aboutsummaryrefslogtreecommitdiff
path: root/src/test_async.c
blob: 7ce6c828847b619658f78cf8b0465d144bd99d5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
/*
** 2005 December 14
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains an example implementation of an asynchronous IO 
** backend for SQLite.
**
** WHAT IS ASYNCHRONOUS I/O?
**
** With asynchronous I/O, write requests are handled by a separate thread
** running in the background.  This means that the thread that initiates
** a database write does not have to wait for (sometimes slow) disk I/O
** to occur.  The write seems to happen very quickly, though in reality
** it is happening at its usual slow pace in the background.
**
** Asynchronous I/O appears to give better responsiveness, but at a price.
** You lose the Durable property.  With the default I/O backend of SQLite,
** once a write completes, you know that the information you wrote is
** safely on disk.  With the asynchronous I/O, this is no the case.  If
** your program crashes or if you take a power lose after the database
** write but before the asynchronous write thread has completed, then the
** database change might never make it to disk and the next user of the
** database might not see your change.
**
** You lose Durability with asynchronous I/O, but you still retain the
** other parts of ACID:  Atomic,  Consistent, and Isolated.  Many
** appliations get along fine without the Durablity.
**
** HOW IT WORKS
**
** Asynchronous I/O works by overloading the OS-layer disk I/O routines
** with modified versions that store the data to be written in queue of
** pending write operations.  Look at the asyncEnable() subroutine to see
** how overloading works.  Six os-layer routines are overloaded:
**
**     sqlite3OsOpenReadWrite;
**     sqlite3OsOpenReadOnly;
**     sqlite3OsOpenExclusive;
**     sqlite3OsDelete;
**     sqlite3OsFileExists;
**     sqlite3OsSyncDirectory;
**
** The original implementations of these routines are saved and are
** used by the writer thread to do the real I/O.  The substitute
** implementations typically put the I/O operation on a queue
** to be handled later by the writer thread, though read operations
** must be handled right away, obviously.
**
** Asynchronous I/O is disabled by setting the os-layer interface routines
** back to their original values.
**
** LIMITATIONS
**
** This demonstration code is deliberately kept simple in order to keep
** the main ideas clear and easy to understand.  Real applications that
** want to do asynchronous I/O might want to add additional capabilities.
** For example, in this demonstration if writes are happening at a steady
** stream that exceeds the I/O capability of the background writer thread,
** the queue of pending write operations will grow without bound until we
** run out of memory.  Users of this technique may want to keep track of
** the quantity of pending writes and stop accepting new write requests
** when the buffer gets to be too big.
*/

#include "sqliteInt.h"
#include "os.h"
#include <tcl.h>

/* If the THREADSAFE macro is not set, assume that it is turned off. */
#ifndef THREADSAFE
# define THREADSAFE 0
#endif

/*
** This test uses pthreads and hence only works on unix and with
** a threadsafe build of SQLite.  It also requires that the redefinable
** I/O feature of SQLite be turned on.  This feature is turned off by
** default.  If a required element is missing, almost all of the code
** in this file is commented out.
*/
#if OS_UNIX && THREADSAFE && defined(SQLITE_ENABLE_REDEF_IO)

/*
** This demo uses pthreads.  If you do not have a pthreads implementation
** for your operating system, you will need to recode the threading 
** logic.
*/
#include <pthread.h>
#include <sched.h>

/* Useful macros used in several places */
#define MIN(x,y) ((x)<(y)?(x):(y))
#define MAX(x,y) ((x)>(y)?(x):(y))

/* Forward references */
typedef struct AsyncWrite AsyncWrite;
typedef struct AsyncFile AsyncFile;

/* Enable for debugging */
#if 0
# define TRACE(X,Y) \
    fprintf(stderr,"THRD=%d: ", (int)pthread_self()); \
    fprintf(stderr,X,Y);
#else
# define TRACE(X,Y) /* noop */
#endif

/*
** THREAD SAFETY NOTES
**
** Basic rules:
**
**     * Both read and write access to the global write-op queue must be 
**       protected by the async.queueMutex.
**
**     * The file handles from the underlying system are assumed not to 
**       be thread safe.
**
**     * See the last two paragraphs under "The Writer Thread" for
**       an assumption to do with file-handle synchronization by the Os.
**
** File system operations (invoked by SQLite thread):
**
**     xOpenXXX (three versions)
**     xDelete
**     xFileExists
**     xSyncDirectory
**
** File handle operations (invoked by SQLite thread):
**
**         asyncWrite, asyncClose, asyncTruncate, asyncSync, 
**         asyncSetFullSync, asyncOpenDirectory.
**    
**     The operations above add an entry to the global write-op list. They
**     prepare the entry, acquire the async.queueMutex momentarily while
**     list pointers are  manipulated to insert the new entry, then release
**     the mutex and signal the writer thread to wake up in case it happens
**     to be asleep.
**
**    
**         asyncRead, asyncFileSize.
**
**     Read operations. Both of these read from both the underlying file
**     first then adjust their result based on pending writes in the 
**     write-op queue.   So async.queueMutex is held for the duration
**     of these operations to prevent other threads from changing the
**     queue in mid operation.
**    
**
**         asyncLock, asyncUnlock, asyncLockState, asyncCheckReservedLock
**    
**     These locking primitives become no-ops. Files are always opened for 
**     exclusive access when using this IO backend.  
**
**
**         asyncFileHandle.
**    
**     The sqlite3OsFileHandle() function is currently only used when 
**     debugging the pager module. Unless sqlite3OsClose() is called on the
**     file (shouldn't be possible for other reasons), the underlying 
**     implementations are safe to call without grabbing any mutex. So we just
**     go ahead and call it no matter what any other threads are doing.
**
**    
**         asyncSeek.
**
**     Calling this method just manipulates the AsyncFile.iOffset variable. 
**     Since this variable is never accessed by writer thread, this
**     function does not require the mutex.  Actual calls to OsSeek() take 
**     place just before OsWrite() or OsRead(), which are always protected by 
**     the mutex.
**
** The writer thread:
**
**     The async.writerMutex is used to make sure only there is only
**     a single writer thread running at a time.
**
**     Inside the writer thread is a loop that works like this:
**
**         WHILE (write-op list is not empty)
**             Do IO operation at head of write-op list
**             Remove entry from head of write-op list
**         END WHILE
**
**     The async.queueMutex is always held during the <write-op list is 
**     not empty> test, and when the entry is removed from the head
**     of the write-op list. Sometimes it is held for the interim
**     period (while the IO is performed), and sometimes it is
**     relinquished. It is relinquished if (a) the IO op is an
**     ASYNC_CLOSE or (b) when the file handle was opened, two of
**     the underlying systems handles were opened on the same
**     file-system entry.
**
**     If condition (b) above is true, then one file-handle 
**     (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the
**     file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush() 
**     threads to perform write() operations. This means that read 
**     operations are not blocked by asynchronous writes (although 
**     asynchronous writes may still be blocked by reads).
**
**     This assumes that the OS keeps two handles open on the same file
**     properly in sync. That is, any read operation that starts after a
**     write operation on the same file system entry has completed returns
**     data consistent with the write. We also assume that if one thread 
**     reads a file while another is writing it all bytes other than the
**     ones actually being written contain valid data.
**
**     If the above assumptions are not true, set the preprocessor symbol
**     SQLITE_ASYNC_TWO_FILEHANDLES to 0.
*/

#ifndef SQLITE_ASYNC_TWO_FILEHANDLES
/* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */
#define SQLITE_ASYNC_TWO_FILEHANDLES 1
#endif

/*
** State information is held in the static variable "async" defined
** as follows:
*/
static struct TestAsyncStaticData {
  pthread_mutex_t queueMutex;  /* Mutex for access to write operation queue */
  pthread_mutex_t writerMutex; /* Prevents multiple writer threads */
  pthread_cond_t queueSignal;  /* For waking up sleeping writer thread */
  pthread_cond_t emptySignal;  /* Notify when the write queue is empty */
  AsyncWrite *pQueueFirst;     /* Next write operation to be processed */
  AsyncWrite *pQueueLast;      /* Last write operation on the list */
  volatile int ioDelay;             /* Extra delay between write operations */
  volatile int writerHaltWhenIdle;  /* Writer thread halts when queue empty */
  volatile int writerHaltNow;       /* Writer thread halts after next op */
} async = {
  PTHREAD_MUTEX_INITIALIZER,
  PTHREAD_MUTEX_INITIALIZER,
  PTHREAD_COND_INITIALIZER,
  PTHREAD_COND_INITIALIZER,
};

/* Possible values of AsyncWrite.op */
#define ASYNC_WRITE         1
#define ASYNC_SYNC          2
#define ASYNC_TRUNCATE      3
#define ASYNC_CLOSE         4
#define ASYNC_OPENDIRECTORY 5
#define ASYNC_SETFULLSYNC   6

#define ASYNC_DELETE        7
#define ASYNC_OPENEXCLUSIVE 8
#define ASYNC_SYNCDIRECTORY 9

/*
** Entries on the write-op queue are instances of the AsyncWrite
** structure, defined here.
**
** The interpretation of the iOffset and nByte variables varies depending 
** on the value of AsyncWrite.op:
**
** ASYNC_WRITE:
**     iOffset -> Offset in file to write to.
**     nByte   -> Number of bytes of data to write (pointed to by zBuf).
**
** ASYNC_SYNC:
**     iOffset -> Unused.
**     nByte   -> Value of "fullsync" flag to pass to sqlite3OsSync().
**
** ASYNC_TRUNCATE:
**     iOffset -> Size to truncate file to.
**     nByte   -> Unused.
**
** ASYNC_CLOSE:
**     iOffset -> Unused.
**     nByte   -> Unused.
**
** ASYNC_OPENDIRECTORY:
**     iOffset -> Unused.
**     nByte   -> Number of bytes of zBuf points to (directory name).
**
** ASYNC_SETFULLSYNC:
**     iOffset -> Unused.
**     nByte   -> New value for the full-sync flag.
**
**
** ASYNC_DELETE:
**     iOffset -> Unused.
**     nByte   -> Number of bytes of zBuf points to (file name).
**
** ASYNC_OPENEXCLUSIVE:
**     iOffset -> Value of "delflag".
**     nByte   -> Number of bytes of zBuf points to (file name).
**
** For an ASYNC_WRITE operation, zBuf points to the data to write to the file. 
** This space is sqliteMalloc()d along with the AsyncWrite structure in a
** single blob, so is deleted when sqliteFree() is called on the parent 
** structure.
*/
struct AsyncWrite {
  AsyncFile *pFile;   /* File to write data to or sync */
  int op;             /* One of ASYNC_xxx etc. */
  i64 iOffset;        /* See above */
  int nByte;          /* See above */
  char *zBuf;         /* Data to write to file (or NULL if op!=ASYNC_WRITE) */
  AsyncWrite *pNext;  /* Next write operation (to any file) */
};

/* 
** The AsyncFile structure is a subclass of OsFile used for asynchronous IO.
*/
struct AsyncFile {
  IoMethod *pMethod;   /* Must be first */
  i64 iOffset;         /* Current seek() offset in file */
  OsFile *pBaseRead;   /* Read handle to the underlying Os file */
  OsFile *pBaseWrite;  /* Write handle to the underlying Os file */
};

/*
** Add an entry to the end of the global write-op list. pWrite should point 
** to an AsyncWrite structure allocated using sqlite3OsMalloc().  The writer
** thread will call sqlite3OsFree() to free the structure after the specified
** operation has been completed.
**
** Once an AsyncWrite structure has been added to the list, it becomes the
** property of the writer thread and must not be read or modified by the
** caller.  
*/
static void addAsyncWrite(AsyncWrite *pWrite){
  /* We must hold the queue mutex in order to modify the queue pointers */
  pthread_mutex_lock(&async.queueMutex);

  /* Add the record to the end of the write-op queue */
  assert( !pWrite->pNext );
  if( async.pQueueLast ){
    assert( async.pQueueFirst );
    async.pQueueLast->pNext = pWrite;
  }else{
    async.pQueueFirst = pWrite;
  }
  async.pQueueLast = pWrite;
  TRACE("PUSH %p\n", pWrite);

  /* Drop the queue mutex */
  pthread_mutex_unlock(&async.queueMutex);

  /* The writer thread might have been idle because there was nothing
  ** on the write-op queue for it to do.  So wake it up. */
  pthread_cond_signal(&async.queueSignal);
}

/*
** This is a utility function to allocate and populate a new AsyncWrite
** structure and insert it (via addAsyncWrite() ) into the global list.
*/
static int addNewAsyncWrite(
  AsyncFile *pFile, 
  int op, 
  i64 iOffset, 
  int nByte,
  const char *zByte
){
  AsyncWrite *p = sqlite3OsMalloc(sizeof(AsyncWrite) + (zByte?nByte:0));
  if( !p ){
    return SQLITE_NOMEM;
  }
  p->op = op;
  p->iOffset = iOffset;
  p->nByte = nByte;
  p->pFile = pFile;
  p->pNext = 0;
  if( zByte ){
    p->zBuf = (char *)&p[1];
    memcpy(p->zBuf, zByte, nByte);
  }else{
    p->zBuf = 0;
  }
  addAsyncWrite(p);
  return SQLITE_OK;
}

/*
** Close the file. This just adds an entry to the write-op list, the file is
** not actually closed.
*/
static int asyncClose(OsFile **pId){
  return addNewAsyncWrite((AsyncFile *)*pId, ASYNC_CLOSE, 0, 0, 0);
}

/*
** Implementation of sqlite3OsWrite() for asynchronous files. Instead of 
** writing to the underlying file, this function adds an entry to the end of
** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be
** returned.
*/
static int asyncWrite(OsFile *id, const void *pBuf, int amt){
  AsyncFile *pFile = (AsyncFile *)id;
  int rc = addNewAsyncWrite(pFile, ASYNC_WRITE, pFile->iOffset, amt, pBuf);
  pFile->iOffset += (i64)amt;
  return rc;
}

/*
** Truncate the file to nByte bytes in length. This just adds an entry to 
** the write-op list, no IO actually takes place.
*/
static int asyncTruncate(OsFile *id, i64 nByte){
  return addNewAsyncWrite((AsyncFile *)id, ASYNC_TRUNCATE, nByte, 0, 0);
}

/*
** Open the directory identified by zName and associate it with the 
** specified file. This just adds an entry to the write-op list, the 
** directory is opened later by sqlite3_async_flush().
*/
static int asyncOpenDirectory(OsFile *id, const char *zName){
  AsyncFile *pFile = (AsyncFile *)id;
  return addNewAsyncWrite(pFile, ASYNC_OPENDIRECTORY, 0, strlen(zName)+1,zName);
}

/*
** Sync the file. This just adds an entry to the write-op list, the 
** sync() is done later by sqlite3_async_flush().
*/
static int asyncSync(OsFile *id, int fullsync){
  return addNewAsyncWrite((AsyncFile *)id, ASYNC_SYNC, 0, fullsync, 0);
}

/*
** Set (or clear) the full-sync flag on the underlying file. This operation
** is queued and performed later by sqlite3_async_flush().
*/
static void asyncSetFullSync(OsFile *id, int value){
  addNewAsyncWrite((AsyncFile *)id, ASYNC_SETFULLSYNC, 0, value, 0);
}

/*
** Read data from the file. First we read from the filesystem, then adjust 
** the contents of the buffer based on ASYNC_WRITE operations in the 
** write-op queue.
**
** This method holds the mutex from start to finish.
*/
static int asyncRead(OsFile *id, void *obuf, int amt){
  int rc = SQLITE_OK;
  i64 filesize;
  int nRead;
  AsyncFile *pFile = (AsyncFile *)id;

  /* Grab the write queue mutex for the duration of the call */
  pthread_mutex_lock(&async.queueMutex);

  if( pFile->pBaseRead ){
    rc = sqlite3OsFileSize(pFile->pBaseRead, &filesize);
    if( rc!=SQLITE_OK ){
      goto asyncread_out;
    }
    rc = sqlite3OsSeek(pFile->pBaseRead, pFile->iOffset);
    if( rc!=SQLITE_OK ){
      goto asyncread_out;
    }
    nRead = MIN(filesize - pFile->iOffset, amt);
    if( nRead>0 ){
      rc = sqlite3OsRead(((AsyncFile *)id)->pBaseRead, obuf, nRead);
    }
  }

  if( rc==SQLITE_OK ){
    AsyncWrite *p;
    i64 iOffset = pFile->iOffset;           /* Current seek offset */

    for(p=async.pQueueFirst; p; p = p->pNext){
      if( p->pFile==pFile && p->op==ASYNC_WRITE ){
        int iBeginIn = (p->iOffset - iOffset);
        int iBeginOut = (iOffset - p->iOffset);
        int nCopy;

        if( iBeginIn<0 ) iBeginIn = 0;
        if( iBeginOut<0 ) iBeginOut = 0;
        nCopy = MIN(p->nByte-iBeginIn, amt-iBeginOut);

        if( nCopy>0 ){
          memcpy(&((char *)obuf)[iBeginOut], &p->zBuf[iBeginIn], nCopy);
        }
      }
    }

    pFile->iOffset += (i64)amt;
  }

asyncread_out:
  pthread_mutex_unlock(&async.queueMutex);
  return rc;
}

/*
** Seek to the specified offset. This just adjusts the AsyncFile.iOffset 
** variable - calling seek() on the underlying file is defered until the 
** next read() or write() operation. 
*/
static int asyncSeek(OsFile *id, i64 offset){
  AsyncFile *pFile = (AsyncFile *)id;
  pFile->iOffset = offset;
  return SQLITE_OK;
}

/*
** Read the size of the file. First we read the size of the file system 
** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations 
** currently in the write-op list. 
**
** This method holds the mutex from start to finish.
*/
int asyncFileSize(OsFile *id, i64 *pSize){
  int rc = SQLITE_OK;
  i64 s = 0;
  OsFile *pBase;

  pthread_mutex_lock(&async.queueMutex);

  /* Read the filesystem size from the base file. If pBaseRead is NULL, this
  ** means the file hasn't been opened yet. In this case all relevant data 
  ** must be in the write-op queue anyway, so we can omit reading from the
  ** file-system.
  */
  pBase = ((AsyncFile *)id)->pBaseRead;
  if( pBase ){
    rc = sqlite3OsFileSize(pBase, &s);
  }

  if( rc==SQLITE_OK ){
    AsyncWrite *p;
    for(p=async.pQueueFirst; p; p = p->pNext){
      if( p->pFile==(AsyncFile *)id ){
        switch( p->op ){
          case ASYNC_WRITE:
            s = MAX(p->iOffset + (i64)(p->nByte), s);
            break;
          case ASYNC_TRUNCATE:
            s = MIN(s, p->nByte);
            break;
        }
      }
    }
    *pSize = s;
  }
  pthread_mutex_unlock(&async.queueMutex);
  return rc;
}

/*
** Return the operating system file handle. This is only used for debugging 
** at the moment anyway.
*/
static int asyncFileHandle(OsFile *id){
  return sqlite3OsFileHandle(((AsyncFile *)id)->pBaseRead);
}

/*
** No file locking occurs with this version of the asynchronous backend.
** So the locking routines are no-ops.
*/
static int asyncLock(OsFile *id, int lockType){
  return SQLITE_OK;
}
static int asyncUnlock(OsFile *id, int lockType){
  return SQLITE_OK;
}

/*
** This function is called when the pager layer first opens a database file
** and is checking for a hot-journal.
*/
static int asyncCheckReservedLock(OsFile *id){
  return SQLITE_OK;
}

/* 
** This is broken. But sqlite3OsLockState() is only used for testing anyway.
*/
static int asyncLockState(OsFile *id){
  return SQLITE_OK;
}

/*
** The following variables hold pointers to the original versions of
** OS-layer interface routines that are overloaded in order to create
** the asynchronous I/O backend.
*/
static int (*xOrigOpenReadWrite)(const char*, OsFile**, int*) = 0;
static int (*xOrigOpenExclusive)(const char*, OsFile**, int) = 0;
static int (*xOrigOpenReadOnly)(const char*, OsFile**) = 0;
static int (*xOrigDelete)(const char*) = 0;
static int (*xOrigFileExists)(const char*) = 0;
static int (*xOrigSyncDirectory)(const char*) = 0;

/*
** This routine does most of the work of opening a file and building
** the OsFile structure.
*/
static int asyncOpenFile(
  const char *zName,     /* The name of the file to be opened */
  OsFile **pFile,        /* Put the OsFile structure here */
  OsFile *pBaseRead,     /* The real OsFile from the real I/O routine */
  int openForWriting     /* Open a second file handle for writing if true */
){
  int rc;
  AsyncFile *p;
  OsFile *pBaseWrite = 0;

  static IoMethod iomethod = {
    asyncClose,
    asyncOpenDirectory,
    asyncRead,
    asyncWrite,
    asyncSeek,
    asyncTruncate,
    asyncSync,
    asyncSetFullSync,
    asyncFileHandle,
    asyncFileSize,
    asyncLock,
    asyncUnlock,
    asyncLockState,
    asyncCheckReservedLock
  };

  if( openForWriting && SQLITE_ASYNC_TWO_FILEHANDLES ){
    int dummy;
    rc = xOrigOpenReadWrite(zName, &pBaseWrite, &dummy);
    if( rc!=SQLITE_OK ){
      goto error_out;
    }
  }

  p = (AsyncFile *)sqlite3OsMalloc(sizeof(AsyncFile));
  if( !p ){
    rc = SQLITE_NOMEM;
    goto error_out;
  }
  memset(p, 0, sizeof(AsyncFile));
  
  p->pMethod = &iomethod;
  p->pBaseRead = pBaseRead;
  p->pBaseWrite = pBaseWrite;
  
  *pFile = (OsFile *)p;
  return SQLITE_OK;

error_out:
  assert(!p);
  sqlite3OsClose(&pBaseRead);
  sqlite3OsClose(&pBaseWrite);
  *pFile = 0;
  return rc;
}

/*
** The async-IO backends implementation of the three functions used to open
** a file (xOpenExclusive, xOpenReadWrite and xOpenReadOnly). Most of the 
** work is done in function asyncOpenFile() - see above.
*/
static int asyncOpenExclusive(const char *z, OsFile **ppFile, int delFlag){
  int rc = asyncOpenFile(z, ppFile, 0, 0);
  if( rc==SQLITE_OK ){
    AsyncFile *pFile = (AsyncFile *)(*ppFile);
    int nByte = strlen(z)+1;
    i64 i = (i64)(delFlag);
    rc = addNewAsyncWrite(pFile, ASYNC_OPENEXCLUSIVE, i, nByte, z);
    if( rc!=SQLITE_OK ){
      sqlite3OsFree(pFile);
      *ppFile = 0;
    }
  }
  return rc;
}
static int asyncOpenReadOnly(const char *z, OsFile **ppFile){
  OsFile *pBase = 0;
  int rc = xOrigOpenReadOnly(z, &pBase);
  if( rc==SQLITE_OK ){
    rc = asyncOpenFile(z, ppFile, pBase, 0);
  }
  return rc;
}
static int asyncOpenReadWrite(const char *z, OsFile **ppFile, int *pReadOnly){
  OsFile *pBase = 0;
  int rc = xOrigOpenReadWrite(z, &pBase, pReadOnly);
  if( rc==SQLITE_OK ){
    rc = asyncOpenFile(z, ppFile, pBase, (*pReadOnly ? 0 : 1));
  }
  return rc;
}

/*
** Implementation of sqlite3OsDelete. Add an entry to the end of the 
** write-op queue to perform the delete.
*/
static int asyncDelete(const char *z){
  return addNewAsyncWrite(0, ASYNC_DELETE, 0, strlen(z)+1, z);
}

/*
** Implementation of sqlite3OsSyncDirectory. Add an entry to the end of the 
** write-op queue to perform the directory sync.
*/
static int asyncSyncDirectory(const char *z){
  return addNewAsyncWrite(0, ASYNC_SYNCDIRECTORY, 0, strlen(z)+1, z);
}

/*
** Implementation of sqlite3OsFileExists. Return true if file 'z' exists
** in the file system. 
**
** This method holds the mutex from start to finish.
*/
static int asyncFileExists(const char *z){
  int ret;
  AsyncWrite *p;

  pthread_mutex_lock(&async.queueMutex);

  /* See if the real file system contains the specified file.  */
  ret = xOrigFileExists(z);
  
  for(p=async.pQueueFirst; p; p = p->pNext){
    if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, z) ){
      ret = 0;
    }else if( p->op==ASYNC_OPENEXCLUSIVE && 0==strcmp(p->zBuf, z) ){
      ret = 1;
    }
  }

  pthread_mutex_unlock(&async.queueMutex);
  return ret;
}

/*
** Call this routine to enable or disable the
** asynchronous IO features implemented in this file. 
**
** This routine is not even remotely threadsafe.  Do not call
** this routine while any SQLite database connections are open.
*/
static void asyncEnable(int enable){
  if( enable && xOrigOpenReadWrite==0 ){
    xOrigOpenReadWrite = sqlite3Os.xOpenReadWrite;
    xOrigOpenReadOnly = sqlite3Os.xOpenReadOnly;
    xOrigOpenExclusive = sqlite3Os.xOpenExclusive;
    xOrigDelete = sqlite3Os.xDelete;
    xOrigFileExists = sqlite3Os.xFileExists;
    xOrigSyncDirectory = sqlite3Os.xSyncDirectory;

    sqlite3Os.xOpenReadWrite = asyncOpenReadWrite;
    sqlite3Os.xOpenReadOnly = asyncOpenReadOnly;
    sqlite3Os.xOpenExclusive = asyncOpenExclusive;
    sqlite3Os.xDelete = asyncDelete;
    sqlite3Os.xFileExists = asyncFileExists;
    sqlite3Os.xSyncDirectory = asyncSyncDirectory;
  }
  if( !enable && xOrigOpenReadWrite!=0 ){
    sqlite3Os.xOpenReadWrite = xOrigOpenReadWrite;
    sqlite3Os.xOpenReadOnly = xOrigOpenReadOnly;
    sqlite3Os.xOpenExclusive = xOrigOpenExclusive;
    sqlite3Os.xDelete = xOrigDelete;
    sqlite3Os.xFileExists = xOrigFileExists;
    sqlite3Os.xSyncDirectory = xOrigSyncDirectory;

    xOrigOpenReadWrite = 0;
    xOrigOpenReadOnly = 0;
    xOrigOpenExclusive = 0;
    xOrigDelete = 0;
    xOrigFileExists = 0;
    xOrigSyncDirectory = 0;
  }
}

/* 
** This procedure runs in a separate thread, reading messages off of the
** write queue and processing them one by one.  
**
** If async.writerHaltNow is true, then this procedure exits
** after processing a single message.
**
** If async.writerHaltWhenIdle is true, then this procedure exits when
** the write queue is empty.
**
** If both of the above variables are false, this procedure runs
** indefinately, waiting for operations to be added to the write queue
** and processing them in the order in which they arrive.
**
** An artifical delay of async.ioDelay milliseconds is inserted before
** each write operation in order to simulate the effect of a slow disk.
**
** Only one instance of this procedure may be running at a time.
*/
static void *asyncWriterThread(void *NotUsed){
  AsyncWrite *p = 0;
  int rc = SQLITE_OK;

  if( pthread_mutex_trylock(&async.writerMutex) ){
    return 0;
  }
  while( async.writerHaltNow==0 ){
    int holdingMutex;
    OsFile *pBase = 0;

    pthread_mutex_lock(&async.queueMutex);
    holdingMutex = 1;
    while( (p = async.pQueueFirst)==0 ){
      pthread_cond_broadcast(&async.emptySignal);
      if( async.writerHaltWhenIdle ){
        pthread_mutex_unlock(&async.queueMutex);
        break;
      }else{
        TRACE("IDLE\n", 0);
        pthread_cond_wait(&async.queueSignal, &async.queueMutex);
        TRACE("WAKEUP\n", 0);
      }
    }
    if( p==0 ) break;
    TRACE("PROCESSING %p\n", p);

    /* Right now this thread is holding the mutex on the write-op queue.
    ** Variable 'p' points to the first entry in the write-op queue. In
    ** the general case, we hold on to the mutex for the entire body of
    ** the loop. 
    **
    ** However in the cases enumerated below, we relinquish the mutex,
    ** perform the IO, and then re-request the mutex before removing 'p' from
    ** the head of the write-op queue. The idea is to increase concurrency with
    ** sqlite threads.
    **
    **     * An ASYNC_CLOSE operation.
    **     * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish 
    **       the mutex, call the underlying xOpenExclusive() function, then
    **       re-aquire the mutex before seting the AsyncFile.pBaseRead 
    **       variable.
    **     * ASYNC_SYNC and ASYNC_WRITE operations, if 
    **       SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two
    **       file-handles are open for the particular file being "synced".
    */
    if( p->pFile ){
      pBase = p->pFile->pBaseWrite;
      if( 
        p->op==ASYNC_CLOSE || 
        p->op==ASYNC_OPENEXCLUSIVE ||
        (pBase && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) ) 
      ){
        pthread_mutex_unlock(&async.queueMutex);
        holdingMutex = 0;
      }
      if( !pBase ){
        pBase = p->pFile->pBaseRead;
      }
    }

    switch( p->op ){
      case ASYNC_WRITE:
        assert( pBase );
        rc = sqlite3OsSeek(pBase, p->iOffset);
        if( rc==SQLITE_OK ){
          rc = sqlite3OsWrite(pBase, (const void *)(p->zBuf), p->nByte);
        }
        break;

      case ASYNC_SYNC:
        assert( pBase );
        rc = sqlite3OsSync(pBase, p->nByte);
        break;

      case ASYNC_TRUNCATE:
        assert( pBase );
        rc = sqlite3OsTruncate(pBase, p->nByte);
        break;

      case ASYNC_CLOSE:
        sqlite3OsClose(&p->pFile->pBaseRead);
        sqlite3OsClose(&p->pFile->pBaseWrite);
        sqlite3OsFree(p->pFile);
        break;

      case ASYNC_OPENDIRECTORY:
        assert( pBase );
        sqlite3OsOpenDirectory(pBase, p->zBuf);
        break;

      case ASYNC_SETFULLSYNC:
        assert( pBase );
        sqlite3OsSetFullSync(pBase, p->nByte);
        break;

      case ASYNC_DELETE:
        rc = xOrigDelete(p->zBuf);
        break;

      case ASYNC_SYNCDIRECTORY:
        rc = xOrigSyncDirectory(p->zBuf);
        break;

      case ASYNC_OPENEXCLUSIVE: {
        AsyncFile *pFile = p->pFile;
        int delFlag = ((p->iOffset)?1:0);
        OsFile *pBase = 0;
        rc = xOrigOpenExclusive(p->zBuf, &pBase, delFlag);
        assert( holdingMutex==0 );
        pthread_mutex_lock(&async.queueMutex);
        holdingMutex = 1;
        if( rc==SQLITE_OK ){
          pFile->pBaseRead = pBase;
        }
        break;
      }

      default: assert(!"Illegal value for AsyncWrite.op");
    }

    /* If we didn't hang on to the mutex during the IO op, obtain it now
    ** so that the AsyncWrite structure can be safely removed from the 
    ** global write-op queue.
    */
    if( !holdingMutex ){
      pthread_mutex_lock(&async.queueMutex);
      holdingMutex = 1;
    }
    TRACE("UNLINK %p\n", p);
    if( rc==SQLITE_OK ){
      if( p==async.pQueueLast ){
        async.pQueueLast = 0;
      }
      async.pQueueFirst = p->pNext;
    }
    assert( holdingMutex );

    /* Drop the queue mutex before continuing to the next write operation
    ** in order to give other threads a chance to work with the write queue.
    */
    pthread_mutex_unlock(&async.queueMutex);
    if( async.ioDelay>0 ){
      sqlite3OsSleep(async.ioDelay);
    }else{
      sched_yield();
    }
  }
  pthread_mutex_unlock(&async.writerMutex);
  return 0;
}

/**************************************************************************
** The remaining code defines a Tcl interface for testing the asynchronous
** IO implementation in this file.
**
** To adapt the code to a non-TCL environment, delete or comment out
** the code that follows.
*/

/*
** sqlite3async_enable ?YES/NO?
**
** Enable or disable the asynchronous I/O backend.  This command is
** not thread-safe.  Do not call it while any database connections
** are open.
*/
static int testAsyncEnable(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  if( objc!=1 && objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "?YES/NO?");
    return TCL_ERROR;
  }
  if( objc==1 ){
    Tcl_SetObjResult(interp, Tcl_NewBooleanObj(xOrigOpenReadWrite!=0));
  }else{
    int en;
    if( Tcl_GetBooleanFromObj(interp, objv[1], &en) ) return TCL_ERROR;
    asyncEnable(en);
  }
  return TCL_OK;
}

/*
** sqlite3async_halt  "now"|"idle"|"never"
**
** Set the conditions at which the writer thread will halt.
*/
static int testAsyncHalt(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  const char *zCond;
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "\"now\"|\"idle\"|\"never\"");
    return TCL_ERROR;
  }
  zCond = Tcl_GetString(objv[1]);
  if( strcmp(zCond, "now")==0 ){
    async.writerHaltNow = 1;
    pthread_cond_broadcast(&async.queueSignal);
  }else if( strcmp(zCond, "idle")==0 ){
    async.writerHaltWhenIdle = 1;
    async.writerHaltNow = 0;
    pthread_cond_broadcast(&async.queueSignal);
  }else if( strcmp(zCond, "never")==0 ){
    async.writerHaltWhenIdle = 0;
    async.writerHaltNow = 0;
  }else{
    Tcl_AppendResult(interp, 
      "should be one of: \"now\", \"idle\", or \"never\"", (char*)0);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** sqlite3async_delay ?MS?
**
** Query or set the number of milliseconds of delay in the writer
** thread after each write operation.  The default is 0.  By increasing
** the memory delay we can simulate the effect of slow disk I/O.
*/
static int testAsyncDelay(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  if( objc!=1 && objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "?MS?");
    return TCL_ERROR;
  }
  if( objc==1 ){
    Tcl_SetObjResult(interp, Tcl_NewIntObj(async.ioDelay));
  }else{
    int ioDelay;
    if( Tcl_GetIntFromObj(interp, objv[1], &ioDelay) ) return TCL_ERROR;
    async.ioDelay = ioDelay;
  }
  return TCL_OK;
}

/*
** sqlite3async_start
**
** Start a new writer thread.
*/
static int testAsyncStart(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  pthread_t x;
  int rc;
  rc = pthread_create(&x, 0, asyncWriterThread, 0);
  if( rc ){
    Tcl_AppendResult(interp, "failed to create the thread", 0);
    return TCL_ERROR;
  }
  pthread_detach(x);
  return TCL_OK;
}

/*
** sqlite3async_wait
**
** Wait for the current writer thread to terminate.
**
** If the current writer thread is set to run forever then this
** command would block forever.  To prevent that, an error is returned. 
*/
static int testAsyncWait(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  if( async.writerHaltNow==0 && async.writerHaltWhenIdle==0 ){
    Tcl_AppendResult(interp, "would block forever", (char*)0);
    return TCL_ERROR;
  }
  TRACE("WAIT\n",0);
  pthread_cond_broadcast(&async.queueSignal);
  pthread_mutex_lock(&async.writerMutex);
  pthread_mutex_unlock(&async.writerMutex);
  return TCL_OK;
}


#endif  /* OS_UNIX and THREADSAFE and defined(SQLITE_ENABLE_REDEF_IO) */

/*
** This routine registers the custom TCL commands defined in this
** module.  This should be the only procedure visible from outside
** of this module.
*/
int Sqlitetestasync_Init(Tcl_Interp *interp){
#if OS_UNIX && THREADSAFE && defined(SQLITE_ENABLE_REDEF_IO)
  Tcl_CreateObjCommand(interp,"sqlite3async_enable",testAsyncEnable,0,0);
  Tcl_CreateObjCommand(interp,"sqlite3async_halt",testAsyncHalt,0,0);
  Tcl_CreateObjCommand(interp,"sqlite3async_delay",testAsyncDelay,0,0);
  Tcl_CreateObjCommand(interp,"sqlite3async_start",testAsyncStart,0,0);
  Tcl_CreateObjCommand(interp,"sqlite3async_wait",testAsyncWait,0,0);
#endif  /* OS_UNIX and THREADSAFE and defined(SQLITE_ENABLE_REDEF_IO) */
  return TCL_OK;
}