aboutsummaryrefslogtreecommitdiff
path: root/ext/session/sqlite3session.h
blob: a6af9aca576dff03c912f123ee10e7d49e6f9cfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
#ifndef __SQLITESESSION_H_
#define __SQLITESESSION_H_ 1

/*
** Make sure we can call this stuff from C++.
*/
#ifdef __cplusplus
extern "C" {
#endif

#include "sqlite3.h"

/*
** CAPI3REF: Session Object Handle
*/
typedef struct sqlite3_session sqlite3_session;

/*
** CAPI3REF: Changeset Iterator Handle
*/
typedef struct sqlite3_changeset_iter sqlite3_changeset_iter;

/*
** CAPI3REF: Create A New Session Object
**
** Create a new session object attached to database handle db. If successful,
** a pointer to the new object is written to *ppSession and SQLITE_OK is
** returned. If an error occurs, *ppSession is set to NULL and an SQLite
** error code (e.g. SQLITE_NOMEM) is returned.
**
** It is possible to create multiple session objects attached to a single
** database handle.
**
** Session objects created using this function should be deleted using the
** [sqlite3session_delete()] function before the database handle that they
** are attached to is itself closed. If the database handle is closed before
** the session object is deleted, then the results of calling any session
** module function, including [sqlite3session_delete()] on the session object
** are undefined.
**
** Because the session module uses the [sqlite3_preupdate_hook()] API, it
** is not possible for an application to register a pre-update hook on a
** database handle that has one or more session objects attached. Nor is
** it possible to create a session object attached to a database handle for
** which a pre-update hook is already defined. The results of attempting 
** either of these things are undefined.
**
** The session object will be used to create changesets for tables in
** database zDb, where zDb is either "main", or "temp", or the name of an
** attached database. It is not an error if database zDb is not attached
** to the database when the session object is created.
*/
int sqlite3session_create(
  sqlite3 *db,                    /* Database handle */
  const char *zDb,                /* Name of db (e.g. "main") */
  sqlite3_session **ppSession     /* OUT: New session object */
);

/*
** CAPI3REF: Delete A Session Object
**
** Delete a session object previously allocated using 
** [sqlite3session_create()]. Once a session object has been deleted, the
** results of attempting to use pSession with any other session module
** function are undefined.
**
** Session objects must be deleted before the database handle to which they
** are attached is closed. Refer to the documentation for 
** [sqlite3session_create()] for details.
*/
void sqlite3session_delete(sqlite3_session *pSession);


/*
** CAPI3REF: Enable Or Disable A Session Object
**
** Enable or disable the recording of changes by a session object. When
** enabled, a session object records changes made to the database. When
** disabled - it does not. A newly created session object is enabled.
** Refer to the documentation for [sqlite3session_changeset()] for further
** details regarding how enabling and disabling a session object affects
** the eventual changesets.
**
** Passing zero to this function disables the session. Passing a value
** greater than zero enables it. Passing a value less than zero is a 
** no-op, and may be used to query the current state of the session.
**
** The return value indicates the final state of the session object: 0 if 
** the session is disabled, or 1 if it is enabled.
*/
int sqlite3session_enable(sqlite3_session *pSession, int bEnable);

/*
** CAPI3REF: Set Or Clear the Indirect Change Flag
**
** Each change recorded by a session object is marked as either direct or
** indirect. A change is marked as indirect if either:
**
** <ul>
**   <li> The session object "indirect" flag is set when the change is
**        made, or
**   <li> The change is made by an SQL trigger or foreign key action 
**        instead of directly as a result of a users SQL statement.
** </ul>
**
** If a single row is affected by more than one operation within a session,
** then the change is considered indirect if all operations meet the criteria
** for an indirect change above, or direct otherwise.
**
** This function is used to set, clear or query the session object indirect
** flag.  If the second argument passed to this function is zero, then the
** indirect flag is cleared. If it is greater than zero, the indirect flag
** is set. Passing a value less than zero does not modify the current value
** of the indirect flag, and may be used to query the current state of the 
** indirect flag for the specified session object.
**
** The return value indicates the final state of the indirect flag: 0 if 
** it is clear, or 1 if it is set.
*/
int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect);

/*
** CAPI3REF: Attach A Table To A Session Object
**
** If argument zTab is not NULL, then it is the name of a table to attach
** to the session object passed as the first argument. All subsequent changes 
** made to the table while the session object is enabled will be recorded. See 
** documentation for [sqlite3session_changeset()] for further details.
**
** Or, if argument zTab is NULL, then changes are recorded for all tables
** in the database. If additional tables are added to the database (by 
** executing "CREATE TABLE" statements) after this call is made, changes for 
** the new tables are also recorded.
**
** Changes can only be recorded for tables that have a PRIMARY KEY explicitly
** defined as part of their CREATE TABLE statement. It does not matter if the 
** PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) or not. The PRIMARY
** KEY may consist of a single column, or may be a composite key.
** 
** It is not an error if the named table does not exist in the database. Nor
** is it an error if the named table does not have a PRIMARY KEY. However,
** no changes will be recorded in either of these scenarios.
**
** Changes are not recorded for individual rows that have NULL values stored
** in one or more of their PRIMARY KEY columns.
**
** SQLITE_OK is returned if the call completes without error. Or, if an error 
** occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned.
*/
int sqlite3session_attach(
  sqlite3_session *pSession,      /* Session object */
  const char *zTab                /* Table name */
);

/*
** CAPI3REF: Set a table filter on a Session Object.
**
** The second argument (xFilter) is the "filter callback". For changes to rows 
** in tables that are not attached to the Session oject, the filter is called
** to determine whether changes to the table's rows should be tracked or not. 
** If xFilter returns 0, changes is not tracked. Note that once a table is 
** attached, xFilter will not be called again.
*/
void sqlite3session_table_filter(
  sqlite3_session *pSession,      /* Session object */
  int(*xFilter)(
    void *pCtx,                   /* Copy of third arg to _filter_table() */
    const char *zTab              /* Table name */
  ),
  void *pCtx                      /* First argument passed to xFilter */
);

/*
** CAPI3REF: Generate A Changeset From A Session Object
**
** Obtain a changeset containing changes to the tables attached to the 
** session object passed as the first argument. If successful, 
** set *ppChangeset to point to a buffer containing the changeset 
** and *pnChangeset to the size of the changeset in bytes before returning
** SQLITE_OK. If an error occurs, set both *ppChangeset and *pnChangeset to
** zero and return an SQLite error code.
**
** A changeset consists of zero or more INSERT, UPDATE and/or DELETE changes,
** each representing a change to a single row of an attached table. An INSERT
** change contains the values of each field of a new database row. A DELETE
** contains the original values of each field of a deleted database row. An
** UPDATE change contains the original values of each field of an updated
** database row along with the updated values for each updated non-primary-key
** column. It is not possible for an UPDATE change to represent a change that
** modifies the values of primary key columns. If such a change is made, it
** is represented in a changeset as a DELETE followed by an INSERT.
**
** Changes are not recorded for rows that have NULL values stored in one or 
** more of their PRIMARY KEY columns. If such a row is inserted or deleted,
** no corresponding change is present in the changesets returned by this
** function. If an existing row with one or more NULL values stored in
** PRIMARY KEY columns is updated so that all PRIMARY KEY columns are non-NULL,
** only an INSERT is appears in the changeset. Similarly, if an existing row
** with non-NULL PRIMARY KEY values is updated so that one or more of its
** PRIMARY KEY columns are set to NULL, the resulting changeset contains a
** DELETE change only.
**
** The contents of a changeset may be traversed using an iterator created
** using the [sqlite3changeset_start()] API. A changeset may be applied to
** a database with a compatible schema using the [sqlite3changeset_apply()]
** API.
**
** Following a successful call to this function, it is the responsibility of
** the caller to eventually free the buffer that *ppChangeset points to using
** [sqlite3_free()].
**
** <h3>Changeset Generation</h3>
**
** Once a table has been attached to a session object, the session object
** records the primary key values of all new rows inserted into the table.
** It also records the original primary key and other column values of any
** deleted or updated rows. For each unique primary key value, data is only
** recorded once - the first time a row with said primary key is inserted,
** updated or deleted in the lifetime of the session.
**
** There is one exception to the previous paragraph: when a row is inserted,
** updated or deleted, if one or more of its primary key columns contain a
** NULL value, no record of the change is made.
**
** The session object therefore accumulates two types of records - those
** that consist of primary key values only (created when the user inserts
** a new record) and those that consist of the primary key values and the
** original values of other table columns (created when the users deletes
** or updates a record).
**
** When this function is called, the requested changeset is created using
** both the accumulated records and the current contents of the database
** file. Specifically:
**
** <ul>
**   <li> For each record generated by an insert, the database is queried
**        for a row with a matching primary key. If one is found, an INSERT
**        change is added to the changeset. If no such row is found, no change 
**        is added to the changeset.
**
**   <li> For each record generated by an update or delete, the database is 
**        queried for a row with a matching primary key. If such a row is
**        found and one or more of the non-primary key fields have been
**        modified from their original values, an UPDATE change is added to 
**        the changeset. Or, if no such row is found in the table, a DELETE 
**        change is added to the changeset. If there is a row with a matching
**        primary key in the database, but all fields contain their original
**        values, no change is added to the changeset.
** </ul>
**
** This means, amongst other things, that if a row is inserted and then later
** deleted while a session object is active, neither the insert nor the delete
** will be present in the changeset. Or if a row is deleted and then later a 
** row with the same primary key values inserted while a session object is
** active, the resulting changeset will contain an UPDATE change instead of
** a DELETE and an INSERT.
**
** When a session object is disabled (see the [sqlite3session_enable()] API),
** it does not accumulate records when rows are inserted, updated or deleted.
** This may appear to have some counter-intuitive effects if a single row
** is written to more than once during a session. For example, if a row
** is inserted while a session object is enabled, then later deleted while 
** the same session object is disabled, no INSERT record will appear in the
** changeset, even though the delete took place while the session was disabled.
** Or, if one field of a row is updated while a session is disabled, and 
** another field of the same row is updated while the session is enabled, the
** resulting changeset will contain an UPDATE change that updates both fields.
*/
int sqlite3session_changeset(
  sqlite3_session *pSession,      /* Session object */
  int *pnChangeset,               /* OUT: Size of buffer at *ppChangeset */
  void **ppChangeset              /* OUT: Buffer containing changeset */
);

/*
** CAPI3REF: Generate A Patchset From A Session Object
**
** The differences between a patchset and a changeset are that:
**
** <ul>
**   <li> DELETE records consist of the primary key fields only. The 
**        original values of other fields are omitted.
**   <li> The original values of any modified fields are omitted from 
**        UPDATE records.
** </ul>
**
** A patchset blob may be used with up to date versions of all 
** sqlite3changeset_xxx API functions except for sqlite3changeset_invert(), 
** which returns SQLITE_CORRUPT if it is passed a patchset. Similarly,
** attempting to use a patchset blob with old versions of the
** sqlite3changeset_xxx APIs also provokes an SQLITE_CORRUPT error. 
**
** Because the non-primary key "old.*" fields are omitted, no 
** SQLITE_CHANGESET_DATA conflicts can be detected or reported if a patchset
** is passed to the sqlite3changeset_apply() API. Other conflict types work
** in the same way as for changesets.
*/
int sqlite3session_patchset(
  sqlite3_session *pSession,      /* Session object */
  int *pnPatchset,                /* OUT: Size of buffer at *ppChangeset */
  void **ppPatchset               /* OUT: Buffer containing changeset */
);

/*
** CAPI3REF: Test if a changeset has recorded any changes.
**
** Return non-zero if no changes to attached tables have been recorded by 
** the session object passed as the first argument. Otherwise, if one or 
** more changes have been recorded, return zero.
**
** Even if this function returns zero, it is possible that calling
** [sqlite3session_changeset()] on the session handle may still return a
** changeset that contains no changes. This can happen when a row in 
** an attached table is modified and then later on the original values 
** are restored. However, if this function returns non-zero, then it is
** guaranteed that a call to sqlite3session_changeset() will return a 
** changeset containing zero changes.
*/
int sqlite3session_isempty(sqlite3_session *pSession);

/*
** CAPI3REF: Create An Iterator To Traverse A Changeset 
**
** Create an iterator used to iterate through the contents of a changeset.
** If successful, *pp is set to point to the iterator handle and SQLITE_OK
** is returned. Otherwise, if an error occurs, *pp is set to zero and an
** SQLite error code is returned.
**
** The following functions can be used to advance and query a changeset 
** iterator created by this function:
**
** <ul>
**   <li> [sqlite3changeset_next()]
**   <li> [sqlite3changeset_op()]
**   <li> [sqlite3changeset_new()]
**   <li> [sqlite3changeset_old()]
** </ul>
**
** It is the responsibility of the caller to eventually destroy the iterator
** by passing it to [sqlite3changeset_finalize()]. The buffer containing the
** changeset (pChangeset) must remain valid until after the iterator is
** destroyed.
**
** Assuming the changeset blob was created by one of the
** [sqlite3session_changeset()], [sqlite3changeset_concat()] or
** [sqlite3changeset_invert()] functions, all changes within the changeset 
** that apply to a single table are grouped together. This means that when 
** an application iterates through a changeset using an iterator created by 
** this function, all changes that relate to a single table are visted 
** consecutively. There is no chance that the iterator will visit a change 
** the applies to table X, then one for table Y, and then later on visit 
** another change for table X.
*/
int sqlite3changeset_start(
  sqlite3_changeset_iter **pp,    /* OUT: New changeset iterator handle */
  int nChangeset,                 /* Size of changeset blob in bytes */
  void *pChangeset                /* Pointer to blob containing changeset */
);

/*
** CAPI3REF: Advance A Changeset Iterator
**
** This function may only be used with iterators created by function
** [sqlite3changeset_start()]. If it is called on an iterator passed to
** a conflict-handler callback by [sqlite3changeset_apply()], SQLITE_MISUSE
** is returned and the call has no effect.
**
** Immediately after an iterator is created by sqlite3changeset_start(), it
** does not point to any change in the changeset. Assuming the changeset
** is not empty, the first call to this function advances the iterator to
** point to the first change in the changeset. Each subsequent call advances
** the iterator to point to the next change in the changeset (if any). If
** no error occurs and the iterator points to a valid change after a call
** to sqlite3changeset_next() has advanced it, SQLITE_ROW is returned. 
** Otherwise, if all changes in the changeset have already been visited,
** SQLITE_DONE is returned.
**
** If an error occurs, an SQLite error code is returned. Possible error 
** codes include SQLITE_CORRUPT (if the changeset buffer is corrupt) or 
** SQLITE_NOMEM.
*/
int sqlite3changeset_next(sqlite3_changeset_iter *pIter);

/*
** CAPI3REF: Obtain The Current Operation From A Changeset Iterator
**
** The pIter argument passed to this function may either be an iterator
** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
** created by [sqlite3changeset_start()]. In the latter case, the most recent
** call to [sqlite3changeset_next()] must have returned [SQLITE_ROW]. If this
** is not the case, this function returns [SQLITE_MISUSE].
**
** If argument pzTab is not NULL, then *pzTab is set to point to a
** nul-terminated utf-8 encoded string containing the name of the table
** affected by the current change. The buffer remains valid until either
** sqlite3changeset_next() is called on the iterator or until the 
** conflict-handler function returns. If pnCol is not NULL, then *pnCol is 
** set to the number of columns in the table affected by the change. If
** pbIncorrect is not NULL, then *pbIndirect is set to true (1) if the change
** is an indirect change, or false (0) otherwise. See the documentation for
** [sqlite3session_indirect()] for a description of direct and indirect
** changes. Finally, if pOp is not NULL, then *pOp is set to one of 
** [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], depending on the 
** type of change that the iterator currently points to.
**
** If no error occurs, SQLITE_OK is returned. If an error does occur, an
** SQLite error code is returned. The values of the output variables may not
** be trusted in this case.
*/
int sqlite3changeset_op(
  sqlite3_changeset_iter *pIter,  /* Iterator object */
  const char **pzTab,             /* OUT: Pointer to table name */
  int *pnCol,                     /* OUT: Number of columns in table */
  int *pOp,                       /* OUT: SQLITE_INSERT, DELETE or UPDATE */
  int *pbIndirect                 /* OUT: True for an 'indirect' change */
);

/*
** CAPI3REF: Obtain The Primary Key Definition Of A Table
**
** For each modified table, a changeset includes the following:
**
** <ul>
**   <li> The number of columns in the table, and
**   <li> Which of those columns make up the tables PRIMARY KEY.
** </ul>
**
** This function is used to find which columns comprise the PRIMARY KEY of
** the table modified by the change that iterator pIter currently points to.
** If successful, *pabPK is set to point to an array of nCol entries, where
** nCol is the number of columns in the table. Elements of *pabPK are set to
** 0x01 if the corresponding column is part of the tables primary key, or
** 0x00 if it is not.
**
** If argumet pnCol is not NULL, then *pnCol is set to the number of columns
** in the table.
**
** If this function is called when the iterator does not point to a valid
** entry, SQLITE_MISUSE is returned and the output variables zeroed. Otherwise,
** SQLITE_OK is returned and the output variables populated as described
** above.
*/
int sqlite3changeset_pk(
  sqlite3_changeset_iter *pIter,  /* Iterator object */
  unsigned char **pabPK,          /* OUT: Array of boolean - true for PK cols */
  int *pnCol                      /* OUT: Number of entries in output array */
);

/*
** CAPI3REF: Obtain old.* Values From A Changeset Iterator
**
** The pIter argument passed to this function may either be an iterator
** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
** created by [sqlite3changeset_start()]. In the latter case, the most recent
** call to [sqlite3changeset_next()] must have returned SQLITE_ROW. 
** Furthermore, it may only be called if the type of change that the iterator
** currently points to is either [SQLITE_DELETE] or [SQLITE_UPDATE]. Otherwise,
** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL.
**
** Argument iVal must be greater than or equal to 0, and less than the number
** of columns in the table affected by the current change. Otherwise,
** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
**
** If successful, this function sets *ppValue to point to a protected
** sqlite3_value object containing the iVal'th value from the vector of 
** original row values stored as part of the UPDATE or DELETE change and
** returns SQLITE_OK. The name of the function comes from the fact that this 
** is similar to the "old.*" columns available to update or delete triggers.
**
** If some other error occurs (e.g. an OOM condition), an SQLite error code
** is returned and *ppValue is set to NULL.
*/
int sqlite3changeset_old(
  sqlite3_changeset_iter *pIter,  /* Changeset iterator */
  int iVal,                       /* Column number */
  sqlite3_value **ppValue         /* OUT: Old value (or NULL pointer) */
);

/*
** CAPI3REF: Obtain new.* Values From A Changeset Iterator
**
** The pIter argument passed to this function may either be an iterator
** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator
** created by [sqlite3changeset_start()]. In the latter case, the most recent
** call to [sqlite3changeset_next()] must have returned SQLITE_ROW. 
** Furthermore, it may only be called if the type of change that the iterator
** currently points to is either [SQLITE_UPDATE] or [SQLITE_INSERT]. Otherwise,
** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL.
**
** Argument iVal must be greater than or equal to 0, and less than the number
** of columns in the table affected by the current change. Otherwise,
** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
**
** If successful, this function sets *ppValue to point to a protected
** sqlite3_value object containing the iVal'th value from the vector of 
** new row values stored as part of the UPDATE or INSERT change and
** returns SQLITE_OK. If the change is an UPDATE and does not include
** a new value for the requested column, *ppValue is set to NULL and 
** SQLITE_OK returned. The name of the function comes from the fact that 
** this is similar to the "new.*" columns available to update or delete 
** triggers.
**
** If some other error occurs (e.g. an OOM condition), an SQLite error code
** is returned and *ppValue is set to NULL.
*/
int sqlite3changeset_new(
  sqlite3_changeset_iter *pIter,  /* Changeset iterator */
  int iVal,                       /* Column number */
  sqlite3_value **ppValue         /* OUT: New value (or NULL pointer) */
);

/*
** CAPI3REF: Obtain Conflicting Row Values From A Changeset Iterator
**
** This function should only be used with iterator objects passed to a
** conflict-handler callback by [sqlite3changeset_apply()] with either
** [SQLITE_CHANGESET_DATA] or [SQLITE_CHANGESET_CONFLICT]. If this function
** is called on any other iterator, [SQLITE_MISUSE] is returned and *ppValue
** is set to NULL.
**
** Argument iVal must be greater than or equal to 0, and less than the number
** of columns in the table affected by the current change. Otherwise,
** [SQLITE_RANGE] is returned and *ppValue is set to NULL.
**
** If successful, this function sets *ppValue to point to a protected
** sqlite3_value object containing the iVal'th value from the 
** "conflicting row" associated with the current conflict-handler callback
** and returns SQLITE_OK.
**
** If some other error occurs (e.g. an OOM condition), an SQLite error code
** is returned and *ppValue is set to NULL.
*/
int sqlite3changeset_conflict(
  sqlite3_changeset_iter *pIter,  /* Changeset iterator */
  int iVal,                       /* Column number */
  sqlite3_value **ppValue         /* OUT: Value from conflicting row */
);

/*
** CAPI3REF: Determine The Number Of Foreign Key Constraint Violations
**
** This function may only be called with an iterator passed to an
** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case
** it sets the output variable to the total number of known foreign key
** violations in the destination database and returns SQLITE_OK.
**
** In all other cases this function returns SQLITE_MISUSE.
*/
int sqlite3changeset_fk_conflicts(
  sqlite3_changeset_iter *pIter,  /* Changeset iterator */
  int *pnOut                      /* OUT: Number of FK violations */
);


/*
** CAPI3REF: Finalize A Changeset Iterator
**
** This function is used to finalize an iterator allocated with
** [sqlite3changeset_start()].
**
** This function should only be called on iterators created using the
** [sqlite3changeset_start()] function. If an application calls this
** function with an iterator passed to a conflict-handler by
** [sqlite3changeset_apply()], [SQLITE_MISUSE] is immediately returned and the
** call has no effect.
**
** If an error was encountered within a call to an sqlite3changeset_xxx()
** function (for example an [SQLITE_CORRUPT] in [sqlite3changeset_next()] or an 
** [SQLITE_NOMEM] in [sqlite3changeset_new()]) then an error code corresponding
** to that error is returned by this function. Otherwise, SQLITE_OK is
** returned. This is to allow the following pattern (pseudo-code):
**
**   sqlite3changeset_start();
**   while( SQLITE_ROW==sqlite3changeset_next() ){
**     // Do something with change.
**   }
**   rc = sqlite3changeset_finalize();
**   if( rc!=SQLITE_OK ){
**     // An error has occurred 
**   }
*/
int sqlite3changeset_finalize(sqlite3_changeset_iter *pIter);

/*
** CAPI3REF: Invert A Changeset
**
** This function is used to "invert" a changeset object. Applying an inverted
** changeset to a database reverses the effects of applying the uninverted
** changeset. Specifically:
**
** <ul>
**   <li> Each DELETE change is changed to an INSERT, and
**   <li> Each INSERT change is changed to a DELETE, and
**   <li> For each UPDATE change, the old.* and new.* values are exchanged.
** </ul>
**
** If successful, a pointer to a buffer containing the inverted changeset
** is stored in *ppOut, the size of the same buffer is stored in *pnOut, and
** SQLITE_OK is returned. If an error occurs, both *pnOut and *ppOut are
** zeroed and an SQLite error code returned.
**
** It is the responsibility of the caller to eventually call sqlite3_free()
** on the *ppOut pointer to free the buffer allocation following a successful 
** call to this function.
**
** WARNING/TODO: This function currently assumes that the input is a valid
** changeset. If it is not, the results are undefined.
*/
int sqlite3changeset_invert(
  int nIn, const void *pIn,       /* Input changeset */
  int *pnOut, void **ppOut        /* OUT: Inverse of input */
);

/*
** CAPI3REF: Concatenate Two Changeset Objects
**
** This function is used to concatenate two changesets, A and B, into a 
** single changeset. The result is a changeset equivalent to applying
** changeset A followed by changeset B. 
**
** Rows are identified by the values in their PRIMARY KEY columns. A change
** in changeset A is considered to apply to the same row as a change in
** changeset B if the two rows have the same primary key.
**
** Changes to rows that appear only in changeset A or B are copied into the
** output changeset. Or, if both changeset A and B contain a change that
** applies to a single row, the output depends on the type of each change,
** as follows:
**
** <table border=1 style="margin-left:8ex;margin-right:8ex">
**   <tr><th style="white-space:pre">Change A      </th>
**       <th style="white-space:pre">Change B      </th>
**       <th>Output Change
**   <tr><td>INSERT <td>INSERT <td>
**       Change A is copied into the output changeset. Change B is discarded.
**       This case does not occur if changeset B is recorded immediately after
**       changeset A. 
**   <tr><td>INSERT <td>UPDATE <td>
**       An INSERT change is copied into the output changeset. The values in
**       the INSERT change are as if the row was inserted by change A and then
**       updated according to change B.
**   <tr><td>INSERT <td>DELETE <td>
**       No change at all is copied into the output changeset.
**   <tr><td>UPDATE <td>INSERT <td>
**       Change A is copied into the output changeset. Change B is discarded.
**       This case does not occur if changeset B is recorded immediately after
**       changeset A. 
**   <tr><td>UPDATE <td>UPDATE <td>
**       A single UPDATE is copied into the output changeset. The accompanying
**       values are as if the row was updated once by change A and then again
**       by change B.
**   <tr><td>UPDATE <td>DELETE <td>
**       A single DELETE is copied into the output changeset.
**   <tr><td>DELETE <td>INSERT <td>
**       If one or more of the column values in the row inserted by change 
**       B differ from those in the row deleted by change A, an UPDATE
**       change is added to the output changeset. Otherwise, if the inserted
**       row is exactly the same as the deleted row, no change is added to
**       the output changeset.
**   <tr><td>DELETE <td>UPDATE <td>
**       Change A is copied into the output changeset. Change B is discarded.
**       This case does not occur if changeset B is recorded immediately after
**       changeset A. 
**   <tr><td>DELETE <td>DELETE <td>
**       Change A is copied into the output changeset. Change B is discarded.
**       This case does not occur if changeset B is recorded immediately after
**       changeset A. 
** </table>
**
** If the two changesets contain changes to the same table, then the number
** of columns and the position of the primary key columns for the table must
** be the same in each changeset. If this is not the case, attempting to
** concatenate the two changesets together fails and this function returns
** SQLITE_SCHEMA. If either of the two input changesets appear to be corrupt,
** and the corruption is detected, SQLITE_CORRUPT is returned. Or, if an
** out-of-memory condition occurs during processing, this function returns
** SQLITE_NOMEM.
**
** If none of the above errors occur, SQLITE_OK is returned and *ppOut set
** to point to a buffer containing the output changeset. It is the 
** responsibility of the caller to eventually call sqlite3_free() on *ppOut 
** to release memory allocated for the buffer. *pnOut is set to the number 
** of bytes in the output changeset. If an error does occur, both *ppOut and 
** *pnOut are set to zero before returning.
*/
int sqlite3changeset_concat(
  int nA,                         /* Number of bytes in buffer pA */
  void *pA,                       /* Pointer to buffer containing changeset A */
  int nB,                         /* Number of bytes in buffer pB */
  void *pB,                       /* Pointer to buffer containing changeset B */
  int *pnOut,                     /* OUT: Number of bytes in output changeset */
  void **ppOut                    /* OUT: Buffer containing output changeset */
);

/*
** CAPI3REF: Apply A Changeset To A Database
**
** Apply a changeset to a database. This function attempts to update the
** "main" database attached to handle db with the changes found in the
** changeset passed via the second and third arguments.
**
** The fourth argument (xFilter) passed to this function is the "filter
** callback". If it is not NULL, then for each table affected by at least one
** change in the changeset, the filter callback is invoked with
** the table name as the second argument, and a copy of the context pointer
** passed as the sixth argument to this function as the first. If the "filter
** callback" returns zero, then no attempt is made to apply any changes to 
** the table. Otherwise, if the return value is non-zero or the xFilter
** argument to this function is NULL, all changes related to the table are
** attempted.
**
** For each table that is not excluded by the filter callback, this function 
** tests that the target database contains a compatible table. A table is 
** considered compatible if all of the following are true:
**
** <ul>
**   <li> The table has the same name as the name recorded in the 
**        changeset, and
**   <li> The table has the same number of columns as recorded in the 
**        changeset, and
**   <li> The table has primary key columns in the same position as 
**        recorded in the changeset.
** </ul>
**
** If there is no compatible table, it is not an error, but none of the
** changes associated with the table are applied. A warning message is issued
** via the sqlite3_log() mechanism with the error code SQLITE_SCHEMA. At most
** one such warning is issued for each table in the changeset.
**
** For each change for which there is a compatible table, an attempt is made 
** to modify the table contents according to the UPDATE, INSERT or DELETE 
** change. If a change cannot be applied cleanly, the conflict handler 
** function passed as the fifth argument to sqlite3changeset_apply() may be 
** invoked. A description of exactly when the conflict handler is invoked for 
** each type of change is below.
**
** Each time the conflict handler function is invoked, it must return one
** of [SQLITE_CHANGESET_OMIT], [SQLITE_CHANGESET_ABORT] or 
** [SQLITE_CHANGESET_REPLACE]. SQLITE_CHANGESET_REPLACE may only be returned
** if the second argument passed to the conflict handler is either
** SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If the conflict-handler
** returns an illegal value, any changes already made are rolled back and
** the call to sqlite3changeset_apply() returns SQLITE_MISUSE. Different 
** actions are taken by sqlite3changeset_apply() depending on the value
** returned by each invocation of the conflict-handler function. Refer to
** the documentation for the three 
** [SQLITE_CHANGESET_OMIT|available return values] for details.
**
** <dl>
** <dt>DELETE Changes<dd>
**   For each DELETE change, this function checks if the target database 
**   contains a row with the same primary key value (or values) as the 
**   original row values stored in the changeset. If it does, and the values 
**   stored in all non-primary key columns also match the values stored in 
**   the changeset the row is deleted from the target database.
**
**   If a row with matching primary key values is found, but one or more of
**   the non-primary key fields contains a value different from the original
**   row value stored in the changeset, the conflict-handler function is
**   invoked with [SQLITE_CHANGESET_DATA] as the second argument.
**
**   If no row with matching primary key values is found in the database,
**   the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
**   passed as the second argument.
**
**   If the DELETE operation is attempted, but SQLite returns SQLITE_CONSTRAINT
**   (which can only happen if a foreign key constraint is violated), the
**   conflict-handler function is invoked with [SQLITE_CHANGESET_CONSTRAINT]
**   passed as the second argument. This includes the case where the DELETE
**   operation is attempted because an earlier call to the conflict handler
**   function returned [SQLITE_CHANGESET_REPLACE].
**
** <dt>INSERT Changes<dd>
**   For each INSERT change, an attempt is made to insert the new row into
**   the database.
**
**   If the attempt to insert the row fails because the database already 
**   contains a row with the same primary key values, the conflict handler
**   function is invoked with the second argument set to 
**   [SQLITE_CHANGESET_CONFLICT].
**
**   If the attempt to insert the row fails because of some other constraint
**   violation (e.g. NOT NULL or UNIQUE), the conflict handler function is 
**   invoked with the second argument set to [SQLITE_CHANGESET_CONSTRAINT].
**   This includes the case where the INSERT operation is re-attempted because 
**   an earlier call to the conflict handler function returned 
**   [SQLITE_CHANGESET_REPLACE].
**
** <dt>UPDATE Changes<dd>
**   For each UPDATE change, this function checks if the target database 
**   contains a row with the same primary key value (or values) as the 
**   original row values stored in the changeset. If it does, and the values 
**   stored in all non-primary key columns also match the values stored in 
**   the changeset the row is updated within the target database.
**
**   If a row with matching primary key values is found, but one or more of
**   the non-primary key fields contains a value different from an original
**   row value stored in the changeset, the conflict-handler function is
**   invoked with [SQLITE_CHANGESET_DATA] as the second argument. Since
**   UPDATE changes only contain values for non-primary key fields that are
**   to be modified, only those fields need to match the original values to
**   avoid the SQLITE_CHANGESET_DATA conflict-handler callback.
**
**   If no row with matching primary key values is found in the database,
**   the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
**   passed as the second argument.
**
**   If the UPDATE operation is attempted, but SQLite returns 
**   SQLITE_CONSTRAINT, the conflict-handler function is invoked with 
**   [SQLITE_CHANGESET_CONSTRAINT] passed as the second argument.
**   This includes the case where the UPDATE operation is attempted after 
**   an earlier call to the conflict handler function returned
**   [SQLITE_CHANGESET_REPLACE].  
** </dl>
**
** It is safe to execute SQL statements, including those that write to the
** table that the callback related to, from within the xConflict callback.
** This can be used to further customize the applications conflict
** resolution strategy.
**
** All changes made by this function are enclosed in a savepoint transaction.
** If any other error (aside from a constraint failure when attempting to
** write to the target database) occurs, then the savepoint transaction is
** rolled back, restoring the target database to its original state, and an 
** SQLite error code returned.
*/
int sqlite3changeset_apply(
  sqlite3 *db,                    /* Apply change to "main" db of this handle */
  int nChangeset,                 /* Size of changeset in bytes */
  void *pChangeset,               /* Changeset blob */
  int(*xFilter)(
    void *pCtx,                   /* Copy of sixth arg to _apply() */
    const char *zTab              /* Table name */
  ),
  int(*xConflict)(
    void *pCtx,                   /* Copy of sixth arg to _apply() */
    int eConflict,                /* DATA, MISSING, CONFLICT, CONSTRAINT */
    sqlite3_changeset_iter *p     /* Handle describing change and conflict */
  ),
  void *pCtx                      /* First argument passed to xConflict */
);

/* 
** CAPI3REF: Constants Passed To The Conflict Handler
**
** Values that may be passed as the second argument to a conflict-handler.
**
** <dl>
** <dt>SQLITE_CHANGESET_DATA<dd>
**   The conflict handler is invoked with CHANGESET_DATA as the second argument
**   when processing a DELETE or UPDATE change if a row with the required
**   PRIMARY KEY fields is present in the database, but one or more other 
**   (non primary-key) fields modified by the update do not contain the 
**   expected "before" values.
** 
**   The conflicting row, in this case, is the database row with the matching
**   primary key.
** 
** <dt>SQLITE_CHANGESET_NOTFOUND<dd>
**   The conflict handler is invoked with CHANGESET_NOTFOUND as the second
**   argument when processing a DELETE or UPDATE change if a row with the
**   required PRIMARY KEY fields is not present in the database.
** 
**   There is no conflicting row in this case. The results of invoking the
**   sqlite3changeset_conflict() API are undefined.
** 
** <dt>SQLITE_CHANGESET_CONFLICT<dd>
**   CHANGESET_CONFLICT is passed as the second argument to the conflict
**   handler while processing an INSERT change if the operation would result 
**   in duplicate primary key values.
** 
**   The conflicting row in this case is the database row with the matching
**   primary key.
**
** <dt>SQLITE_CHANGESET_FOREIGN_KEY<dd>
**   If foreign key handling is enabled, and applying a changeset leaves the
**   database in a state containing foreign key violations, the conflict 
**   handler is invoked with CHANGESET_FOREIGN_KEY as the second argument
**   exactly once before the changeset is committed. If the conflict handler
**   returns CHANGESET_OMIT, the changes, including those that caused the
**   foreign key constraint violation, are committed. Or, if it returns
**   CHANGESET_ABORT, the changeset is rolled back.
**
**   No current or conflicting row information is provided. The only function
**   it is possible to call on the supplied sqlite3_changeset_iter handle
**   is sqlite3changeset_fk_conflicts().
** 
** <dt>SQLITE_CHANGESET_CONSTRAINT<dd>
**   If any other constraint violation occurs while applying a change (i.e. 
**   a UNIQUE, CHECK or NOT NULL constraint), the conflict handler is 
**   invoked with CHANGESET_CONSTRAINT as the second argument.
** 
**   There is no conflicting row in this case. The results of invoking the
**   sqlite3changeset_conflict() API are undefined.
**
** </dl>
*/
#define SQLITE_CHANGESET_DATA        1
#define SQLITE_CHANGESET_NOTFOUND    2
#define SQLITE_CHANGESET_CONFLICT    3
#define SQLITE_CHANGESET_CONSTRAINT  4
#define SQLITE_CHANGESET_FOREIGN_KEY 5

/* 
** CAPI3REF: Constants Returned By The Conflict Handler
**
** A conflict handler callback must return one of the following three values.
**
** <dl>
** <dt>SQLITE_CHANGESET_OMIT<dd>
**   If a conflict handler returns this value no special action is taken. The
**   change that caused the conflict is not applied. The session module 
**   continues to the next change in the changeset.
**
** <dt>SQLITE_CHANGESET_REPLACE<dd>
**   This value may only be returned if the second argument to the conflict
**   handler was SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If this
**   is not the case, any changes applied so far are rolled back and the 
**   call to sqlite3changeset_apply() returns SQLITE_MISUSE.
**
**   If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_DATA conflict
**   handler, then the conflicting row is either updated or deleted, depending
**   on the type of change.
**
**   If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_CONFLICT conflict
**   handler, then the conflicting row is removed from the database and a
**   second attempt to apply the change is made. If this second attempt fails,
**   the original row is restored to the database before continuing.
**
** <dt>SQLITE_CHANGESET_ABORT<dd>
**   If this value is returned, any changes applied so far are rolled back 
**   and the call to sqlite3changeset_apply() returns SQLITE_ABORT.
** </dl>
*/
#define SQLITE_CHANGESET_OMIT       0
#define SQLITE_CHANGESET_REPLACE    1
#define SQLITE_CHANGESET_ABORT      2

/*
** Make sure we can call this stuff from C++.
*/
#ifdef __cplusplus
}
#endif

#endif  /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */