aboutsummaryrefslogtreecommitdiff
path: root/src/wal.c
blob: 0bdd4adbe1519dbec2e2d18bbe13e44588fe2eb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
/*
** 2010 February 1
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the implementation of a write-ahead log (WAL) used in 
** "journal_mode=WAL" mode.
**
** WRITE-AHEAD LOG (WAL) FILE FORMAT
**
** A WAL file consists of a header followed by zero or more "frames".
** Each frame records the revised content of a single page from the
** database file.  All changes to the database are recorded by writing
** frames into the WAL.  Transactions commit when a frame is written that
** contains a commit marker.  A single WAL can and usually does record 
** multiple transactions.  Periodically, the content of the WAL is
** transferred back into the database file in an operation called a
** "checkpoint".
**
** A single WAL file can be used multiple times.  In other words, the
** WAL can fill up with frames and then be checkpointed and then new
** frames can overwrite the old ones.  A WAL always grows from beginning
** toward the end.  Checksums and counters attached to each frame are
** used to determine which frames within the WAL are valid and which
** are leftovers from prior checkpoints.
**
** The WAL header is 24 bytes in size and consists of the following six
** big-endian 32-bit unsigned integer values:
**
**     0: Magic number.  0x377f0682 or 0x377f0683
**     4: File format version.  Currently 3007000
**     8: Database page size.  Example: 1024
**    12: Checkpoint sequence number
**    16: Salt-1, random integer incremented with each checkpoint
**    20: Salt-2, a different random integer changing with each ckpt
**
** Immediately following the wal-header are zero or more frames. Each
** frame consists of a 24-byte frame-header followed by a <page-size> bytes
** of page data. The frame-header is broken into 6 big-endian 32-bit unsigned 
** integer values, as follows:
**
**     0: Page number.
**     4: For commit records, the size of the database image in pages 
**        after the commit. For all other records, zero.
**     8: Salt-1 (copied from the header)
**    12: Salt-2 (copied from the header)
**    16: Checksum-1.
**    20: Checksum-2.
**
** A frame is considered valid if and only if the following conditions are
** true:
**
**    (1) The salt-1 and salt-2 values in the frame-header match
**        salt values in the wal-header
**
**    (2) The checksum values in the final 8 bytes of the frame-header
**        exactly match the checksum computed consecutively on the
**        WAL header and the first 8 bytes and the content of all frames
**        up to and including the current frame.
**
** The checksum is computed using 32-bit big-endian integers if the
** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
** is computed using little-endian if the magic number is 0x377f0682.
** The checksum values are always stored in the frame header in a
** big-endian format regardless of which byte order is used to compute
** the checksum.  The checksum is computed by interpreting the input as
** an even number of unsigned 32-bit integers: x[0] through x[N].  The
** 
**   for i from 0 to n-1 step 2:
**     s0 += x[i] + s1;
**     s1 += x[i+1] + s0;
**   endfor
**
** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
** WAL is transferred into the database, then the database is VFS.xSync-ed.
** The VFS.xSync operations server as write barriers - all writes launched
** before the xSync must complete before any write that launches after the
** xSync begins.
**
** After each checkpoint, the salt-1 value is incremented and the salt-2
** value is randomized.  This prevents old and new frames in the WAL from
** being considered valid at the same time and being checkpointing together
** following a crash.
**
** READER ALGORITHM
**
** To read a page from the database (call it page number P), a reader
** first checks the WAL to see if it contains page P.  If so, then the
** last valid instance of page P that is a followed by a commit frame
** or is a commit frame itself becomes the value read.  If the WAL
** contains no copies of page P that are valid and which are a commit
** frame or are followed by a commit frame, then page P is read from
** the database file.
**
** To start a read transaction, the reader records the index of the last
** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
** for all subsequent read operations.  New transactions can be appended
** to the WAL, but as long as the reader uses its original mxFrame value
** and ignores the newly appended content, it will see a consistent snapshot
** of the database from a single point in time.  This technique allows
** multiple concurrent readers to view different versions of the database
** content simultaneously.
**
** The reader algorithm in the previous paragraphs works correctly, but 
** because frames for page P can appear anywhere within the WAL, the
** reader has to scan the entire WAL looking for page P frames.  If the
** WAL is large (multiple megabytes is typical) that scan can be slow,
** and read performance suffers.  To overcome this problem, a separate
** data structure called the wal-index is maintained to expedite the
** search for frames of a particular page.
** 
** WAL-INDEX FORMAT
**
** Conceptually, the wal-index is shared memory, though VFS implementations
** might choose to implement the wal-index using a mmapped file.  Because
** the wal-index is shared memory, SQLite does not support journal_mode=WAL 
** on a network filesystem.  All users of the database must be able to
** share memory.
**
** The wal-index is transient.  After a crash, the wal-index can (and should
** be) reconstructed from the original WAL file.  In fact, the VFS is required
** to either truncate or zero the header of the wal-index when the last
** connection to it closes.  Because the wal-index is transient, it can
** use an architecture-specific format; it does not have to be cross-platform.
** Hence, unlike the database and WAL file formats which store all values
** as big endian, the wal-index can store multi-byte values in the native
** byte order of the host computer.
**
** The purpose of the wal-index is to answer this question quickly:  Given
** a page number P, return the index of the last frame for page P in the WAL,
** or return NULL if there are no frames for page P in the WAL.
**
** The wal-index consists of a header region, followed by an one or
** more index blocks.  
**
** The wal-index header contains the total number of frames within the WAL
** in the the mxFrame field.  Each index block contains information on
** HASHTABLE_NPAGE frames.  Each index block contains two sections, a
** mapping which is a database page number for each frame, and a hash
** table used to look up frames by page number.  The mapping section is
** an array of HASHTABLE_NPAGE 32-bit page numbers.  The first entry on the
** array is the page number for the first frame; the second entry is the
** page number for the second frame; and so forth.  The last index block
** holds a total of (mxFrame%HASHTABLE_NPAGE) page numbers.  All index
** blocks other than the last are completely full with HASHTABLE_NPAGE
** page numbers.  All index blocks are the same size; the mapping section
** of the last index block merely contains unused entries if mxFrame is
** not an even multiple of HASHTABLE_NPAGE.
**
** Even without using the hash table, the last frame for page P
** can be found by scanning the mapping sections of each index block
** starting with the last index block and moving toward the first, and
** within each index block, starting at the end and moving toward the
** beginning.  The first entry that equals P corresponds to the frame
** holding the content for that page.
**
** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
** hash table for each page number in the mapping section, so the hash 
** table is never more than half full.  The expected number of collisions 
** prior to finding a match is 1.  Each entry of the hash table is an
** 1-based index of an entry in the mapping section of the same
** index block.   Let K be the 1-based index of the largest entry in
** the mapping section.  (For index blocks other than the last, K will
** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
** contain a value of 0.
**
** To look for page P in the hash table, first compute a hash iKey on
** P as follows:
**
**      iKey = (P * 383) % HASHTABLE_NSLOT
**
** Then start scanning entries of the hash table, starting with iKey
** (wrapping around to the beginning when the end of the hash table is
** reached) until an unused hash slot is found. Let the first unused slot
** be at index iUnused.  (iUnused might be less than iKey if there was
** wrap-around.) Because the hash table is never more than half full,
** the search is guaranteed to eventually hit an unused entry.  Let 
** iMax be the value between iKey and iUnused, closest to iUnused,
** where aHash[iMax]==P.  If there is no iMax entry (if there exists
** no hash slot such that aHash[i]==p) then page P is not in the
** current index block.  Otherwise the iMax-th mapping entry of the
** current index block corresponds to the last entry that references 
** page P.
**
** A hash search begins with the last index block and moves toward the
** first index block, looking for entries corresponding to page P.  On
** average, only two or three slots in each index block need to be
** examined in order to either find the last entry for page P, or to
** establish that no such entry exists in the block.  Each index block
** holds over 4000 entries.  So two or three index blocks are sufficient
** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
** comparisons (on average) suffice to either locate a frame in the
** WAL or to establish that the frame does not exist in the WAL.  This
** is much faster than scanning the entire 10MB WAL.
**
** Note that entries are added in order of increasing K.  Hence, one
** reader might be using some value K0 and a second reader that started
** at a later time (after additional transactions were added to the WAL
** and to the wal-index) might be using a different value K1, where K1>K0.
** Both readers can use the same hash table and mapping section to get
** the correct result.  There may be entries in the hash table with
** K>K0 but to the first reader, those entries will appear to be unused
** slots in the hash table and so the first reader will get an answer as
** if no values greater than K0 had ever been inserted into the hash table
** in the first place - which is what reader one wants.  Meanwhile, the
** second reader using K1 will see additional values that were inserted
** later, which is exactly what reader two wants.  
**
** When a rollback occurs, the value of K is decreased. Hash table entries
** that correspond to frames greater than the new K value are removed
** from the hash table at this point.
*/
#ifndef SQLITE_OMIT_WAL

#include "wal.h"

/*
** Indices of various locking bytes.   WAL_NREADER is the number
** of available reader locks and should be at least 3.
*/
#define WAL_WRITE_LOCK         0
#define WAL_ALL_BUT_WRITE      1
#define WAL_CKPT_LOCK          1
#define WAL_RECOVER_LOCK       2
#define WAL_READ_LOCK(I)       (3+(I))
#define WAL_NREADER            (SQLITE_SHM_NLOCK-3)


/* Object declarations */
typedef struct WalIndexHdr WalIndexHdr;
typedef struct WalIterator WalIterator;
typedef struct WalCkptInfo WalCkptInfo;


/*
** The following object holds a copy of the wal-index header content.
**
** The actual header in the wal-index consists of two copies of this
** object.
*/
struct WalIndexHdr {
  u32 iChange;                    /* Counter incremented each transaction */
  u16 bigEndCksum;                /* True if checksums in WAL are big-endian */
  u16 szPage;                     /* Database page size in bytes */
  u32 mxFrame;                    /* Index of last valid frame in the WAL */
  u32 nPage;                      /* Size of database in pages */
  u32 aFrameCksum[2];             /* Checksum of last frame in log */
  u32 aSalt[2];                   /* Two salt values copied from WAL header */
  u32 aCksum[2];                  /* Checksum over all prior fields */
};

/*
** A copy of the following object occurs in the wal-index immediately
** following the second copy of the WalIndexHdr.  This object stores
** information used by checkpoint.
**
** nBackfill is the number of frames in the WAL that have been written
** back into the database. (We call the act of moving content from WAL to
** database "backfilling".)  The nBackfill number is never greater than
** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
** mxFrame back to zero when the WAL is reset.
**
** There is one entry in aReadMark[] for each reader lock.  If a reader
** holds read-lock K, then the value in aReadMark[K] is no greater than
** the mxFrame for that reader.  aReadMark[0] is a special case.  It
** always holds zero.  Readers holding WAL_READ_LOCK(0) always ignore 
** the entire WAL and read all content directly from the database.
**
** The value of aReadMark[K] may only be changed by a thread that
** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
** aReadMark[K] cannot changed while there is a reader is using that mark
** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
**
** The checkpointer may only transfer frames from WAL to database where
** the frame numbers are less than or equal to every aReadMark[] that is
** in use (that is, every aReadMark[j] for which there is a corresponding
** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
** largest value and will increase an unused aReadMark[] to mxFrame if there
** is not already an aReadMark[] equal to mxFrame.  The exception to the
** previous sentence is when nBackfill equals mxFrame (meaning that everything
** in the WAL has been backfilled into the database) then new readers
** will choose aReadMark[0] which has value 0 and hence such reader will
** get all their all content directly from the database file and ignore 
** the WAL.
**
** Writers normally append new frames to the end of the WAL.  However,
** if nBackfill equals mxFrame (meaning that all WAL content has been
** written back into the database) and if no readers are using the WAL
** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
** the writer will first "reset" the WAL back to the beginning and start
** writing new content beginning at frame 1.
**
** We assume that 32-bit loads are atomic and so no locks are needed in
** order to read from any aReadMark[] entries.
*/
struct WalCkptInfo {
  u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
  u32 aReadMark[WAL_NREADER];     /* Reader marks */
};


/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
** only support mandatory file-locks, we do not read or write data
** from the region of the file on which locks are applied.
*/
#define WALINDEX_LOCK_OFFSET   (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
#define WALINDEX_LOCK_RESERVED 16
#define WALINDEX_HDR_SIZE      (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)

/* Size of header before each frame in wal */
#define WAL_FRAME_HDRSIZE 24

/* Size of write ahead log header */
#define WAL_HDRSIZE 24

/* WAL magic value. Either this value, or the same value with the least
** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
** big-endian format in the first 4 bytes of a WAL file.
**
** If the LSB is set, then the checksums for each frame within the WAL
** file are calculated by treating all data as an array of 32-bit 
** big-endian words. Otherwise, they are calculated by interpreting 
** all data as 32-bit little-endian words.
*/
#define WAL_MAGIC 0x377f0682

/*
** Return the offset of frame iFrame in the write-ahead log file, 
** assuming a database page size of szPage bytes. The offset returned
** is to the start of the write-ahead log frame-header.
*/
#define walFrameOffset(iFrame, szPage) (                               \
  WAL_HDRSIZE + ((iFrame)-1)*((szPage)+WAL_FRAME_HDRSIZE)        \
)

/*
** An open write-ahead log file is represented by an instance of the
** following object.
*/
struct Wal {
  sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
  sqlite3_file *pDbFd;       /* File handle for the database file */
  sqlite3_file *pWalFd;      /* File handle for WAL file */
  u32 iCallback;             /* Value to pass to log callback (or 0) */
  int szWIndex;              /* Size of the wal-index that is mapped in mem */
  volatile u32 *pWiData;     /* Pointer to wal-index content in memory */
  u16 szPage;                /* Database page size */
  i16 readLock;              /* Which read lock is being held.  -1 for none */
  u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
  u8 isWIndexOpen;           /* True if ShmOpen() called on pDbFd */
  u8 writeLock;              /* True if in a write transaction */
  u8 ckptLock;               /* True if holding a checkpoint lock */
  WalIndexHdr hdr;           /* Wal-index header for current transaction */
  char *zWalName;            /* Name of WAL file */
  u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
};

/*
** Return a pointer to the WalCkptInfo structure in the wal-index.
*/
static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
  assert( pWal->pWiData!=0 );
  return (volatile WalCkptInfo*)&pWal->pWiData[sizeof(WalIndexHdr)/2];
}


/*
** This structure is used to implement an iterator that loops through
** all frames in the WAL in database page order. Where two or more frames
** correspond to the same database page, the iterator visits only the 
** frame most recently written to the WAL (in other words, the frame with
** the largest index).
**
** The internals of this structure are only accessed by:
**
**   walIteratorInit() - Create a new iterator,
**   walIteratorNext() - Step an iterator,
**   walIteratorFree() - Free an iterator.
**
** This functionality is used by the checkpoint code (see walCheckpoint()).
*/
struct WalIterator {
  int iPrior;           /* Last result returned from the iterator */
  int nSegment;         /* Size of the aSegment[] array */
  int nFinal;           /* Elements in aSegment[nSegment-1]  */
  struct WalSegment {
    int iNext;              /* Next slot in aIndex[] not previously returned */
    u8 *aIndex;             /* i0, i1, i2... such that aPgno[iN] ascending */
    u32 *aPgno;             /* 256 page numbers.  Pointer to Wal.pWiData */
  } aSegment[1];        /* One for every 256 entries in the WAL */
};

/*
** The argument to this macro must be of type u32. On a little-endian
** architecture, it returns the u32 value that results from interpreting
** the 4 bytes as a big-endian value. On a big-endian architecture, it
** returns the value that would be produced by intepreting the 4 bytes
** of the input value as a little-endian integer.
*/
#define BYTESWAP32(x) ( \
    (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
  + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
)

/*
** Generate or extend an 8 byte checksum based on the data in 
** array aByte[] and the initial values of aIn[0] and aIn[1] (or
** initial values of 0 and 0 if aIn==NULL).
**
** The checksum is written back into aOut[] before returning.
**
** nByte must be a positive multiple of 8.
*/
static void walChecksumBytes(
  int nativeCksum, /* True for native byte-order, false for non-native */
  u8 *a,           /* Content to be checksummed */
  int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
  const u32 *aIn,  /* Initial checksum value input */
  u32 *aOut        /* OUT: Final checksum value output */
){
  u32 s1, s2;
  u32 *aData = (u32 *)a;
  u32 *aEnd = (u32 *)&a[nByte];

  if( aIn ){
    s1 = aIn[0];
    s2 = aIn[1];
  }else{
    s1 = s2 = 0;
  }

  assert( nByte>=8 );
  assert( (nByte&0x00000007)==0 );

  if( nativeCksum ){
    do {
      s1 += *aData++ + s2;
      s2 += *aData++ + s1;
    }while( aData<aEnd );
  }else{
    do {
      s1 += BYTESWAP32(aData[0]) + s2;
      s2 += BYTESWAP32(aData[1]) + s1;
      aData += 2;
    }while( aData<aEnd );
  }

  aOut[0] = s1;
  aOut[1] = s2;
}

/*
** Write the header information in pWal->hdr into the wal-index.
**
** The checksum on pWal->hdr is updated before it is written.
*/
static void walIndexWriteHdr(Wal *pWal){
  WalIndexHdr *aHdr;

  assert( pWal->writeLock );
  walChecksumBytes(1, (u8*)&pWal->hdr, offsetof(WalIndexHdr, aCksum),
                   0, pWal->hdr.aCksum);
  aHdr = (WalIndexHdr*)pWal->pWiData;
  memcpy(&aHdr[1], &pWal->hdr, sizeof(WalIndexHdr));
  sqlite3OsShmBarrier(pWal->pDbFd);
  memcpy(&aHdr[0], &pWal->hdr, sizeof(WalIndexHdr));
}

/*
** This function encodes a single frame header and writes it to a buffer
** supplied by the caller. A frame-header is made up of a series of 
** 4-byte big-endian integers, as follows:
**
**     0: Page number.
**     4: For commit records, the size of the database image in pages 
**        after the commit. For all other records, zero.
**     8: Salt-1 (copied from the wal-header)
**    12: Salt-2 (copied from the wal-header)
**    16: Checksum-1.
**    20: Checksum-2.
*/
static void walEncodeFrame(
  Wal *pWal,                      /* The write-ahead log */
  u32 iPage,                      /* Database page number for frame */
  u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
  u8 *aData,                      /* Pointer to page data */
  u8 *aFrame                      /* OUT: Write encoded frame here */
){
  int nativeCksum;                /* True for native byte-order checksums */
  u32 *aCksum = pWal->hdr.aFrameCksum;
  assert( WAL_FRAME_HDRSIZE==24 );
  sqlite3Put4byte(&aFrame[0], iPage);
  sqlite3Put4byte(&aFrame[4], nTruncate);
  memcpy(&aFrame[8], pWal->hdr.aSalt, 8);

  nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
  walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
  walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);

  sqlite3Put4byte(&aFrame[16], aCksum[0]);
  sqlite3Put4byte(&aFrame[20], aCksum[1]);
}

/*
** Check to see if the frame with header in aFrame[] and content
** in aData[] is valid.  If it is a valid frame, fill *piPage and
** *pnTruncate and return true.  Return if the frame is not valid.
*/
static int walDecodeFrame(
  Wal *pWal,                      /* The write-ahead log */
  u32 *piPage,                    /* OUT: Database page number for frame */
  u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
  u8 *aData,                      /* Pointer to page data (for checksum) */
  u8 *aFrame                      /* Frame data */
){
  int nativeCksum;                /* True for native byte-order checksums */
  u32 *aCksum = pWal->hdr.aFrameCksum;
  u32 pgno;                       /* Page number of the frame */
  assert( WAL_FRAME_HDRSIZE==24 );

  /* A frame is only valid if the salt values in the frame-header
  ** match the salt values in the wal-header. 
  */
  if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
    return 0;
  }

  /* A frame is only valid if the page number is creater than zero.
  */
  pgno = sqlite3Get4byte(&aFrame[0]);
  if( pgno==0 ){
    return 0;
  }

  /* A frame is only valid if a checksum of the first 16 bytes
  ** of the frame-header, and the frame-data matches
  ** the checksum in the last 8 bytes of the frame-header.
  */
  nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
  walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
  walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
  if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 
   || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 
  ){
    /* Checksum failed. */
    return 0;
  }

  /* If we reach this point, the frame is valid.  Return the page number
  ** and the new database size.
  */
  *piPage = pgno;
  *pnTruncate = sqlite3Get4byte(&aFrame[4]);
  return 1;
}

/*
** Define the parameters of the hash tables in the wal-index file. There
** is a hash-table following every HASHTABLE_NPAGE page numbers in the
** wal-index.
**
** Changing any of these constants will alter the wal-index format and
** create incompatibilities.
*/
#define HASHTABLE_NPAGE      4096  /* Must be power of 2 and multiple of 256 */
#define HASHTABLE_DATATYPE   u16
#define HASHTABLE_HASH_1     383                  /* Should be prime */
#define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
#define HASHTABLE_NBYTE      (sizeof(HASHTABLE_DATATYPE)*HASHTABLE_NSLOT)

/*
** Set or release locks.
**
** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
*/
static int walLockShared(Wal *pWal, int lockIdx){
  if( pWal->exclusiveMode ) return SQLITE_OK;
  return sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
                          SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
}
static void walUnlockShared(Wal *pWal, int lockIdx){
  if( pWal->exclusiveMode ) return;
  (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
                         SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
}
static int walLockExclusive(Wal *pWal, int lockIdx, int n){
  if( pWal->exclusiveMode ) return SQLITE_OK;
  return sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
                          SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
}
static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
  if( pWal->exclusiveMode ) return;
  (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
                         SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
}

/*
** Return the index in the Wal.pWiData array that corresponds to 
** frame iFrame.
**
** Wal.pWiData is an array of u32 elements that is the wal-index.
** The array begins with a header and is then followed by alternating
** "map" and "hash-table" blocks.  Each "map" block consists of
** HASHTABLE_NPAGE u32 elements which are page numbers corresponding
** to frames in the WAL file.  
**
** This routine returns an index X such that Wal.pWiData[X] is part
** of a "map" block that contains the page number of the iFrame-th
** frame in the WAL file.
*/
static int walIndexEntry(u32 iFrame){
  return (
      (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)/sizeof(u32)
    + (((iFrame-1)/HASHTABLE_NPAGE) * HASHTABLE_NBYTE)/sizeof(u32)
    + (iFrame-1)
  );
}

/*
** Return the minimum mapping size in bytes that can be used to read the
** wal-index up to and including frame iFrame. If iFrame is the last frame
** in a block of 256 frames, the returned byte-count includes the space
** required by the 256-byte index block.
*/
static int walMappingSize(u32 iFrame){
  const int nByte = (sizeof(u32)*HASHTABLE_NPAGE + HASHTABLE_NBYTE) ;
  return ( WALINDEX_LOCK_OFFSET 
         + WALINDEX_LOCK_RESERVED 
         + nByte * ((iFrame + HASHTABLE_NPAGE - 1)/HASHTABLE_NPAGE)
  );
}

/*
** Release our reference to the wal-index memory map, if we are holding
** it.
*/
static void walIndexUnmap(Wal *pWal){
  if( pWal->pWiData ){
    sqlite3OsShmRelease(pWal->pDbFd);
  }
  pWal->pWiData = 0;
  pWal->szWIndex = -1;
}

/*
** Map the wal-index file into memory if it isn't already. 
**
** The reqSize parameter is the requested size of the mapping.  The
** mapping will be at least this big if the underlying storage is
** that big.  But the mapping will never grow larger than the underlying
** storage.  Use the walIndexRemap() to enlarget the storage space.
*/
static int walIndexMap(Wal *pWal, int reqSize){
  int rc = SQLITE_OK;
  if( pWal->pWiData==0 || reqSize>pWal->szWIndex ){
    walIndexUnmap(pWal);
    rc = sqlite3OsShmGet(pWal->pDbFd, reqSize, &pWal->szWIndex,
                             (void volatile**)(char volatile*)&pWal->pWiData);
    if( rc!=SQLITE_OK ){
      walIndexUnmap(pWal);
    }
  }
  return rc;
}

/*
** Enlarge the wal-index to be at least enlargeTo bytes in size and
** Remap the wal-index so that the mapping covers the full size
** of the underlying file.
**
** If enlargeTo is non-negative, then increase the size of the underlying
** storage to be at least as big as enlargeTo before remapping.
*/
static int walIndexRemap(Wal *pWal, int enlargeTo){
  int rc;
  int sz;
  assert( pWal->writeLock );
  rc = sqlite3OsShmSize(pWal->pDbFd, enlargeTo, &sz);
  if( rc==SQLITE_OK && sz>pWal->szWIndex ){
    walIndexUnmap(pWal);
    rc = walIndexMap(pWal, sz);
  }
  assert( pWal->szWIndex>=enlargeTo || rc!=SQLITE_OK );
  return rc;
}

/*
** Compute a hash on a page number.  The resulting hash value must land
** between 0 and (HASHTABLE_NSLOT-1).
*/
static int walHash(u32 iPage){
  assert( iPage>0 );
  assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
  return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
}
static int walNextHash(int iPriorHash){
  return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
}


/* 
** Find the hash table and (section of the) page number array used to
** store data for WAL frame iFrame.
**
** Set output variable *paHash to point to the start of the hash table
** in the wal-index file. Set *piZero to one less than the frame 
** number of the first frame indexed by this hash table. If a
** slot in the hash table is set to N, it refers to frame number 
** (*piZero+N) in the log.
**
** Finally, set *paPgno such that for all frames F between (*piZero+1) and 
** (*piZero+HASHTABLE_NPAGE), (*paPgno)[F] is the database page number 
** associated with frame F.
*/
static void walHashFind(
  Wal *pWal,                      /* WAL handle */
  u32 iFrame,                     /* Find the hash table indexing this frame */
  volatile HASHTABLE_DATATYPE **paHash,    /* OUT: Pointer to hash index */
  volatile u32 **paPgno,          /* OUT: Pointer to page number array */
  u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
){
  u32 iZero;
  volatile u32 *aPgno;
  volatile HASHTABLE_DATATYPE *aHash;

  iZero = ((iFrame-1)/HASHTABLE_NPAGE) * HASHTABLE_NPAGE;
  aPgno = &pWal->pWiData[walIndexEntry(iZero+1)-iZero-1];
  aHash = (HASHTABLE_DATATYPE *)&aPgno[iZero+HASHTABLE_NPAGE+1];

  /* Assert that:
  **
  **   + the mapping is large enough for this hash-table, and
  **
  **   + that aPgno[iZero+1] really is the database page number associated
  **     with the first frame indexed by this hash table.
  */
  assert( (u32*)(&aHash[HASHTABLE_NSLOT])<=&pWal->pWiData[pWal->szWIndex/4] );
  assert( walIndexEntry(iZero+1)==(&aPgno[iZero+1] - pWal->pWiData) );

  *paHash = aHash;
  *paPgno = aPgno;
  *piZero = iZero;
}

/*
** Remove entries from the hash table that point to WAL slots greater
** than pWal->hdr.mxFrame.
**
** This function is called whenever pWal->hdr.mxFrame is decreased due
** to a rollback or savepoint.
**
** At most only the very last hash table needs to be updated.  Any
** later hash tables will be automatically cleared when pWal->hdr.mxFrame
** advances to the point where those hash tables are actually needed.
*/
static void walCleanupHash(Wal *pWal){
  volatile HASHTABLE_DATATYPE *aHash;  /* Pointer to hash table to clear */
  volatile u32 *aPgno;                 /* Unused return from walHashFind() */
  u32 iZero;                           /* frame == (aHash[x]+iZero) */
  int iLimit;                          /* Zero values greater than this */

  assert( pWal->writeLock );
  walHashFind(pWal, pWal->hdr.mxFrame+1, &aHash, &aPgno, &iZero);
  iLimit = pWal->hdr.mxFrame - iZero;
  if( iLimit>0 ){
    int nByte;                    /* Number of bytes to zero in aPgno[] */
    int i;                        /* Used to iterate through aHash[] */
    for(i=0; i<HASHTABLE_NSLOT; i++){
      if( aHash[i]>iLimit ){
        aHash[i] = 0;
      }
    }

    /* Zero the entries in the aPgno array that correspond to frames with
    ** frame numbers greater than pWal->hdr.mxFrame. 
    */
    nByte = sizeof(u32) * (HASHTABLE_NPAGE-iLimit);
    memset((void *)&aPgno[iZero+iLimit+1], 0, nByte);
    assert( &((u8 *)&aPgno[iZero+iLimit+1])[nByte]==(u8 *)aHash );
  }

#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
  /* Verify that the every entry in the mapping region is still reachable
  ** via the hash table even after the cleanup.
  */
  {
    int i;           /* Loop counter */
    int iKey;        /* Hash key */
    for(i=1; i<=iLimit; i++){
      for(iKey=walHash(aPgno[i+iZero]); aHash[iKey]; iKey=walNextHash(iKey)){
        if( aHash[iKey]==i ) break;
      }
      assert( aHash[iKey]==i );
    }
  }
#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
}


/*
** Set an entry in the wal-index that will map database page number
** pPage into WAL frame iFrame.
*/
static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
  int rc;                         /* Return code */
  int nMapping;                   /* Required mapping size in bytes */
  
  /* Make sure the wal-index is mapped. Enlarge the mapping if required. */
  nMapping = walMappingSize(iFrame);
  rc = walIndexMap(pWal, nMapping);
  while( rc==SQLITE_OK && nMapping>pWal->szWIndex ){
    rc = walIndexRemap(pWal, nMapping);
  }

  /* Assuming the wal-index file was successfully mapped, find the hash 
  ** table and section of of the page number array that pertain to frame 
  ** iFrame of the WAL. Then populate the page number array and the hash 
  ** table entry.
  */
  if( rc==SQLITE_OK ){
    int iKey;                     /* Hash table key */
    u32 iZero;                    /* One less than frame number of aPgno[1] */
    volatile u32 *aPgno;                 /* Page number array */
    volatile HASHTABLE_DATATYPE *aHash;  /* Hash table */
    int idx;                             /* Value to write to hash-table slot */
    TESTONLY( int nCollide = 0;          /* Number of hash collisions */ )

    walHashFind(pWal, iFrame, &aHash, &aPgno, &iZero);
    idx = iFrame - iZero;
    if( idx==1 ){
      memset((void*)&aPgno[iZero+1], 0, HASHTABLE_NPAGE*sizeof(u32));
      memset((void*)aHash, 0, HASHTABLE_NBYTE);
    }
    assert( idx <= HASHTABLE_NSLOT/2 + 1 );

    if( aPgno[iFrame] ){
      /* If the entry in aPgno[] is already set, then the previous writer
      ** must have exited unexpectedly in the middle of a transaction (after
      ** writing one or more dirty pages to the WAL to free up memory). 
      ** Remove the remnants of that writers uncommitted transaction from 
      ** the hash-table before writing any new entries.
      */
      walCleanupHash(pWal);
      assert( !aPgno[iFrame] );
    }
    aPgno[iFrame] = iPage;
    for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
      assert( nCollide++ < idx );
    }
    aHash[iKey] = idx;

#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
    /* Verify that the number of entries in the hash table exactly equals
    ** the number of entries in the mapping region.
    */
    {
      int i;           /* Loop counter */
      int nEntry = 0;  /* Number of entries in the hash table */
      for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
      assert( nEntry==idx );
    }

    /* Verify that the every entry in the mapping region is reachable
    ** via the hash table.  This turns out to be a really, really expensive
    ** thing to check, so only do this occasionally - not on every
    ** iteration.
    */
    if( (idx&0x3ff)==0 ){
      int i;           /* Loop counter */
      for(i=1; i<=idx; i++){
        for(iKey=walHash(aPgno[i+iZero]); aHash[iKey]; iKey=walNextHash(iKey)){
          if( aHash[iKey]==i ) break;
        }
        assert( aHash[iKey]==i );
      }
    }
#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
  }


  return rc;
}


/*
** Recover the wal-index by reading the write-ahead log file. 
**
** This routine first tries to establish an exclusive lock on the
** wal-index to prevent other threads/processes from doing anything
** with the WAL or wal-index while recovery is running.  The
** WAL_RECOVER_LOCK is also held so that other threads will know
** that this thread is running recovery.  If unable to establish
** the necessary locks, this routine returns SQLITE_BUSY.
*/
static int walIndexRecover(Wal *pWal){
  int rc;                         /* Return Code */
  i64 nSize;                      /* Size of log file */
  u32 aFrameCksum[2] = {0, 0};

  rc = walLockExclusive(pWal, WAL_ALL_BUT_WRITE, SQLITE_SHM_NLOCK-1);
  if( rc ){
    return rc;
  }

  memset(&pWal->hdr, 0, sizeof(WalIndexHdr));

  rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
  if( rc!=SQLITE_OK ){
    goto recovery_error;
  }

  if( nSize>WAL_HDRSIZE ){
    u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
    u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
    int szFrame;                  /* Number of bytes in buffer aFrame[] */
    u8 *aData;                    /* Pointer to data part of aFrame buffer */
    int iFrame;                   /* Index of last frame read */
    i64 iOffset;                  /* Next offset to read from log file */
    int szPage;                   /* Page size according to the log */
    u32 magic;                    /* Magic value read from WAL header */

    /* Read in the WAL header. */
    rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
    if( rc!=SQLITE_OK ){
      goto recovery_error;
    }

    /* If the database page size is not a power of two, or is greater than
    ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 
    ** data. Similarly, if the 'magic' value is invalid, ignore the whole
    ** WAL file.
    */
    magic = sqlite3Get4byte(&aBuf[0]);
    szPage = sqlite3Get4byte(&aBuf[8]);
    if( (magic&0xFFFFFFFE)!=WAL_MAGIC 
     || szPage&(szPage-1) 
     || szPage>SQLITE_MAX_PAGE_SIZE 
     || szPage<512 
    ){
      goto finished;
    }
    pWal->hdr.bigEndCksum = (magic&0x00000001);
    pWal->szPage = szPage;
    pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
    memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
    walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 
        aBuf, WAL_HDRSIZE, 0, pWal->hdr.aFrameCksum
    );

    /* Malloc a buffer to read frames into. */
    szFrame = szPage + WAL_FRAME_HDRSIZE;
    aFrame = (u8 *)sqlite3_malloc(szFrame);
    if( !aFrame ){
      rc = SQLITE_NOMEM;
      goto recovery_error;
    }
    aData = &aFrame[WAL_FRAME_HDRSIZE];

    /* Read all frames from the log file. */
    iFrame = 0;
    for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
      u32 pgno;                   /* Database page number for frame */
      u32 nTruncate;              /* dbsize field from frame header */
      int isValid;                /* True if this frame is valid */

      /* Read and decode the next log frame. */
      rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
      if( rc!=SQLITE_OK ) break;
      isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
      if( !isValid ) break;
      rc = walIndexAppend(pWal, ++iFrame, pgno);
      if( rc!=SQLITE_OK ) break;

      /* If nTruncate is non-zero, this is a commit record. */
      if( nTruncate ){
        pWal->hdr.mxFrame = iFrame;
        pWal->hdr.nPage = nTruncate;
        pWal->hdr.szPage = szPage;
        aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
        aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
      }
    }

    sqlite3_free(aFrame);
  }

finished:
  if( rc==SQLITE_OK && pWal->hdr.mxFrame==0 ){
    rc = walIndexRemap(pWal, walMappingSize(1));
  }
  if( rc==SQLITE_OK ){
    pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
    pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
    walIndexWriteHdr(pWal);
  }

recovery_error:
  walUnlockExclusive(pWal, WAL_ALL_BUT_WRITE, SQLITE_SHM_NLOCK-1);
  return rc;
}

/*
** Close an open wal-index.
*/
static void walIndexClose(Wal *pWal, int isDelete){
  if( pWal->isWIndexOpen ){
    sqlite3OsShmClose(pWal->pDbFd, isDelete);
    pWal->isWIndexOpen = 0;
  }
}

/* 
** Open a connection to the log file associated with database zDb. The
** database file does not actually have to exist. zDb is used only to
** figure out the name of the log file to open. If the log file does not 
** exist it is created by this call.
**
** A SHARED lock should be held on the database file when this function
** is called. The purpose of this SHARED lock is to prevent any other
** client from unlinking the log or wal-index file. If another process
** were to do this just after this client opened one of these files, the
** system would be badly broken.
**
** If the log file is successfully opened, SQLITE_OK is returned and 
** *ppWal is set to point to a new WAL handle. If an error occurs,
** an SQLite error code is returned and *ppWal is left unmodified.
*/
int sqlite3WalOpen(
  sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
  sqlite3_file *pDbFd,            /* The open database file */
  const char *zDbName,            /* Name of the database file */
  Wal **ppWal                     /* OUT: Allocated Wal handle */
){
  int rc;                         /* Return Code */
  Wal *pRet;                      /* Object to allocate and return */
  int flags;                      /* Flags passed to OsOpen() */
  char *zWal;                     /* Name of write-ahead log file */
  int nWal;                       /* Length of zWal in bytes */

  assert( zDbName && zDbName[0] );
  assert( pDbFd );

  /* In the amalgamation, the os_unix.c and os_win.c source files come before
  ** this source file.  Verify that the #defines of the locking byte offsets
  ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
  */
#ifdef WIN_SHM_BASE
  assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
#endif
#ifdef UNIX_SHM_BASE
  assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
#endif


  /* Allocate an instance of struct Wal to return. */
  *ppWal = 0;
  nWal = sqlite3Strlen30(zDbName) + 5;
  pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile + nWal);
  if( !pRet ){
    return SQLITE_NOMEM;
  }

  pRet->pVfs = pVfs;
  pRet->pWalFd = (sqlite3_file *)&pRet[1];
  pRet->pDbFd = pDbFd;
  pRet->szWIndex = -1;
  pRet->readLock = -1;
  sqlite3_randomness(8, &pRet->hdr.aSalt);
  pRet->zWalName = zWal = pVfs->szOsFile + (char*)pRet->pWalFd;
  sqlite3_snprintf(nWal, zWal, "%s-wal", zDbName);
  rc = sqlite3OsShmOpen(pDbFd);

  /* Open file handle on the write-ahead log file. */
  if( rc==SQLITE_OK ){
    pRet->isWIndexOpen = 1;
    flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_JOURNAL);
    rc = sqlite3OsOpen(pVfs, zWal, pRet->pWalFd, flags, &flags);
  }

  if( rc!=SQLITE_OK ){
    walIndexClose(pRet, 0);
    sqlite3OsClose(pRet->pWalFd);
    sqlite3_free(pRet);
  }else{
    *ppWal = pRet;
  }
  return rc;
}

/*
** Find the smallest page number out of all pages held in the WAL that
** has not been returned by any prior invocation of this method on the
** same WalIterator object.   Write into *piFrame the frame index where
** that page was last written into the WAL.  Write into *piPage the page
** number.
**
** Return 0 on success.  If there are no pages in the WAL with a page
** number larger than *piPage, then return 1.
*/
static int walIteratorNext(
  WalIterator *p,               /* Iterator */
  u32 *piPage,                  /* OUT: The page number of the next page */
  u32 *piFrame                  /* OUT: Wal frame index of next page */
){
  u32 iMin;                     /* Result pgno must be greater than iMin */
  u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
  int i;                        /* For looping through segments */
  int nBlock = p->nFinal;       /* Number of entries in current segment */

  iMin = p->iPrior;
  assert( iMin<0xffffffff );
  for(i=p->nSegment-1; i>=0; i--){
    struct WalSegment *pSegment = &p->aSegment[i];
    while( pSegment->iNext<nBlock ){
      u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
      if( iPg>iMin ){
        if( iPg<iRet ){
          iRet = iPg;
          *piFrame = i*256 + 1 + pSegment->aIndex[pSegment->iNext];
        }
        break;
      }
      pSegment->iNext++;
    }
    nBlock = 256;
  }

  *piPage = p->iPrior = iRet;
  return (iRet==0xFFFFFFFF);
}


static void walMergesort8(
  Pgno *aContent,                 /* Pages in wal */
  u8 *aBuffer,                    /* Buffer of at least *pnList items to use */
  u8 *aList,                      /* IN/OUT: List to sort */
  int *pnList                     /* IN/OUT: Number of elements in aList[] */
){
  int nList = *pnList;
  if( nList>1 ){
    int nLeft = nList / 2;        /* Elements in left list */
    int nRight = nList - nLeft;   /* Elements in right list */
    u8 *aLeft = aList;            /* Left list */
    u8 *aRight = &aList[nLeft];   /* Right list */
    int iLeft = 0;                /* Current index in aLeft */
    int iRight = 0;               /* Current index in aright */
    int iOut = 0;                 /* Current index in output buffer */

    /* TODO: Change to non-recursive version. */
    walMergesort8(aContent, aBuffer, aLeft, &nLeft);
    walMergesort8(aContent, aBuffer, aRight, &nRight);

    while( iRight<nRight || iLeft<nLeft ){
      u8 logpage;
      Pgno dbpage;

      if( (iLeft<nLeft) 
       && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
      ){
        logpage = aLeft[iLeft++];
      }else{
        logpage = aRight[iRight++];
      }
      dbpage = aContent[logpage];

      aBuffer[iOut++] = logpage;
      if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;

      assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
      assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
    }
    memcpy(aList, aBuffer, sizeof(aList[0])*iOut);
    *pnList = iOut;
  }

#ifdef SQLITE_DEBUG
  {
    int i;
    for(i=1; i<*pnList; i++){
      assert( aContent[aList[i]] > aContent[aList[i-1]] );
    }
  }
#endif
}

/*
** Map the wal-index into memory owned by this thread, if it is not
** mapped already.  Then construct a WalInterator object that can be
** used to loop over all pages in the WAL in ascending order.  
**
** On success, make *pp point to the newly allocated WalInterator object
** return SQLITE_OK.  Otherwise, leave *pp unchanged and return an error
** code.
**
** The calling routine should invoke walIteratorFree() to destroy the
** WalIterator object when it has finished with it.  The caller must
** also unmap the wal-index.  But the wal-index must not be unmapped
** prior to the WalIterator object being destroyed.
*/
static int walIteratorInit(Wal *pWal, WalIterator **pp){
  u32 *aData;           /* Content of the wal-index file */
  WalIterator *p;       /* Return value */
  int nSegment;         /* Number of segments to merge */
  u32 iLast;            /* Last frame in log */
  int nByte;            /* Number of bytes to allocate */
  int i;                /* Iterator variable */
  int nFinal;           /* Number of unindexed entries */
  u8 *aTmp;             /* Temp space used by merge-sort */
  int rc;               /* Return code of walIndexMap() */
  u8 *aSpace;           /* Surplus space on the end of the allocation */

  /* Make sure the wal-index is mapped into local memory */
  rc = walIndexMap(pWal, walMappingSize(pWal->hdr.mxFrame));
  if( rc!=SQLITE_OK ){
    return rc;
  }

  /* This routine only runs while holding SQLITE_SHM_CHECKPOINT.  No other
  ** thread is able to write to shared memory while this routine is
  ** running (or, indeed, while the WalIterator object exists).  Hence,
  ** we can cast off the volatile qualifacation from shared memory
  */
  assert( pWal->ckptLock );
  aData = (u32*)pWal->pWiData;

  /* Allocate space for the WalIterator object */
  iLast = pWal->hdr.mxFrame;
  nSegment = (iLast >> 8) + 1;
  nFinal = (iLast & 0x000000FF);
  nByte = sizeof(WalIterator) + (nSegment+1)*(sizeof(struct WalSegment)+256);
  p = (WalIterator *)sqlite3_malloc(nByte);
  if( !p ){
    return SQLITE_NOMEM;
  }
  memset(p, 0, nByte);

  /* Initialize the WalIterator object.  Each 256-entry segment is
  ** presorted in order to make iterating through all entries much
  ** faster.
  */
  p->nSegment = nSegment;
  aSpace = (u8 *)&p->aSegment[nSegment];
  aTmp = &aSpace[nSegment*256];
  for(i=0; i<nSegment; i++){
    int j;
    int nIndex = (i==nSegment-1) ? nFinal : 256;
    p->aSegment[i].aPgno = &aData[walIndexEntry(i*256+1)];
    p->aSegment[i].aIndex = aSpace;
    for(j=0; j<nIndex; j++){
      aSpace[j] = j;
    }
    walMergesort8(p->aSegment[i].aPgno, aTmp, aSpace, &nIndex);
    memset(&aSpace[nIndex], aSpace[nIndex-1], 256-nIndex);
    aSpace += 256;
    p->nFinal = nIndex;
  }

  /* Return the fully initializd WalIterator object */
  *pp = p;
  return SQLITE_OK ;
}

/* 
** Free an iterator allocated by walIteratorInit().
*/
static void walIteratorFree(WalIterator *p){
  sqlite3_free(p);
}


/*
** Copy as much content as we can from the WAL back into the database file
** in response to an sqlite3_wal_checkpoint() request or the equivalent.
**
** The amount of information copies from WAL to database might be limited
** by active readers.  This routine will never overwrite a database page
** that a concurrent reader might be using.
**
** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if 
** checkpoints are always run by a background thread or background 
** process, foreground threads will never block on a lengthy fsync call.
**
** Fsync is called on the WAL before writing content out of the WAL and
** into the database.  This ensures that if the new content is persistent
** in the WAL and can be recovered following a power-loss or hard reset.
**
** Fsync is also called on the database file if (and only if) the entire
** WAL content is copied into the database file.  This second fsync makes
** it safe to delete the WAL since the new content will persist in the
** database file.
**
** This routine uses and updates the nBackfill field of the wal-index header.
** This is the only routine tha will increase the value of nBackfill.  
** (A WAL reset or recovery will revert nBackfill to zero, but not increase
** its value.)
**
** The caller must be holding sufficient locks to ensure that no other
** checkpoint is running (in any other thread or process) at the same
** time.
*/
static int walCheckpoint(
  Wal *pWal,                      /* Wal connection */
  int sync_flags,                 /* Flags for OsSync() (or 0) */
  int nBuf,                       /* Size of zBuf in bytes */
  u8 *zBuf                        /* Temporary buffer to use */
){
  int rc;                         /* Return code */
  int szPage = pWal->hdr.szPage;  /* Database page-size */
  WalIterator *pIter = 0;         /* Wal iterator context */
  u32 iDbpage = 0;                /* Next database page to write */
  u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
  u32 mxSafeFrame;                /* Max frame that can be backfilled */
  int i;                          /* Loop counter */
  volatile WalIndexHdr *pHdr;     /* The actual wal-index header in SHM */
  volatile WalCkptInfo *pInfo;    /* The checkpoint status information */

  /* Allocate the iterator */
  rc = walIteratorInit(pWal, &pIter);
  if( rc!=SQLITE_OK || pWal->hdr.mxFrame==0 ){
    walIteratorFree(pIter);
    return rc;
  }

  /*** TODO:  Move this test out to the caller.  Make it an assert() here ***/
  if( pWal->hdr.szPage!=nBuf ){
    walIteratorFree(pIter);
    return SQLITE_CORRUPT_BKPT;
  }

  /* Compute in mxSafeFrame the index of the last frame of the WAL that is
  ** safe to write into the database.  Frames beyond mxSafeFrame might
  ** overwrite database pages that are in use by active readers and thus
  ** cannot be backfilled from the WAL.
  */
  mxSafeFrame = 0;
  pHdr = (volatile WalIndexHdr*)pWal->pWiData;
  pInfo = (volatile WalCkptInfo*)&pHdr[2];
  assert( pInfo==walCkptInfo(pWal) );
  for(i=1; i<WAL_NREADER; i++){
    u32 y = pInfo->aReadMark[i];
    if( y>0 && (mxSafeFrame==0 || mxSafeFrame<y) ){
      if( y<pWal->hdr.mxFrame
       && (rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1))==SQLITE_OK
      ){
        pInfo->aReadMark[i] = 0;
        walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
      }else{
        mxSafeFrame = y;
      }
    }
  }

  if( pInfo->nBackfill<mxSafeFrame
   && (rc = walLockExclusive(pWal, WAL_READ_LOCK(0), 1))==SQLITE_OK
  ){
    u32 nBackfill = pInfo->nBackfill;

    /* Sync the WAL to disk */
    if( sync_flags ){
      rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
    }

    /* Iterate through the contents of the WAL, copying data to the db file. */
    while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
      if( iFrame<=nBackfill || iFrame>mxSafeFrame ) continue;
      rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, 
          walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE
      );
      if( rc!=SQLITE_OK ) break;
      rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, (iDbpage-1)*szPage);
      if( rc!=SQLITE_OK ) break;
    }

    /* If work was actually accomplished... */
    if( rc==SQLITE_OK && pInfo->nBackfill<mxSafeFrame ){
      pInfo->nBackfill = mxSafeFrame;
      if( mxSafeFrame==pHdr[0].mxFrame && sync_flags ){
        rc = sqlite3OsTruncate(pWal->pDbFd, ((i64)pWal->hdr.nPage*(i64)szPage));
        if( rc==SQLITE_OK && sync_flags ){
          rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
        }
      }
    }

    /* Release the reader lock held while backfilling */
    walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
  }

  walIteratorFree(pIter);
  return rc;
}

/*
** Close a connection to a log file.
*/
int sqlite3WalClose(
  Wal *pWal,                      /* Wal to close */
  int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
  int nBuf,
  u8 *zBuf                        /* Buffer of at least nBuf bytes */
){
  int rc = SQLITE_OK;
  if( pWal ){
    int isDelete = 0;             /* True to unlink wal and wal-index files */

    /* If an EXCLUSIVE lock can be obtained on the database file (using the
    ** ordinary, rollback-mode locking methods, this guarantees that the
    ** connection associated with this log file is the only connection to
    ** the database. In this case checkpoint the database and unlink both
    ** the wal and wal-index files.
    **
    ** The EXCLUSIVE lock is not released before returning.
    */
    rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
    if( rc==SQLITE_OK ){
      pWal->exclusiveMode = 1;
      rc = walCheckpoint(pWal, sync_flags, nBuf, zBuf);
      if( rc==SQLITE_OK ){
        isDelete = 1;
      }
      walIndexUnmap(pWal);
    }

    walIndexClose(pWal, isDelete);
    sqlite3OsClose(pWal->pWalFd);
    if( isDelete ){
      sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
    }
    sqlite3_free(pWal);
  }
  return rc;
}

/*
** Try to read the wal-index header.  Return 0 on success and 1 if
** there is a problem.
**
** The wal-index is in shared memory.  Another thread or process might
** be writing the header at the same time this procedure is trying to
** read it, which might result in inconsistency.  A dirty read is detected
** by verifying that both copies of the header are the same and also by
** a checksum on the header.
**
** If and only if the read is consistent and the header is different from
** pWal->hdr, then pWal->hdr is updated to the content of the new header
** and *pChanged is set to 1.
**
** If the checksum cannot be verified return non-zero. If the header
** is read successfully and the checksum verified, return zero.
*/
int walIndexTryHdr(Wal *pWal, int *pChanged){
  u32 aCksum[2];               /* Checksum on the header content */
  WalIndexHdr h1, h2;          /* Two copies of the header content */
  WalIndexHdr *aHdr;           /* Header in shared memory */

  if( pWal->szWIndex < WALINDEX_HDR_SIZE ){
    /* The wal-index is not large enough to hold the header, then assume
    ** header is invalid. */
    return 1;
  }
  assert( pWal->pWiData );

  /* Read the header. This might happen currently with a write to the
  ** same area of shared memory on a different CPU in a SMP,
  ** meaning it is possible that an inconsistent snapshot is read
  ** from the file. If this happens, return non-zero.
  **
  ** There are two copies of the header at the beginning of the wal-index.
  ** When reading, read [0] first then [1].  Writes are in the reverse order.
  ** Memory barriers are used to prevent the compiler or the hardware from
  ** reordering the reads and writes.
  */
  aHdr = (WalIndexHdr*)pWal->pWiData;
  memcpy(&h1, &aHdr[0], sizeof(h1));
  sqlite3OsShmBarrier(pWal->pDbFd);
  memcpy(&h2, &aHdr[1], sizeof(h2));

  if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
    return 1;   /* Dirty read */
  }  
  if( h1.szPage==0 ){
    return 1;   /* Malformed header - probably all zeros */
  }
  walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
  if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
    return 1;   /* Checksum does not match */
  }

  if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
    *pChanged = 1;
    memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
    pWal->szPage = pWal->hdr.szPage;
  }

  /* The header was successfully read. Return zero. */
  return 0;
}

/*
** Read the wal-index header from the wal-index and into pWal->hdr.
** If the wal-header appears to be corrupt, try to recover the log
** before returning.
**
** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
** changed by this opertion.  If pWal->hdr is unchanged, set *pChanged
** to 0.
**
** This routine also maps the wal-index content into memory and assigns
** ownership of that mapping to the current thread.  In some implementations,
** only one thread at a time can hold a mapping of the wal-index.  Hence,
** the caller should strive to invoke walIndexUnmap() as soon as possible
** after this routine returns.
**
** If the wal-index header is successfully read, return SQLITE_OK. 
** Otherwise an SQLite error code.
*/
static int walIndexReadHdr(Wal *pWal, int *pChanged){
  int rc;                         /* Return code */
  int badHdr;                     /* True if a header read failed */

  assert( pChanged );
  rc = walIndexMap(pWal, walMappingSize(1));
  if( rc!=SQLITE_OK ){
    return rc;
  }

  /* Try once to read the header straight out.  This works most of the
  ** time.
  */
  badHdr = walIndexTryHdr(pWal, pChanged);

  /* If the first attempt failed, it might have been due to a race
  ** with a writer.  So get a WRITE lock and try again.
  */
  assert( pWal->writeLock==0 );
  if( badHdr ){
    rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
    if( rc==SQLITE_OK ){
      pWal->writeLock = 1;
      badHdr = walIndexTryHdr(pWal, pChanged);
      if( badHdr ){
        /* If the wal-index header is still malformed even while holding
        ** a WRITE lock, it can only mean that the header is corrupted and
        ** needs to be reconstructed.  So run recovery to do exactly that.
        */
        rc = walIndexRecover(pWal);
      }
      walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
      pWal->writeLock = 0;
    }else if( rc!=SQLITE_BUSY ){
      return rc;
    }
  }

  /* Make sure the mapping is large enough to cover the entire wal-index */
  if( rc==SQLITE_OK ){
    int szWanted = walMappingSize(pWal->hdr.mxFrame);
    if( pWal->szWIndex<szWanted ){
      rc = walIndexMap(pWal, szWanted);
    }
  }

  return rc;
}

/*
** This is the value that walTryBeginRead returns when it needs to
** be retried.
*/
#define WAL_RETRY  (-1)

/*
** Attempt to start a read transaction.  This might fail due to a race or
** other transient condition.  When that happens, it returns WAL_RETRY to
** indicate to the caller that it is safe to retry immediately.
**
** On success return SQLITE_OK.  On a permantent failure (such an
** I/O error or an SQLITE_BUSY because another process is running
** recovery) return a positive error code.
**
** On success, this routine obtains a read lock on 
** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
** that means the Wal does not hold any read lock.  The reader must not
** access any database page that is modified by a WAL frame up to and
** including frame number aReadMark[pWal->readLock].  The reader will
** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
** Or if pWal->readLock==0, then the reader will ignore the WAL
** completely and get all content directly from the database file.
** When the read transaction is completed, the caller must release the
** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
**
** This routine uses the nBackfill and aReadMark[] fields of the header
** to select a particular WAL_READ_LOCK() that strives to let the
** checkpoint process do as much work as possible.  This routine might
** update values of the aReadMark[] array in the header, but if it does
** so it takes care to hold an exclusive lock on the corresponding
** WAL_READ_LOCK() while changing values.
*/
static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal){
  volatile WalIndexHdr *pHdr;     /* Header of the wal-index */
  volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
  u32 mxReadMark;                 /* Largest aReadMark[] value */
  int mxI;                        /* Index of largest aReadMark[] value */
  int i;                          /* Loop counter */
  int rc;                         /* Return code  */

  assert( pWal->readLock<0 );  /* No read lock held on entry */

  if( !useWal ){
    rc = walIndexReadHdr(pWal, pChanged);
    if( rc==SQLITE_BUSY ){
      /* If there is not a recovery running in another thread or process
      ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
      ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
      ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
      ** would be technically correct.  But the race is benign since with
      ** WAL_RETRY this routine will be called again and will probably be
      ** right on the second iteration.
      */
      rc = walLockShared(pWal, WAL_RECOVER_LOCK);
      if( rc==SQLITE_OK ){
        walUnlockShared(pWal, WAL_RECOVER_LOCK);
        rc = WAL_RETRY;
      }else if( rc==SQLITE_BUSY ){
        rc = SQLITE_BUSY_RECOVERY;
      }
    }
  }else{
    rc = walIndexMap(pWal, pWal->hdr.mxFrame);
  }
  if( rc!=SQLITE_OK ){
    return rc;
  }

  pHdr = (volatile WalIndexHdr*)pWal->pWiData;
  pInfo = (volatile WalCkptInfo*)&pHdr[2];
  assert( pInfo==walCkptInfo(pWal) );
  if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
    /* The WAL has been completely backfilled (or it is empty).
    ** and can be safely ignored.
    */
    rc = walLockShared(pWal, WAL_READ_LOCK(0));
    if( rc==SQLITE_OK ){
      if( pHdr->mxFrame!=pWal->hdr.mxFrame ){
        walUnlockShared(pWal, WAL_READ_LOCK(0));
        return WAL_RETRY;
      }
      pWal->readLock = 0;
      return SQLITE_OK;
    }else if( rc!=SQLITE_BUSY ){
      return rc;
    }
  }

  /* If we get this far, it means that the reader will want to use
  ** the WAL to get at content from recent commits.  The job now is
  ** to select one of the aReadMark[] entries that is closest to
  ** but not exceeding pWal->hdr.mxFrame and lock that entry.
  */
  mxReadMark = 0;
  mxI = 0;
  for(i=1; i<WAL_NREADER; i++){
    u32 thisMark = pInfo->aReadMark[i];
    if( mxReadMark<thisMark ){
      mxReadMark = thisMark;
      mxI = i;
    }
  }
  if( mxI==0 ){
    /* If we get here, it means that all of the aReadMark[] entries between
    ** 1 and WAL_NREADER-1 are zero.  Try to initialize aReadMark[1] to
    ** be mxFrame, then retry.
    */
    rc = walLockExclusive(pWal, WAL_READ_LOCK(1), 1);
    if( rc==SQLITE_OK ){
      pInfo->aReadMark[1] = pWal->hdr.mxFrame;
      walUnlockExclusive(pWal, WAL_READ_LOCK(1), 1);
    }
    return WAL_RETRY;
  }else{
    if( mxReadMark < pWal->hdr.mxFrame ){
      for(i=0; i<WAL_NREADER; i++){
        rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
        if( rc==SQLITE_OK ){
          pInfo->aReadMark[i] = pWal->hdr.mxFrame;
          mxReadMark = pWal->hdr.mxFrame;
          mxI = i;
          walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
          break;
        }
      }
    }

    rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
    if( rc ){
      return rc==SQLITE_BUSY ? WAL_RETRY : rc;
    }
    if( pInfo->aReadMark[mxI]!=mxReadMark
     || pHdr[0].mxFrame!=pWal->hdr.mxFrame
     || (sqlite3OsShmBarrier(pWal->pDbFd), pHdr[1].mxFrame!=pWal->hdr.mxFrame)
    ){
      walUnlockShared(pWal, WAL_READ_LOCK(mxI));
      return WAL_RETRY;
    }else{
      pWal->readLock = mxI;
    }
  }
  return rc;
}

/*
** Begin a read transaction on the database.
**
** This routine used to be called sqlite3OpenSnapshot() and with good reason:
** it takes a snapshot of the state of the WAL and wal-index for the current
** instant in time.  The current thread will continue to use this snapshot.
** Other threads might append new content to the WAL and wal-index but
** that extra content is ignored by the current thread.
**
** If the database contents have changes since the previous read
** transaction, then *pChanged is set to 1 before returning.  The
** Pager layer will use this to know that is cache is stale and
** needs to be flushed.
*/
int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
  int rc;                         /* Return code */

  do{
    rc = walTryBeginRead(pWal, pChanged, 0);
  }while( rc==WAL_RETRY );
  walIndexUnmap(pWal);
  return rc;
}

/*
** Finish with a read transaction.  All this does is release the
** read-lock.
*/
void sqlite3WalEndReadTransaction(Wal *pWal){
  if( pWal->readLock>=0 ){
    walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
    pWal->readLock = -1;
  }
}

/*
** Read a page from the WAL, if it is present in the WAL and if the 
** current read transaction is configured to use the WAL.  
**
** The *pInWal is set to 1 if the requested page is in the WAL and
** has been loaded.  Or *pInWal is set to 0 if the page was not in 
** the WAL and needs to be read out of the database.
*/
int sqlite3WalRead(
  Wal *pWal,                      /* WAL handle */
  Pgno pgno,                      /* Database page number to read data for */
  int *pInWal,                    /* OUT: True if data is read from WAL */
  int nOut,                       /* Size of buffer pOut in bytes */
  u8 *pOut                        /* Buffer to write page data to */
){
  int rc;                         /* Return code */
  u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
  u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
  int iHash;                      /* Used to loop through N hash tables */

  /* This routine is only called from within a read transaction */
  assert( pWal->readLock>=0 );

  /* If the "last page" field of the wal-index header snapshot is 0, then
  ** no data will be read from the wal under any circumstances. Return early
  ** in this case to avoid the walIndexMap/Unmap overhead.  Likewise, if
  ** pWal->readLock==0, then the WAL is ignored by the reader so
  ** return early, as if the WAL were empty.
  */
  if( iLast==0 || pWal->readLock==0 ){
    *pInWal = 0;
    return SQLITE_OK;
  }

  /* Ensure the wal-index is mapped. */
  rc = walIndexMap(pWal, walMappingSize(iLast));
  if( rc!=SQLITE_OK ){
    return rc;
  }

  /* Search the hash table or tables for an entry matching page number
  ** pgno. Each iteration of the following for() loop searches one
  ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
  **
  ** This code may run concurrently to the code in walIndexAppend()
  ** that adds entries to the wal-index (and possibly to this hash 
  ** table). This means the value just read from the hash 
  ** slot (aHash[iKey]) may have been added before or after the 
  ** current read transaction was opened. Values added after the
  ** read transaction was opened may have been written incorrectly -
  ** i.e. these slots may contain garbage data. However, we assume
  ** that any slots written before the current read transaction was
  ** opened remain unmodified.
  **
  ** For the reasons above, the if(...) condition featured in the inner
  ** loop of the following block is more stringent that would be required 
  ** if we had exclusive access to the hash-table:
  **
  **   (aPgno[iFrame]==pgno): 
  **     This condition filters out normal hash-table collisions.
  **
  **   (iFrame<=iLast): 
  **     This condition filters out entries that were added to the hash
  **     table after the current read-transaction had started.
  **
  **   (iFrame>iRead): 
  **     This filters out a dangerous class of garbage data. The 
  **     garbage hash slot may refer to a frame with the correct page 
  **     number, but not the most recent version of the frame. For
  **     example, if at the start of the read-transaction the WAL
  **     contains three copies of the desired page in frames 2, 3 and 4,
  **     the hash table may contain the following:
  **
  **       { ..., 2, 3, 4, 99, 99, ..... }
  **
  **     The correct answer is to read data from frame 4. But a 
  **     dirty-read may potentially cause the hash-table to appear as 
  **     follows to the reader:
  **
  **       { ..., 2, 3, 4, 3, 99, ..... }
  **
  **     Without this part of the if(...) clause, the reader might
  **     incorrectly read data from frame 3 instead of 4. This would be
  **     an error.
  **
  ** It is not actually clear to the developers that such a dirty-read
  ** can occur. But if it does, it should not cause any problems.
  */
  for(iHash=iLast; iHash>0 && iRead==0; iHash-=HASHTABLE_NPAGE){
    volatile HASHTABLE_DATATYPE *aHash;  /* Pointer to hash table */
    volatile u32 *aPgno;                 /* Pointer to array of page numbers */
    u32 iZero;                    /* Frame number corresponding to aPgno[0] */
    int iKey;                     /* Hash slot index */
    int mxHash;                   /* upper bound on aHash[] values */

    walHashFind(pWal, iHash, &aHash, &aPgno, &iZero);
    mxHash = iLast - iZero;
    if( mxHash > HASHTABLE_NPAGE )  mxHash = HASHTABLE_NPAGE;
    for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
      u32 iFrame = aHash[iKey] + iZero;
      if( iFrame<=iLast && aPgno[iFrame]==pgno && iFrame>iRead ){
        iRead = iFrame;
      }
    }
  }
  assert( iRead==0 || pWal->pWiData[walIndexEntry(iRead)]==pgno );

#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
  /* If expensive assert() statements are available, do a linear search
  ** of the wal-index file content. Make sure the results agree with the
  ** result obtained using the hash indexes above.  */
  {
    u32 iRead2 = 0;
    u32 iTest;
    for(iTest=iLast; iTest>0; iTest--){
      if( pWal->pWiData[walIndexEntry(iTest)]==pgno ){
        iRead2 = iTest;
        break;
      }
    }
    assert( iRead==iRead2 );
  }
#endif

  /* If iRead is non-zero, then it is the log frame number that contains the
  ** required page. Read and return data from the log file.
  */
  walIndexUnmap(pWal);
  if( iRead ){
    i64 iOffset = walFrameOffset(iRead, pWal->hdr.szPage) + WAL_FRAME_HDRSIZE;
    *pInWal = 1;
    return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
  }

  *pInWal = 0;
  return SQLITE_OK;
}


/* 
** Set *pPgno to the size of the database file (or zero, if unknown).
*/
void sqlite3WalDbsize(Wal *pWal, Pgno *pPgno){
  assert( pWal->readLock>=0 );
  *pPgno = pWal->hdr.nPage;
}


/* 
** This function starts a write transaction on the WAL.
**
** A read transaction must have already been started by a prior call
** to sqlite3WalBeginReadTransaction().
**
** If another thread or process has written into the database since
** the read transaction was started, then it is not possible for this
** thread to write as doing so would cause a fork.  So this routine
** returns SQLITE_BUSY in that case and no write transaction is started.
**
** There can only be a single writer active at a time.
*/
int sqlite3WalBeginWriteTransaction(Wal *pWal){
  int rc;
  volatile WalCkptInfo *pInfo;

  /* Cannot start a write transaction without first holding a read
  ** transaction. */
  assert( pWal->readLock>=0 );

  /* Only one writer allowed at a time.  Get the write lock.  Return
  ** SQLITE_BUSY if unable.
  */
  rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
  if( rc ){
    return rc;
  }

  /* If another connection has written to the database file since the
  ** time the read transaction on this connection was started, then
  ** the write is disallowed.
  */
  rc = walIndexMap(pWal, pWal->hdr.mxFrame);
  if( rc ){
    walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    return rc;
  }
  if( memcmp(&pWal->hdr, (void*)pWal->pWiData, sizeof(WalIndexHdr))!=0 ){
    walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    walIndexUnmap(pWal);
    return SQLITE_BUSY;
  }

  pInfo = walCkptInfo(pWal);
  if( pWal->readLock==0 && pInfo->nBackfill==pWal->hdr.mxFrame ){
    rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
    if( rc==SQLITE_OK ){
      /* If all readers are using WAL_READ_LOCK(0) (in other words if no
      ** readers are currently using the WAL) */
      pWal->nCkpt++;
      pWal->hdr.mxFrame = 0;
      sqlite3Put4byte((u8*)pWal->hdr.aSalt,
                       1 + sqlite3Get4byte((u8*)pWal->hdr.aSalt));
      sqlite3_randomness(4, &pWal->hdr.aSalt[1]);
      walIndexWriteHdr(pWal);
      pInfo->nBackfill = 0;
      memset(&pInfo->aReadMark[1], 0, sizeof(pInfo->aReadMark)-sizeof(u32));
      rc = sqlite3OsTruncate(pWal->pDbFd, 
                             ((i64)pWal->hdr.nPage*(i64)pWal->szPage));
      walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
    }
    walUnlockShared(pWal, WAL_READ_LOCK(0));
    do{
      int notUsed;
      rc = walTryBeginRead(pWal, &notUsed, 1);
    }while( rc==WAL_RETRY );
  }
  return rc;
}

/*
** End a write transaction.  The commit has already been done.  This
** routine merely releases the lock.
*/
int sqlite3WalEndWriteTransaction(Wal *pWal){
  walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
  return SQLITE_OK;
}

/*
** If any data has been written (but not committed) to the log file, this
** function moves the write-pointer back to the start of the transaction.
**
** Additionally, the callback function is invoked for each frame written
** to the WAL since the start of the transaction. If the callback returns
** other than SQLITE_OK, it is not invoked again and the error code is
** returned to the caller.
**
** Otherwise, if the callback function does not return an error, this
** function returns SQLITE_OK.
*/
int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
  int rc = SQLITE_OK;
  if( pWal->writeLock ){
    int unused;
    Pgno iMax = pWal->hdr.mxFrame;
    Pgno iFrame;
  
    assert( pWal->pWiData==0 );
    rc = walIndexReadHdr(pWal, &unused);
    if( rc==SQLITE_OK ){
      rc = walIndexMap(pWal, walMappingSize(iMax));
    }
    if( rc==SQLITE_OK ){
      for(iFrame=pWal->hdr.mxFrame+1; rc==SQLITE_OK && iFrame<=iMax; iFrame++){
        assert( pWal->writeLock );
        rc = xUndo(pUndoCtx, pWal->pWiData[walIndexEntry(iFrame)]);
      }
      walCleanupHash(pWal);
    }
    walIndexUnmap(pWal);
  }
  return rc;
}

/* 
** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 
** values. This function populates the array with values required to 
** "rollback" the write position of the WAL handle back to the current 
** point in the event of a savepoint rollback (via WalSavepointUndo()).
*/
void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
  assert( pWal->writeLock );
  aWalData[0] = pWal->hdr.mxFrame;
  aWalData[1] = pWal->hdr.aFrameCksum[0];
  aWalData[2] = pWal->hdr.aFrameCksum[1];
}

/* 
** Move the write position of the WAL back to the point identified by
** the values in the aWalData[] array. aWalData must point to an array
** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
** by a call to WalSavepoint().
*/
int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
  int rc = SQLITE_OK;
  assert( pWal->writeLock );

  assert( aWalData[0]<=pWal->hdr.mxFrame );
  if( aWalData[0]<pWal->hdr.mxFrame ){
    rc = walIndexMap(pWal, walMappingSize(pWal->hdr.mxFrame));
    pWal->hdr.mxFrame = aWalData[0];
    pWal->hdr.aFrameCksum[0] = aWalData[1];
    pWal->hdr.aFrameCksum[1] = aWalData[2];
    if( rc==SQLITE_OK ){
      walCleanupHash(pWal);
      walIndexUnmap(pWal);
    }
  }
  return rc;
}

/* 
** Write a set of frames to the log. The caller must hold the write-lock
** on the log file (obtained using sqlite3WalWriteLock()).
*/
int sqlite3WalFrames(
  Wal *pWal,                      /* Wal handle to write to */
  int szPage,                     /* Database page-size in bytes */
  PgHdr *pList,                   /* List of dirty pages to write */
  Pgno nTruncate,                 /* Database size after this commit */
  int isCommit,                   /* True if this is a commit */
  int sync_flags                  /* Flags to pass to OsSync() (or 0) */
){
  int rc;                         /* Used to catch return codes */
  u32 iFrame;                     /* Next frame address */
  u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
  PgHdr *p;                       /* Iterator to run through pList with. */
  PgHdr *pLast = 0;               /* Last frame in list */
  int nLast = 0;                  /* Number of extra copies of last page */

  assert( pList );
  assert( pWal->writeLock );
  assert( pWal->pWiData==0 );

  /* If this is the first frame written into the log, write the WAL
  ** header to the start of the WAL file. See comments at the top of
  ** this source file for a description of the WAL header format.
  */
  iFrame = pWal->hdr.mxFrame;
  if( iFrame==0 ){
    u8 aWalHdr[WAL_HDRSIZE];        /* Buffer to assembly wal-header in */
    sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
    sqlite3Put4byte(&aWalHdr[4], 3007000);
    sqlite3Put4byte(&aWalHdr[8], szPage);
    pWal->szPage = szPage;
    pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
    sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
    memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
    rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    walChecksumBytes(1, aWalHdr, sizeof(aWalHdr), 0, pWal->hdr.aFrameCksum);
  }
  assert( pWal->szPage==szPage );

    /* Write the log file. */
  for(p=pList; p; p=p->pDirty){
    u32 nDbsize;                  /* Db-size field for frame header */
    i64 iOffset;                  /* Write offset in log file */

    iOffset = walFrameOffset(++iFrame, szPage);
    
    /* Populate and write the frame header */
    nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
    walEncodeFrame(pWal, p->pgno, nDbsize, p->pData, aFrame);
    rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
    if( rc!=SQLITE_OK ){
      return rc;
    }

    /* Write the page data */
    rc = sqlite3OsWrite(pWal->pWalFd, p->pData, szPage, iOffset+sizeof(aFrame));
    if( rc!=SQLITE_OK ){
      return rc;
    }
    pLast = p;
  }

  /* Sync the log file if the 'isSync' flag was specified. */
  if( sync_flags ){
    i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
    i64 iOffset = walFrameOffset(iFrame+1, szPage);

    assert( isCommit );
    assert( iSegment>0 );

    iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
    while( iOffset<iSegment ){
      walEncodeFrame(pWal, pLast->pgno, nTruncate, pLast->pData, aFrame);
      rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      iOffset += WAL_FRAME_HDRSIZE;
      rc = sqlite3OsWrite(pWal->pWalFd, pLast->pData, szPage, iOffset); 
      if( rc!=SQLITE_OK ){
        return rc;
      }
      nLast++;
      iOffset += szPage;
    }

    rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
  }
  assert( pWal->pWiData==0 );

  /* Append data to the wal-index. It is not necessary to lock the 
  ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
  ** guarantees that there are no other writers, and no data that may
  ** be in use by existing readers is being overwritten.
  */
  iFrame = pWal->hdr.mxFrame;
  for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
    iFrame++;
    rc = walIndexAppend(pWal, iFrame, p->pgno);
  }
  while( nLast>0 && rc==SQLITE_OK ){
    iFrame++;
    nLast--;
    rc = walIndexAppend(pWal, iFrame, pLast->pgno);
  }

  if( rc==SQLITE_OK ){
    /* Update the private copy of the header. */
    pWal->hdr.szPage = szPage;
    pWal->hdr.mxFrame = iFrame;
    if( isCommit ){
      pWal->hdr.iChange++;
      pWal->hdr.nPage = nTruncate;
    }
    /* If this is a commit, update the wal-index header too. */
    if( isCommit ){
      walIndexWriteHdr(pWal);
      pWal->iCallback = iFrame;
    }
  }

  walIndexUnmap(pWal);
  return rc;
}

/* 
** This routine is called to implement sqlite3_wal_checkpoint() and
** related interfaces.
**
** Obtain a CHECKPOINT lock and then backfill as much information as
** we can from WAL into the database.
*/
int sqlite3WalCheckpoint(
  Wal *pWal,                      /* Wal connection */
  int sync_flags,                 /* Flags to sync db file with (or 0) */
  int nBuf,                       /* Size of temporary buffer */
  u8 *zBuf                        /* Temporary buffer to use */
){
  int rc;                         /* Return code */
  int isChanged = 0;              /* True if a new wal-index header is loaded */

  assert( pWal->pWiData==0 );

  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
  if( rc ){
    /* Usually this is SQLITE_BUSY meaning that another thread or process
    ** is already running a checkpoint, or maybe a recovery.  But it might
    ** also be SQLITE_IOERR. */
    return rc;
  }

  /* Copy data from the log to the database file. */
  rc = walIndexReadHdr(pWal, &isChanged);
  if( rc==SQLITE_OK ){
    rc = walCheckpoint(pWal, sync_flags, nBuf, zBuf);
  }
  if( isChanged ){
    /* If a new wal-index header was loaded before the checkpoint was 
    ** performed, then the pager-cache associated with pWal is now
    ** out of date. So zero the cached wal-index header to ensure that
    ** next time the pager opens a snapshot on this database it knows that
    ** the cache needs to be reset.
    */
    memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
  }

  /* Release the locks. */
  walIndexUnmap(pWal);
  walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
  return rc;
}

/* Return the value to pass to a sqlite3_wal_hook callback, the
** number of frames in the WAL at the point of the last commit since
** sqlite3WalCallback() was called.  If no commits have occurred since
** the last call, then return 0.
*/
int sqlite3WalCallback(Wal *pWal){
  u32 ret = 0;
  if( pWal ){
    ret = pWal->iCallback;
    pWal->iCallback = 0;
  }
  return (int)ret;
}

/*
** This function is called to set or query the exclusive-mode flag 
** associated with the WAL connection passed as the first argument. The
** exclusive-mode flag should be set to indicate that the caller is
** holding an EXCLUSIVE lock on the database file (it does this in
** locking_mode=exclusive mode). If the EXCLUSIVE lock is to be dropped,
** the flag set by this function should be cleared before doing so.
**
** When the flag is set, this module does not call the VFS xShmLock()
** method to obtain any locks on the wal-index (as it assumes it
** has exclusive access to the wal and wal-index files anyhow). It
** continues to hold (and does not drop) the existing READ lock on
** the wal-index.
**
** To set or clear the flag, the "op" parameter is passed 1 or 0,
** respectively. To query the flag, pass -1. In all cases, the value
** returned is the value of the exclusive-mode flag (after its value
** has been modified, if applicable).
*/
int sqlite3WalExclusiveMode(Wal *pWal, int op){
  if( op>=0 ){
    pWal->exclusiveMode = (u8)op;
  }
  return pWal->exclusiveMode;
}

#endif /* #ifndef SQLITE_OMIT_WAL */