diff options
Diffstat (limited to 'src/fkey.c')
-rw-r--r-- | src/fkey.c | 784 |
1 files changed, 784 insertions, 0 deletions
diff --git a/src/fkey.c b/src/fkey.c new file mode 100644 index 000000000..1d9895aff --- /dev/null +++ b/src/fkey.c @@ -0,0 +1,784 @@ +/* +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used by the compiler to add foreign key +** support to compiled SQL statements. +*/ +#include "sqliteInt.h" + +#ifndef SQLITE_OMIT_FOREIGN_KEY + +/* +** Deferred and Immediate FKs +** -------------------------- +** +** Foreign keys in SQLite come in two flavours: deferred and immediate. +** If an immediate foreign key constraint is violated, an OP_Halt is +** executed and the current statement transaction rolled back. If a +** deferred foreign key constraint is violated, no action is taken +** immediately. However if the application attempts to commit the +** transaction before fixing the constraint violation, the attempt fails. +** +** Deferred constraints are implemented using a simple counter associated +** with the database handle. The counter is set to zero each time a +** database transaction is opened. Each time a statement is executed +** that causes a foreign key violation, the counter is incremented. Each +** time a statement is executed that removes an existing violation from +** the database, the counter is decremented. When the transaction is +** committed, the commit fails if the current value of the counter is +** greater than zero. This scheme has two big drawbacks: +** +** * When a commit fails due to a deferred foreign key constraint, +** there is no way to tell which foreign constraint is not satisfied, +** or which row it is not satisfied for. +** +** * If the database contains foreign key violations when the +** transaction is opened, this may cause the mechanism to malfunction. +** +** Despite these problems, this approach is adopted as it seems simpler +** than the alternatives. +** +** INSERT operations: +** +** I.1) For each FK for which the table is the referencing table, search +** the referenced table for a match. If none is found, throw an +** exception for an immediate FK, or increment the counter for a +** deferred FK. +** +** I.2) For each deferred FK for which the table is the referenced table, +** search the referencing table for rows that correspond to the new +** row in the referenced table. Decrement the counter for each row +** found (as the constraint is now satisfied). +** +** DELETE operations: +** +** D.1) For each deferred FK for which the table is the referencing table, +** search the referenced table for a row that corresponds to the +** deleted row in the referencing table. If such a row is not found, +** decrement the counter. +** +** D.2) For each FK for which the table is the referenced table, search +** the referencing table for rows that correspond to the deleted row +** in the referenced table. For each found, throw an exception for an +** immediate FK, or increment the counter for a deferred FK. +** +** UPDATE operations: +** +** An UPDATE command requires that all 4 steps above are taken, but only +** for FK constraints for which the affected columns are actually +** modified (values must be compared at runtime). +** +** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. +** This simplifies the implementation a bit. +** +** For the purposes of immediate FK constraints, the OR REPLACE conflict +** resolution is considered to delete rows before the new row is inserted. +** If a delete caused by OR REPLACE violates an FK constraint, an exception +** is thrown, even if the FK constraint would be satisfied after the new +** row is inserted. +** +** TODO: How should dropping a table be handled? How should renaming a +** table be handled? +*/ + +/* +** Query API Notes +** --------------- +** +** Before coding an UPDATE or DELETE row operation, the code-generator +** for those two operations needs to know whether or not the operation +** requires any FK processing and, if so, which columns of the original +** row are required by the FK processing VDBE code (i.e. if FKs were +** implemented using triggers, which of the old.* columns would be +** accessed). No information is required by the code-generator before +** coding an INSERT operation. +** +*/ + +/* +** VDBE Calling Convention +** ----------------------- +** +** Example: +** +** For the following INSERT statement: +** +** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); +** INSERT INTO t1 VALUES(1, 2, 3.1); +** +** Register (x): 2 (type integer) +** Register (x+1): 1 (type integer) +** Register (x+2): NULL (type NULL) +** Register (x+3): 3.1 (type real) +*/ + +/* +** ON UPDATE and ON DELETE clauses +** ------------------------------- +*/ + +/* +** Externally accessible module functions +** -------------------------------------- +** +** sqlite3FkRequired() +** sqlite3FkOldmask() +** +** sqlite3FkCheck() +** sqlite3FkActions() +** +** sqlite3FkDelete() +** +*/ + +/* +** A foreign key constraint requires that the key columns in the referenced +** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. +** Given that pTo is the referenced table for foreign key constraint +** pFKey, check that the columns in pTo are indeed subject to a such a +** constraint. If they are not, return non-zero and leave an error in pParse. +** +** If an error does not occur, return zero. +*/ +static int locateFkeyIndex( + Parse *pParse, /* Parse context to store any error in */ + Table *pTo, /* Referenced table */ + FKey *pFKey, /* Foreign key to find index for */ + Index **ppIdx, /* OUT: Unique index on referenced table */ + int **paiCol /* OUT: Map of index columns in pFKey */ +){ + Index *pIdx = 0; + int *aiCol = 0; + int nCol = pFKey->nCol; + char *zFirst = pFKey->aCol[0].zCol; + + /* The caller is responsible for zeroing output parameters. */ + assert( ppIdx && *ppIdx==0 ); + assert( !paiCol || *paiCol==0 ); + + /* If this is a non-composite (single column) foreign key, check if it + ** maps to the INTEGER PRIMARY KEY of table pTo. If so, leave *ppIdx + ** and *paiCol set to zero and return early. + ** + ** Otherwise, for a composite foreign key (more than one column), allocate + ** space for the aiCol array (returned via output parameter *paiCol). + ** Non-composite foreign keys do not require the aiCol array. + */ + if( nCol==1 ){ + /* The FK maps to the IPK if any of the following are true: + ** + ** 1) The FK is explicitly mapped to "rowid", "oid" or "_rowid_", or + ** 2) There is an explicit INTEGER PRIMARY KEY column and the FK is + ** implicitly mapped to the primary key of table pTo, or + ** 3) The FK is explicitly mapped to a column declared as INTEGER + ** PRIMARY KEY. + */ + if( zFirst && sqlite3IsRowid(zFirst) ) return 0; + if( pTo->iPKey>=0 ){ + if( !zFirst ) return 0; + if( !sqlite3StrICmp(pTo->aCol[pTo->iPKey].zName, zFirst) ) return 0; + } + }else if( paiCol ){ + assert( nCol>1 ); + aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int)); + if( !aiCol ) return 1; + *paiCol = aiCol; + } + + for(pIdx=pTo->pIndex; pIdx; pIdx=pIdx->pNext){ + if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){ + /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number + ** of columns. If each indexed column corresponds to a foreign key + ** column of pFKey, then this index is a winner. */ + + if( zFirst==0 ){ + /* If zFirst is NULL, then this foreign key is implicitly mapped to + ** the PRIMARY KEY of table pTo. The PRIMARY KEY index may be + ** identified by the test (Index.autoIndex==2). */ + if( pIdx->autoIndex==2 ){ + if( aiCol ) memcpy(aiCol, pIdx->aiColumn, sizeof(int)*nCol); + break; + } + }else{ + /* If zFirst is non-NULL, then this foreign key was declared to + ** map to an explicit list of columns in table pTo. Check if this + ** index matches those columns. */ + int i, j; + for(i=0; i<nCol; i++){ + char *zIdxCol = pTo->aCol[pIdx->aiColumn[i]].zName; + for(j=0; j<nCol; j++){ + if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ + if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; + break; + } + } + if( j==nCol ) break; + } + if( i==nCol ) break; /* pIdx is usable */ + } + } + } + + if( pParse && !pIdx ){ + sqlite3ErrorMsg(pParse, "foreign key mismatch"); + sqlite3DbFree(pParse->db, aiCol); + return 1; + } + + *ppIdx = pIdx; + return 0; +} + +static void fkCheckReference( + Parse *pParse, /* Parse context */ + int iDb, /* Index of database housing pTab */ + Table *pTab, /* Table referenced by FK pFKey */ + Index *pIdx, /* Index ensuring uniqueness of FK in pTab */ + FKey *pFKey, /* Foreign key to check */ + int *aiCol, /* Map from FK column to referencing table column */ + int regData, /* Address of array containing referencing row */ + int nIncr /* If deferred FK, increment counter by this */ +){ + int i; + Vdbe *v = sqlite3GetVdbe(pParse); + int iCur = pParse->nTab - 1; + int iOk = sqlite3VdbeMakeLabel(v); + + assert( pFKey->isDeferred || nIncr==1 ); + + /* Check if any of the key columns in the referencing table are + ** NULL. If any are, then the constraint is satisfied. No need + ** to search for a matching row in the referenced table. */ + for(i=0; i<pFKey->nCol; i++){ + int iReg = pFKey->aCol[i].iFrom + regData + 1; + sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); + } + + if( pIdx==0 ){ + /* If pIdx is NULL, then the foreign key constraint references the + ** INTEGER PRIMARY KEY column in the referenced table (table pTab). */ + int iReg = pFKey->aCol[0].iFrom + regData + 1; + sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); + sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iReg); + sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); + sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); + }else{ + int regRec = sqlite3GetTempReg(pParse); + KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); + + sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); + sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF); + + if( aiCol ){ + int nCol = pFKey->nCol; + int regTemp = sqlite3GetTempRange(pParse, nCol); + for(i=0; i<nCol; i++){ + sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[i]+1+regData, regTemp+i); + } + sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec); + sqlite3ReleaseTempRange(pParse, regTemp, nCol); + }else{ + int iReg = pFKey->aCol[0].iFrom + regData + 1; + sqlite3VdbeAddOp3(v, OP_MakeRecord, iReg, 1, regRec); + sqlite3IndexAffinityStr(v, pIdx); + } + + sqlite3VdbeAddOp3(v, OP_Found, iCur, iOk, regRec); + sqlite3ReleaseTempReg(pParse, regRec); + } + + if( pFKey->isDeferred ){ + assert( nIncr==1 || nIncr==-1 ); + sqlite3VdbeAddOp1(v, OP_DeferredCons, nIncr); + }else{ + sqlite3HaltConstraint( + pParse, OE_Abort, "foreign key constraint failed", P4_STATIC + ); + } + + sqlite3VdbeResolveLabel(v, iOk); +} + +static void fkScanReferences( + Parse *pParse, /* Parse context */ + SrcList *pSrc, /* SrcList containing the table to scan */ + Index *pIdx, /* Foreign key index */ + FKey *pFKey, /* Foreign key relationship */ + int *aiCol, /* Map from FK to referenced table columns */ + int regData, /* Referenced table data starts here */ + int nIncr /* Amount to increment deferred counter by */ +){ + sqlite3 *db = pParse->db; /* Database handle */ + int i; /* Iterator variable */ + Expr *pWhere = 0; /* WHERE clause to scan with */ + NameContext sNameContext; /* Context used to resolve WHERE clause */ + WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ + + for(i=0; i<pFKey->nCol; i++){ + Expr *pLeft; /* Value from deleted row */ + Expr *pRight; /* Column ref to referencing table */ + Expr *pEq; /* Expression (pLeft = pRight) */ + int iCol; /* Index of column in referencing table */ + const char *zCol; /* Name of column in referencing table */ + + pLeft = sqlite3Expr(db, TK_REGISTER, 0); + if( pLeft ){ + pLeft->iTable = (pIdx ? (regData+pIdx->aiColumn[i]+1) : regData); + } + iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; + if( iCol<0 ){ + zCol = "rowid"; + }else{ + zCol = pFKey->pFrom->aCol[iCol].zName; + } + pRight = sqlite3Expr(db, TK_ID, zCol); + pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); + pWhere = sqlite3ExprAnd(db, pWhere, pEq); + } + + /* Resolve the references in the WHERE clause. */ + memset(&sNameContext, 0, sizeof(NameContext)); + sNameContext.pSrcList = pSrc; + sNameContext.pParse = pParse; + sqlite3ResolveExprNames(&sNameContext, pWhere); + + /* Create VDBE to loop through the entries in pSrc that match the WHERE + ** clause. If the constraint is not deferred, throw an exception for + ** each row found. Otherwise, for deferred constraints, increment the + ** deferred constraint counter by nIncr for each row selected. */ + pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0); + if( pFKey->isDeferred && nIncr ){ + assert( nIncr==1 || nIncr==-1 ); + sqlite3VdbeAddOp1(pParse->pVdbe, OP_DeferredCons, nIncr); + }else{ + assert( nIncr==1 || nIncr==0 ); + sqlite3HaltConstraint( + pParse, OE_Abort, "foreign key constraint failed", P4_STATIC + ); + } + sqlite3WhereEnd(pWInfo); + + /* Clean up the WHERE clause constructed above. */ + sqlite3ExprDelete(db, pWhere); +} + +/* +** This function returns a pointer to the head of a linked list of FK +** constraints that refer to the table passed as an argument. For example, +** given the following schema: +** +** CREATE TABLE t1(a PRIMARY KEY); +** CREATE TABLE t2(b REFERENCES t1(a); +** +** Calling this function with table "t1" as an argument returns a pointer +** to the FKey structure representing the foreign key constraint on table +** "t2". Calling this function with "t2" as the argument would return a +** NULL pointer (as there are no FK constraints that refer to t2). +*/ +static FKey *fkRefering(Table *pTab){ + int nName = sqlite3Strlen30(pTab->zName); + return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName); +} + +void sqlite3FkCheck( + Parse *pParse, /* Parse context */ + Table *pTab, /* Row is being deleted from this table */ + ExprList *pChanges, /* Changed columns if this is an UPDATE */ + int regOld, /* Previous row data is stored here */ + int regNew /* New row data is stored here */ +){ + sqlite3 *db = pParse->db; /* Database handle */ + Vdbe *v; /* VM to write code to */ + FKey *pFKey; /* Used to iterate through FKs */ + int iDb; /* Index of database containing pTab */ + const char *zDb; /* Name of database containing pTab */ + + assert( ( pChanges && regOld && regNew) /* UPDATE operation */ + || (!pChanges && !regOld && regNew) /* INSERT operation */ + || (!pChanges && regOld && !regNew) /* DELETE operation */ + ); + + /* If foreign-keys are disabled, this function is a no-op. */ + if( (db->flags&SQLITE_ForeignKeys)==0 ) return; + + v = sqlite3GetVdbe(pParse); + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + zDb = db->aDb[iDb].zName; + + /* Loop through all the foreign key constraints attached to the table. */ + for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ + Table *pTo; /* Table referenced by this FK */ + Index *pIdx = 0; /* Index on key columns in pTo */ + int *aiCol = 0; + + if( pFKey->isDeferred==0 && regNew==0 ) continue; + + /* Find the table this foreign key references. Also find a unique + ** index on the referenced table that corresponds to the key columns. + ** If either of these things cannot be located, set an error in pParse + ** and return early. */ + pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); + if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiCol) ) return; + assert( pFKey->nCol==1 || (aiCol && pIdx) ); + + /* If the key does not overlap with the pChanges list, skip this FK. */ + if( pChanges ){ + /* TODO */ + } + + /* Take a shared-cache advisory read-lock on the referenced table. + ** Allocate a cursor to use to search the unique index on the FK + ** columns in the referenced table. */ + sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); + pParse->nTab++; + + if( regOld!=0 && pFKey->isDeferred ){ + fkCheckReference(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1); + } + if( regNew!=0 ){ + fkCheckReference(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1); + } + + sqlite3DbFree(db, aiCol); + } + + /* Loop through all the foreign key constraints that refer to this table */ + for(pFKey = fkRefering(pTab); pFKey; pFKey=pFKey->pNextTo){ + int iGoto; /* Address of OP_Goto instruction */ + Index *pIdx = 0; /* Foreign key index for pFKey */ + SrcList *pSrc; + int *aiCol = 0; + + /* For immediate constraints, skip this scan if: + ** + ** 1) this is an INSERT operation, or + ** 2) an UPDATE operation and the FK action is a trigger-action, or + ** 3) a DELETE operation and the FK action is a trigger-action. + ** + ** A "trigger-action" is one of CASCADE, SET DEFAULT or SET NULL. + */ + if( pFKey->isDeferred==0 ){ + if( regOld==0 ) continue; /* 1 */ + if( regNew!=0 && pFKey->updateConf>OE_Restrict ) continue; /* 2 */ + if( regNew==0 && pFKey->deleteConf>OE_Restrict ) continue; /* 3 */ + } + + if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return; + assert( aiCol || pFKey->nCol==1 ); + + /* Check if this update statement has modified any of the key columns + ** for this foreign key constraint. If it has not, there is no need + ** to search the referencing table for rows in violation. This is + ** just an optimization. Things would work fine without this check. */ + if( pChanges ){ + /* TODO */ + } + + /* Create a SrcList structure containing a single table (the table + ** the foreign key that refers to this table is attached to). This + ** is required for the sqlite3WhereXXX() interface. */ + pSrc = sqlite3SrcListAppend(db, 0, 0, 0); + if( !pSrc ) return; + pSrc->a->pTab = pFKey->pFrom; + pSrc->a->pTab->nRef++; + pSrc->a->iCursor = pParse->nTab++; + + /* If this is an UPDATE, and none of the columns associated with this + ** FK have been modified, do not scan the referencing table. Unlike + ** the compile-time test implemented above, this is not just an + ** optimization. It is required so that immediate foreign keys do not + ** throw exceptions when the user executes a statement like: + ** + ** UPDATE refd_table SET refd_column = refd_column + */ + if( pChanges ){ + int i; + int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; + for(i=0; i<pFKey->nCol; i++){ + int iOff = (pIdx ? pIdx->aiColumn[i] : -1) + 1; + sqlite3VdbeAddOp3(v, OP_Ne, regOld+iOff, iJump, regNew+iOff); + } + iGoto = sqlite3VdbeAddOp0(v, OP_Goto); + } + + if( regNew!=0 && pFKey->isDeferred ){ + fkScanReferences(pParse, pSrc, pIdx, pFKey, aiCol, regNew, -1); + } + if( regOld!=0 ){ + /* If there is a RESTRICT action configured for the current operation + ** on the referenced table of this FK, then throw an exception + ** immediately if the FK constraint is violated, even if this is a + ** deferred trigger. That's what RESTRICT means. To defer checking + ** the constraint, the FK should specify NO ACTION (represented + ** using OE_None). NO ACTION is the default. */ + fkScanReferences(pParse, pSrc, pIdx, pFKey, aiCol, regOld, + (pChanges!=0 && pFKey->updateConf!=OE_Restrict) + || (pChanges==0 && pFKey->deleteConf!=OE_Restrict) + ); + } + + if( pChanges ){ + sqlite3VdbeJumpHere(v, iGoto); + } + sqlite3SrcListDelete(db, pSrc); + sqlite3DbFree(db, aiCol); + } +} + +#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) + +/* +** This function is called before generating code to update or delete a +** row contained in table pTab. If the operation is an update, then +** pChanges is a pointer to the list of columns to modify. If this is a +** delete, then pChanges is NULL. +*/ +u32 sqlite3FkOldmask( + Parse *pParse, /* Parse context */ + Table *pTab, /* Table being modified */ + ExprList *pChanges /* Non-NULL for UPDATE operations */ +){ + u32 mask = 0; + if( pParse->db->flags&SQLITE_ForeignKeys ){ + FKey *p; + int i; + for(p=pTab->pFKey; p; p=p->pNextFrom){ + if( pChanges || p->isDeferred ){ + for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); + } + } + for(p=fkRefering(pTab); p; p=p->pNextTo){ + Index *pIdx = 0; + locateFkeyIndex(0, pTab, p, &pIdx, 0); + if( pIdx ){ + for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]); + } + } + } + return mask; +} + +/* +** This function is called before generating code to update or delete a +** row contained in table pTab. If the operation is an update, then +** pChanges is a pointer to the list of columns to modify. If this is a +** delete, then pChanges is NULL. +** +** If any foreign key processing will be required, this function returns +** true. If there is no foreign key related processing, this function +** returns false. +*/ +int sqlite3FkRequired( + Parse *pParse, /* Parse context */ + Table *pTab, /* Table being modified */ + ExprList *pChanges /* Non-NULL for UPDATE operations */ +){ + if( pParse->db->flags&SQLITE_ForeignKeys ){ + FKey *p; + for(p=pTab->pFKey; p; p=p->pNextFrom){ + if( pChanges || p->isDeferred ) return 1; + } + if( fkRefering(pTab) ) return 1; + } + return 0; +} + +static Trigger *fkActionTrigger( + Parse *pParse, + Table *pTab, /* Table being updated or deleted from */ + FKey *pFKey, /* Foreign key to get action for */ + ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ +){ + sqlite3 *db = pParse->db; /* Database handle */ + int action; + Trigger *pTrigger; + + if( pChanges ){ + action = pFKey->updateConf; + pTrigger = pFKey->pOnUpdate; + }else{ + action = pFKey->deleteConf; + pTrigger = pFKey->pOnDelete; + } + + assert( OE_SetNull>OE_Restrict && OE_SetDflt>OE_Restrict ); + assert( OE_Cascade>OE_Restrict && OE_None<OE_Restrict ); + + if( action>OE_Restrict && !pTrigger ){ + char const *zFrom; /* Name of referencing table */ + int nFrom; /* Length in bytes of zFrom */ + Index *pIdx = 0; + int *aiCol = 0; + TriggerStep *pStep; + sqlite3 *dbMem = pTab->dbMem; + Expr *pWhere = 0; + ExprList *pList = 0; + int i; + + if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; + assert( aiCol || pFKey->nCol==1 ); + + assert( dbMem==0 || dbMem==pParse->db ); + zFrom = pFKey->pFrom->zName; + nFrom = sqlite3Strlen30(zFrom); + pTrigger = (Trigger *)sqlite3DbMallocZero(dbMem, + sizeof(Trigger) + /* struct Trigger */ + sizeof(TriggerStep) + /* Single step in trigger program */ + nFrom + 1 /* Space for pStep->target.z */ + ); + if( !pTrigger ){ + pParse->db->mallocFailed = 1; + return 0; + } + pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; + pStep->target.z = (char *)&pStep[1]; + pStep->target.n = nFrom; + memcpy((char *)pStep->target.z, zFrom, nFrom); + + for(i=0; i<pFKey->nCol; i++){ + Expr *pEq; + int iFromCol; /* Idx of column in referencing table */ + Token tFromCol; /* Name of column in referencing table */ + Token tToCol; /* Name of column in referenced table */ + Token tOld = { "old", 3 }; /* Literal "old" token */ + Token tNew = { "new", 3 }; /* Literal "new" token */ + + iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; + tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid"; + tFromCol.z = iFromCol<0 ? "oid" : pFKey->pFrom->aCol[iFromCol].zName; + + tToCol.n = sqlite3Strlen30(tToCol.z); + tFromCol.n = sqlite3Strlen30(tFromCol.z); + + /* Create the expression "zFromCol = OLD.zToCol" */ + pEq = sqlite3PExpr(pParse, TK_EQ, + sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol), + sqlite3PExpr(pParse, TK_DOT, + sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), + sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) + , 0) + , 0); + pWhere = sqlite3ExprAnd(pParse->db, pWhere, pEq); + + if( action!=OE_Cascade || pChanges ){ + Expr *pNew; + if( action==OE_Cascade ){ + pNew = sqlite3PExpr(pParse, TK_DOT, + sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), + sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) + , 0); + }else if( action==OE_SetDflt ){ + Expr *pDflt = pIdx ? 0 : pTab->aCol[pIdx->aiColumn[i]].pDflt; + if( pDflt ){ + pNew = sqlite3ExprDup(db, pDflt, 0); + }else{ + pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); + } + }else{ + pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); + } + pList = sqlite3ExprListAppend(pParse, pList, pNew); + sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); + } + } + sqlite3DbFree(pParse->db, aiCol); + + pStep->pWhere = sqlite3ExprDup(dbMem, pWhere, EXPRDUP_REDUCE); + pStep->pExprList = sqlite3ExprListDup(dbMem, pList, EXPRDUP_REDUCE); + sqlite3ExprDelete(pParse->db, pWhere); + sqlite3ExprListDelete(pParse->db, pList); + + pStep->op = (action!=OE_Cascade || pChanges) ? TK_UPDATE : TK_DELETE; + pStep->pTrig = pTrigger; + pTrigger->pSchema = pTab->pSchema; + pTrigger->pTabSchema = pTab->pSchema; + + if( pChanges ){ + pFKey->pOnUpdate = pTrigger; + pTrigger->op = TK_UPDATE; + pStep->op = TK_UPDATE; + }else{ + pFKey->pOnDelete = pTrigger; + pTrigger->op = TK_DELETE; + pStep->op = (action==OE_Cascade)?TK_DELETE:TK_UPDATE; + } + } + + return pTrigger; +} + +static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ + if( p ){ + TriggerStep *pStep = p->step_list; + sqlite3ExprDelete(dbMem, pStep->pWhere); + sqlite3ExprListDelete(dbMem, pStep->pExprList); + sqlite3DbFree(dbMem, p); + } +} + +/* +** This function is called when deleting or updating a row to implement +** any required CASCADE, SET NULL or SET DEFAULT actions. +*/ +void sqlite3FkActions( + Parse *pParse, /* Parse context */ + Table *pTab, /* Table being updated or deleted from */ + ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ + int regOld /* Address of array containing old row */ +){ + /* If foreign-key support is enabled, iterate through all FKs that + ** refer to table pTab. If there is an action associated with the FK + ** for this operation (either update or delete), invoke the associated + ** trigger sub-program. */ + if( pParse->db->flags&SQLITE_ForeignKeys ){ + FKey *pFKey; /* Iterator variable */ + for(pFKey = fkRefering(pTab); pFKey; pFKey=pFKey->pNextTo){ + Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges); + if( pAction ){ + sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0); + } + } + } +} + +/* +** Free all memory associated with foreign key definitions attached to +** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash +** hash table. +*/ +void sqlite3FkDelete(Table *pTab){ + FKey *pFKey; /* Iterator variable */ + FKey *pNext; /* Copy of pFKey->pNextFrom */ + + for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ + + /* Remove the FK from the fkeyHash hash table. */ + if( pFKey->pPrevTo ){ + pFKey->pPrevTo->pNextTo = pFKey->pNextTo; + }else{ + void *data = (void *)pFKey->pNextTo; + const char *z = (data ? pFKey->pNextTo->zTo : pFKey->zTo); + sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), data); + } + if( pFKey->pNextTo ){ + pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; + } + + /* Delete any triggers created to implement actions for this FK. */ + fkTriggerDelete(pTab->dbMem, pFKey->pOnDelete); + fkTriggerDelete(pTab->dbMem, pFKey->pOnUpdate); + + /* Delete the memory allocated for the FK structure. */ + pNext = pFKey->pNextFrom; + sqlite3DbFree(pTab->dbMem, pFKey); + } +} + +#endif |