-dat-files.
This set of diffs is a bit larger than typical. We've updated to
pg_bsd_indent 2.1.2, which properly indents variable declarations that
have multi-line initialization expressions (the continuation lines are
now indented one tab stop). We've also updated to perltidy version
20230309 and changed some of its settings, which reduces its desire to
add whitespace to lines to make assignments etc. line up. Going
forward, that should make for fewer random-seeming changes to existing
code.
Discussion: https://postgr.es/m/20230428092545.qfb3y5wcu4cm75ur@alvherre.pgsql
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Should a hash join exceed memory limit, the hashtable is split up into
multiple batches. The number of batches is doubled each time a given
batch is determined not to fit in memory. Each batch file is allocated
with a block-sized buffer for buffering tuples and parallel hash join
has additional sharedtuplestore accessor buffers.
In some pathological cases requiring a lot of batches, often with skewed
data, bad stats, or very large datasets, users can run out-of-memory
solely from the memory overhead of all the batch files' buffers.
Batch files were allocated in the ExecutorState memory context, making
it very hard to identify when this batch explosion was the source of an
OOM. This commit allocates the batch files in a dedicated memory
context, making it easier to identify the cause of an OOM and work to
avoid it.
Based on initial draft by Tomas Vondra, with significant reworks and
improvements by Jehan-Guillaume de Rorthais.
Author: Jehan-Guillaume de Rorthais <jgdr@dalibo.com>
Author: Tomas Vondra <tomas.vondra@enterprisedb.com>
Reviewed-by: Melanie Plageman <melanieplageman@gmail.com>
Discussion: https://postgr.es/m/20190421114618.z3mpgmimc3rmubi4@development
Discussion: https://postgr.es/m/20230504193006.1b5b9622%40karst#273020ff4061fc7a2fbb1ba96b281f17
|
|
|
|
|
|
|
|
|
|
| |
Add a high level description of our implementation of the hybrid hash
join algorithm to the block comment in nodeHashjoin.c.
Author: Melanie Plageman <melanieplageman@gmail.com>
Reviewed-by: Tomas Vondra <tomas.vondra@enterprisedb.com>
Reviewed-by: Jehan-Guillaume de Rorthais <jgdr@dalibo.com>
Discussion: https://postgr.es/m/20230516160051.4267a800%40karst
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Merge and hash joins can support antijoin with the non-nullable input
on the right, using very simple combinations of their existing logic
for right join and anti join. This gives the planner more freedom
about how to order the join. It's particularly useful for hash join,
since we may now have the option to hash the smaller table instead
of the larger.
Richard Guo, reviewed by Ronan Dunklau and myself
Discussion: https://postgr.es/m/CAMbWs48xh9hMzXzSy3VaPzGAz+fkxXXTUbCLohX1_L8THFRm2Q@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Full and right outer joins were not supported in the initial
implementation of Parallel Hash Join because of deadlock hazards (see
discussion). Therefore FULL JOIN inhibited parallelism, as the other
join strategies can't do that in parallel either.
Add a new PHJ phase PHJ_BATCH_SCAN that scans for unmatched tuples on
the inner side of one batch's hash table. For now, sidestep the
deadlock problem by terminating parallelism there. The last process to
arrive at that phase emits the unmatched tuples, while others detach and
are free to go and work on other batches, if there are any, but
otherwise they finish the join early.
That unfairness is considered acceptable for now, because it's better
than no parallelism at all. The build and probe phases are run in
parallel, and the new scan-for-unmatched phase, while serial, is usually
applied to the smaller of the two relations and is either limited by
some multiple of work_mem, or it's too big and is partitioned into
batches and then the situation is improved by batch-level parallelism.
Author: Melanie Plageman <melanieplageman@gmail.com>
Author: Thomas Munro <thomas.munro@gmail.com>
Reviewed-by: Thomas Munro <thomas.munro@gmail.com>
Discussion: https://postgr.es/m/CA%2BhUKG%2BA6ftXPz4oe92%2Bx8Er%2BxpGZqto70-Q_ERwRaSyA%3DafNg%40mail.gmail.com
|
|
|
|
|
|
|
| |
In ancient times, these belonged to arguments or fields that were
actually of type long, but now they are not anymore, so this "L"
decoration is just confusing. (Some other 0L and other "L" constants
remain, where they are actually associated with a long type.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Commit 3048898e dropped -ING from PHJ wait event names. Update the
corresponding barrier phases names to match.
* Rename the "DONE" phases to "FREE". That's symmetrical with
"ALLOCATE", and names the activity that actually happens in that phase
(as we do for the other phases) rather than a state. The bug fixed by
commit 8d578b9b might have been more obvious with this name.
* Rename the batch/bucket growth barriers' "ALLOCATE" phases to
"REALLOCATE", a better description of what they do.
* Update the high level comments about phases to highlight phases
are executed by a single process with an asterisk (mostly memory
management phases).
No behavior change, as this is just improving internal identifiers. The
only user-visible sign of this is that a couple of wait events' display
names change from "...Allocate" to "...Reallocate" in pg_stat_activity,
to stay in sync with the internal names.
Reviewed-by: Melanie Plageman <melanieplageman@gmail.com>
Discussion: https://postgr.es/m/CA%2BhUKG%2BMDpwF2Eo2LAvzd%3DpOh81wUTsrwU1uAwR-v6OGBB6%2B7g%40mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With unlucky timing and parallel_leader_participation=off (not the
default), PHJ could attempt to access per-batch shared state just as it
was being freed. There was code intended to prevent that by checking
for a cleared pointer, but it was racy. Fix, by introducing an extra
barrier phase. The new phase PHJ_BUILD_RUNNING means that it's safe to
access the per-batch state to find a batch to help with, and
PHJ_BUILD_DONE means that it is too late. The last to detach will free
the array of per-batch state as before, but now it will also atomically
advance the phase, so that late attachers can avoid the hazard. This
mirrors the way per-batch hash tables are freed (see phases
PHJ_BATCH_PROBING and PHJ_BATCH_DONE).
An earlier attempt to fix this (commit 3b8981b6, later reverted) missed
one special case. When the inner side is empty (the "empty inner
optimization), the build barrier would only make it to
PHJ_BUILD_HASHING_INNER phase before workers attempted to detach from
the hashtable. In that case, fast-forward the build barrier to
PHJ_BUILD_RUNNING before proceeding, so that our later assertions hold
and we can still negotiate who is cleaning up.
Revealed by build farm failures, where BarrierAttach() failed a sanity
check assertion, because the memory had been clobbered by dsa_free().
In non-assert builds, the result could be a segmentation fault.
Back-patch to all supported releases.
Author: Thomas Munro <thomas.munro@gmail.com>
Author: Melanie Plageman <melanieplageman@gmail.com>
Reported-by: Michael Paquier <michael@paquier.xyz>
Reported-by: David Geier <geidav.pg@gmail.com>
Tested-by: David Geier <geidav.pg@gmail.com>
Discussion: https://postgr.es/m/20200929061142.GA29096%40paquier.xyz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Most callers of BufFileRead() want to check whether they read the full
specified length. Checking this at every call site is very tedious.
This patch provides additional variants BufFileReadExact() and
BufFileReadMaybeEOF() that include the length checks.
I considered changing BufFileRead() itself, but this function is also
used in extensions, and so changing the behavior like this would
create a lot of problems there. The new names are analogous to the
existing LogicalTapeReadExact().
Reviewed-by: Amit Kapila <amit.kapila16@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/f3501945-c591-8cc3-5ef0-b72a2e0eaa9c@enterprisedb.com
|
|
|
|
| |
Backpatch-through: 11
|
|
|
|
|
|
|
|
|
| |
Some code carefully cast all data buffer arguments for BufFileWrite()
and BufFileRead() to void *, even though the arguments are already
void * (and AFAICT were never anything else). Remove this unnecessary
clutter.
Discussion: https://www.postgresql.org/message-id/flat/11dda853-bb5b-59ba-a746-e168b1ce4bdb%40enterprisedb.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Make sure that function declarations use names that exactly match the
corresponding names from function definitions in storage, catalog,
access method, executor, and logical replication code, as well as in
miscellaneous utility/library code.
Like other recent commits that cleaned up function parameter names, this
commit was written with help from clang-tidy. Later commits will do the
same for other parts of the codebase.
Author: Peter Geoghegan <pg@bowt.ie>
Reviewed-By: David Rowley <dgrowleyml@gmail.com>
Discussion: https://postgr.es/m/CAH2-WznJt9CMM9KJTMjJh_zbL5hD9oX44qdJ4aqZtjFi-zA3Tg@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The general convention in the executor is to refer to child plans
and planstates via the outerPlan[State] and innerPlan[State]
macros, but a few places didn't do it like that. For consistency
and readability, convert all the stragglers to use the macros.
(See also commit 40f42d2a3, which did some similar cleanup a few
years ago, but missed these cases.)
Richard Guo
Discussion: https://postgr.es/m/CAMbWs4-vYhh1xsa_veah4PUed2Xq=Ed_YH3=Mqt5A3Y=EgfCEg@mail.gmail.com
|
|
|
|
| |
Backpatch-through: 10
|
|
|
|
|
|
|
| |
This reverts commit 378802e3713c6c0fce31d2390c134cd5d7c30157.
This reverts commit 3b8981b6e1a2aea0f18384c803e21e9391de669a.
Discussion: https://postgr.es/m/CA%2BhUKGJmcqAE3MZeDCLLXa62cWM0AJbKmp2JrJYaJ86bz36LFA%40mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 3048898e dropped -ING from some wait event names that correspond
to barrier phases. Update the phases' names to match.
While we're here making cosmetic changes, also rename "DONE" to "FREE".
That pairs better with "ALLOCATE", and describes the activity that
actually happens in that phase (as we do for the other phases) rather
than describing a state. The distinction is clearer after bugfix commit
3b8981b6 split the phase into two. As for the growth barriers, rename
their "ALLOCATE" phase to "REALLOCATE", which is probably a better
description of what happens then. Also improve the comments about
the phases a bit.
Discussion: https://postgr.es/m/CA%2BhUKG%2BMDpwF2Eo2LAvzd%3DpOh81wUTsrwU1uAwR-v6OGBB6%2B7g%40mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With very unlucky timing and parallel_leader_participation off, PHJ
could attempt to access per-batch state just as it was being freed.
There was code intended to prevent that by checking for a cleared
pointer, but it was buggy.
Fix, by introducing an extra barrier phase. The new phase
PHJ_BUILD_RUNNING means that it's safe to access the per-batch state to
find a batch to help with, and PHJ_BUILD_DONE means that it is too late.
The last to detach will free the array of per-batch state as before, but
now it will also atomically advance the phase at the same time, so that
late attachers can avoid the hazard, without the data race. This
mirrors the way per-batch hash tables are freed (see phases
PHJ_BATCH_PROBING and PHJ_BATCH_DONE).
Revealed by a one-off build farm failure, where BarrierAttach() failed a
sanity check assertion, because the memory had been clobbered by
dsa_free().
Back-patch to 11, where the code arrived.
Reported-by: Michael Paquier <michael@paquier.xyz>
Discussion: https://postgr.es/m/20200929061142.GA29096%40paquier.xyz
|
|
|
|
| |
Backpatch-through: 9.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a GUC that acts as a multiplier on work_mem. It gets applied when
sizing executor node hash tables that were previously size constrained
using work_mem alone.
The new GUC can be used to preferentially give hash-based nodes more
memory than the generic work_mem limit. It is intended to enable admin
tuning of the executor's memory usage. Overall system throughput and
system responsiveness can be improved by giving hash-based executor
nodes more memory (especially over sort-based alternatives, which are
often much less sensitive to being memory constrained).
The default value for hash_mem_multiplier is 1.0, which is also the
minimum valid value. This means that hash-based nodes continue to apply
work_mem in the traditional way by default.
hash_mem_multiplier is generally useful. However, it is being added now
due to concerns about hash aggregate performance stability for users
that upgrade to Postgres 13 (which added disk-based hash aggregation in
commit 1f39bce0). While the old hash aggregate behavior risked
out-of-memory errors, it is nevertheless likely that many users actually
benefited. Hash agg's previous indifference to work_mem during query
execution was not just faster; it also accidentally made aggregation
resilient to grouping estimate problems (at least in cases where this
didn't create destabilizing memory pressure).
hash_mem_multiplier can provide a certain kind of continuity with the
behavior of Postgres 12 hash aggregates in cases where the planner
incorrectly estimates that all groups (plus related allocations) will
fit in work_mem/hash_mem. This seems necessary because hash-based
aggregation is usually much slower when only a small fraction of all
groups can fit. Even when it isn't possible to totally avoid hash
aggregates that spill, giving hash aggregation more memory will reliably
improve performance (the same cannot be said for external sort
operations, which appear to be almost unaffected by memory availability
provided it's at least possible to get a single merge pass).
The PostgreSQL 13 release notes should advise users that increasing
hash_mem_multiplier can help with performance regressions associated
with hash aggregation. That can be taken care of by a later commit.
Author: Peter Geoghegan
Reviewed-By: Álvaro Herrera, Jeff Davis
Discussion: https://postgr.es/m/20200625203629.7m6yvut7eqblgmfo@alap3.anarazel.de
Discussion: https://postgr.es/m/CAH2-WzmD%2Bi1pG6rc1%2BCjc4V6EaFJ_qSuKCCHVnH%3DoruqD-zqow%40mail.gmail.com
Backpatch: 13-, where disk-based hash aggregation was introduced.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Convert buffile.c error handling to use ereport. This fixes cases where
I/O errors were indistinguishable from EOF or not reported. Also remove
"%m" from error messages where errno would be bogus. While we're
modifying those strings, add block numbers and short read byte counts
where appropriate.
Back-patch to all supported releases.
Reported-by: Amit Khandekar <amitdkhan.pg@gmail.com>
Reviewed-by: Melanie Plageman <melanieplageman@gmail.com>
Reviewed-by: Alvaro Herrera <alvherre@2ndquadrant.com>
Reviewed-by: Robert Haas <robertmhaas@gmail.com>
Reviewed-by: Ibrar Ahmed <ibrar.ahmad@gmail.com>
Reviewed-by: Michael Paquier <michael@paquier.xyz>
Discussion: https://postgr.es/m/CA%2BhUKGJE04G%3D8TLK0DLypT_27D9dR8F1RQgNp0jK6qR0tZGWOw%40mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
| |
Synchronize the event names for parallel hash join waits with other
event names, by getting rid of the slashes and dropping "-ing"
suffixes. Rename ClogGroupUpdate to XactGroupUpdate, to match the
new SLRU name. Move the ProcSignalBarrier event to the IPC category;
it doesn't belong under IO.
Also a bit more wordsmithing in the wait event documentation tables.
Discussion: https://postgr.es/m/4505.1589640417@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
| |
The additional pain from level 4 is excessive for the gain.
Also revert all the source annotation changes to their original
wordings, to avoid back-patching pain.
Discussion: https://postgr.es/m/31166.1589378554@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use it at level 4, a bit more restrictive than the default level, and
tweak our commanding comments to FALLTHROUGH.
(However, leave zic.c alone, since it's external code; to avoid the
warnings that would appear there, change CFLAGS for that file in the
Makefile.)
Author: Julien Rouhaud <rjuju123@gmail.com>
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://postgr.es/m/20200412081825.qyo5vwwco3fv4gdo@nol
Discussion: https://postgr.es/m/flat/E1fDenm-0000C8-IJ@gemulon.postgresql.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before discarding the old hash table in ExecReScanHashJoin, capture
its statistics, ensuring that we report the maximum hashtable size
across repeated rescans of the hash input relation. We can repurpose
the existing code for reporting hashtable size in parallel workers
to help with this, making the patch pretty small. This also ensures
that if rescans happen within parallel workers, we get the correct
maximums across all instances.
Konstantin Knizhnik and Tom Lane, per diagnosis by Thomas Munro
of a trouble report from Alvaro Herrera.
Discussion: https://postgr.es/m/20200323165059.GA24950@alvherre.pgsql
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ExecReScanHashJoin will destroy the join's hash table if it expects
that the inner relation will produce different rows on rescan.
Up to now it's not bothered to clear the additional pointer to that
hash table that exists in the child HashState node. However, it's
possible for the query to terminate without building a fresh hash
table (this happens if the outer relation is found to be empty
during the final rescan). So we can end with a dangling pointer
to a deleted hash table. That was harmless originally, but since
9.0 EXPLAIN ANALYZE has used that pointer to print hash table
statistics. In debug builds this reproducibly results in garbage
statistics. In non-debug builds there's frequently no ill effects,
but in principle one could get wrong EXPLAIN ANALYZE output, or
perhaps even a crash if free() has released the hashtable memory
back to the OS.
To fix, just make sure we clear the additional pointer when destroying
the hash table. In problematic cases, EXPLAIN ANALYZE will then print
no hashtable statistics (reverting to its pre-9.0 behavior). This isn't
ideal, but since the problem manifests only in unusual corner cases,
it's hard to justify taking any risks to do better in the back
branches. A follow-on patch will improve matters in HEAD.
Konstantin Knizhnik and Tom Lane, per diagnosis by Thomas Munro
of a trouble report from Alvaro Herrera.
Discussion: https://postgr.es/m/20200323165059.GA24950@alvherre.pgsql
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, Parallel Hash Join cannot be used for full/right joins,
so there is no point in setting the match flag. It turns out that
the cache coherence traffic generated by those writes slows down
large systems running many-core joins, so let's stop doing that.
In future, if we need to use match bits in parallel joins, we might
want to consider setting them only if not already set.
Back-patch to 11, where Parallel Hash Join arrived.
Reported-by: Deng, Gang
Discussion: https://postgr.es/m/0F44E799048C4849BAE4B91012DB910462E9897A%40SHSMSX103.ccr.corp.intel.com
|
|
|
|
| |
Backpatch-through: update all files in master, backpatch legal files through 9.4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In 5f32b29c1819 I changed the creation of HashState.hashkeys to
actually use HashState as the parent (instead of HashJoinState, which
was incorrect, as they were executed below HashState), to fix the
problem of hashkeys expressions otherwise relying on slot types
appropriate for HashJoinState, rather than HashState as would be
correct. That reliance was only introduced in 12, which is why it
previously worked to use HashJoinState as the parent (although I'd be
unsurprised if there were problematic cases).
Unfortunately that's not a sufficient solution, because before this
commit, the to-be-hashed expressions referenced inner/outer as
appropriate for the HashJoin, not Hash. That didn't have obvious bad
consequences, because the slots containing the tuples were put into
ecxt_innertuple when hashing a tuple for HashState (even though Hash
doesn't have an inner plan).
There are less common cases where this can cause visible problems
however (rather than just confusion when inspecting such executor
trees). E.g. "ERROR: bogus varno: 65000", when explaining queries
containing a HashJoin where the subsidiary Hash node's hash keys
reference a subplan. While normally hashkeys aren't displayed by
EXPLAIN, if one of those expressions references a subplan, that
subplan may be printed as part of the Hash node - which then failed
because an inner plan was referenced, and Hash doesn't have that.
It seems quite possible that there's other broken cases, too.
Fix the problem by properly splitting the expression for the HashJoin
and Hash nodes at plan time, and have them reference the proper
subsidiary node. While other workarounds are possible, fixing this
correctly seems easy enough. It was a pretty ugly hack to have
ExecInitHashJoin put the expression into the already initialized
HashState, in the first place.
I decided to not just split inner/outer hashkeys inside
make_hashjoin(), but also to separate out hashoperators and
hashcollations at plan time. Otherwise we would have ended up having
two very similar loops, one at plan time and the other during executor
startup. The work seems to more appropriately belong to plan time,
anyway.
Reported-By: Nikita Glukhov, Alexander Korotkov
Author: Andres Freund
Reviewed-By: Tom Lane, in an earlier version
Discussion: https://postgr.es/m/CAPpHfdvGVegF_TKKRiBrSmatJL2dR9uwFCuR+teQ_8tEXU8mxg@mail.gmail.com
Backpatch: 12-
|
|
|
|
|
|
|
|
|
| |
Switch to 2.1 version of pg_bsd_indent. This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.
Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
|
|
|
|
|
|
|
|
| |
This is still using the 2.0 version of pg_bsd_indent.
I thought it would be good to commit this separately,
so as to document the differences between 2.0 and 2.1 behavior.
Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a flag "deterministic" to collations. If that is false,
such a collation disables various optimizations that assume that
strings are equal only if they are byte-wise equal. That then allows
use cases such as case-insensitive or accent-insensitive comparisons
or handling of strings with different Unicode normal forms.
This functionality is only supported with the ICU provider. At least
glibc doesn't appear to have any locales that work in a
nondeterministic way, so it's not worth supporting this for the libc
provider.
The term "deterministic comparison" in this context is from Unicode
Technical Standard #10
(https://unicode.org/reports/tr10/#Deterministic_Comparison).
This patch makes changes in three areas:
- CREATE COLLATION DDL changes and system catalog changes to support
this new flag.
- Many executor nodes and auxiliary code are extended to track
collations. Previously, this code would just throw away collation
information, because the eventually-called user-defined functions
didn't use it since they only cared about equality, which didn't
need collation information.
- String data type functions that do equality comparisons and hashing
are changed to take the (non-)deterministic flag into account. For
comparison, this just means skipping various shortcuts and tie
breakers that use byte-wise comparison. For hashing, we first need
to convert the input string to a canonical "sort key" using the ICU
analogue of strxfrm().
Reviewed-by: Daniel Verite <daniel@manitou-mail.org>
Reviewed-by: Peter Geoghegan <pg@bowt.ie>
Discussion: https://www.postgresql.org/message-id/flat/1ccc668f-4cbc-0bef-af67-450b47cdfee7@2ndquadrant.com
|
|
|
|
| |
Backpatch-through: certain files through 9.4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Upcoming work intends to allow pluggable ways to introduce new ways of
storing table data. Accessing those table access methods from the
executor requires TupleTableSlots to be carry tuples in the native
format of such storage methods; otherwise there'll be a significant
conversion overhead.
Different access methods will require different data to store tuples
efficiently (just like virtual, minimal, heap already require fields
in TupleTableSlot). To allow that without requiring additional pointer
indirections, we want to have different structs (embedding
TupleTableSlot) for different types of slots. Thus different types of
slots are needed, which requires adapting creators of slots.
The slot that most efficiently can represent a type of tuple in an
executor node will often depend on the type of slot a child node
uses. Therefore we need to track the type of slot is returned by
nodes, so parent slots can create slots based on that.
Relatedly, JIT compilation of tuple deforming needs to know which type
of slot a certain expression refers to, so it can create an
appropriate deforming function for the type of tuple in the slot.
But not all nodes will only return one type of slot, e.g. an append
node will potentially return different types of slots for each of its
subplans.
Therefore add function that allows to query the type of a node's
result slot, and whether it'll always be the same type (whether it's
fixed). This can be queried using ExecGetResultSlotOps().
The scan, result, inner, outer type of slots are automatically
inferred from ExecInitScanTupleSlot(), ExecInitResultSlot(),
left/right subtrees respectively. If that's not correct for a node,
that can be overwritten using new fields in PlanState.
This commit does not introduce the actually abstracted implementation
of different kind of TupleTableSlots, that will be left for a followup
commit. The different types of slots introduced will, for now, still
use the same backing implementation.
While this already partially invalidates the big comment in
tuptable.h, it seems to make more sense to update it later, when the
different TupleTableSlot implementations actually exist.
Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously materializing a slot always returned a HeapTuple. As
current work aims to reduce the reliance on HeapTuples (so other
storage systems can work efficiently), that needs to change. Thus
split the tasks of materializing a slot (i.e. making it independent
from the underlying storage / other memory contexts) from fetching a
HeapTuple from the slot. For brevity, allow to fetch a HeapTuple from
a slot and materializing the slot at the same time, controlled by a
parameter.
For now some callers of ExecFetchSlotHeapTuple, with materialize =
true, expect that changes to the heap tuple will be reflected in the
underlying slot. Those places will be adapted in due course, so while
not pretty, that's OK for now.
Also rename ExecFetchSlotTuple to ExecFetchSlotHeapTupleDatum and
ExecFetchSlotTupleDatum to ExecFetchSlotHeapTupleDatum, as it's likely
that future storage methods will need similar methods. There already
is ExecFetchSlotMinimalTuple, so the new names make the naming scheme
more coherent.
Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In a lot of nodes the return slot is not required. That can either be
because the node doesn't do any projection (say an Append node), or
because the node does perform projections but the projection is
optimized away because the projection would yield an identical row.
Slots aren't that small, especially for wide rows, so it's worthwhile
to avoid creating them. It's not possible to just skip creating the
slot - it's currently used to determine the tuple descriptor returned
by ExecGetResultType(). So separate the determination of the result
type from the slot creation. The work previously done internally
ExecInitResultTupleSlotTL() can now also be done separately with
ExecInitResultTypeTL() and ExecInitResultSlot(). That way nodes that
aren't guaranteed to need a result slot, can use
ExecInitResultTypeTL() to determine the result type of the node, and
ExecAssignScanProjectionInfo() (via
ExecConditionalAssignProjectionInfo()) determines that a result slot
is needed, it is created with ExecInitResultSlot().
Besides the advantage of avoiding to create slots that then are
unused, this is necessary preparation for later patches around tuple
table slot abstraction. In particular separating the return descriptor
and slot is a prerequisite to allow JITing of tuple deforming with
knowledge of the underlying tuple format, and to avoid unnecessarily
creating JITed tuple deforming for virtual slots.
This commit removes a redundant argument from
ExecInitResultTupleSlotTL(). While this commit touches a lot of the
relevant lines anyway, it'd normally still not worthwhile to cause
breakage, except that aforementioned later commits will touch *all*
ExecInitResultTupleSlotTL() callers anyway (but fits worse
thematically).
Author: Andres Freund
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously the expressions were built with the HashJoinState as a
parent. That's incorrect.
Currently this does not appear to be harmful, but for the upcoming
'slot abstraction' work this proves to be problematic, as the
underlying slot types can differ between Hash and HashJoin. It's
possible that this already causes a problem, but I've not been able to
come up with a scenario. Therefore don't backpatch at this point.
Author: Andres Freund
Discussion: https://postgr.es/m/20180220224318.gw4oe5jadhpmcdnm@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
NULL keys in left joins were skipped when building batch files.
Repair, by making the keep_nulls argument to ExecHashGetHashValue()
depend on whether this is a left outer join, as we do in other
paths.
Bug #15475. Thinko in 1804284042e. Back-patch to 11.
Reported-by: Paul Schaap
Diagnosed-by: Andrew Gierth
Dicussion: https://postgr.es/m/15475-11a7a783fed72a36%40postgresql.org
|
|
|
|
| |
Discussion: https://postgr.es/m/15719.1523984266@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The reason for doing so is that it will allow expression evaluation to
optimize based on the underlying tupledesc. In particular it will
allow to JIT tuple deforming together with the expression itself.
For that expression initialization needs to be moved after the
relevant slots are initialized - mostly unproblematic, except in the
case of nodeWorktablescan.c.
After doing so there's no need for ExecAssignResultType() and
ExecAssignResultTypeFromTL() anymore, as all former callers have been
converted to create a slot with a fixed descriptor.
When creating a slot with a fixed descriptor, tts_values/isnull can be
allocated together with the main slot, reducing allocation overhead
and increasing cache density a bit.
Author: Andres Freund
Discussion: https://postgr.es/m/20171206093717.vqdxe5icqttpxs3p@alap3.anarazel.de
|