1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
|
/*-------------------------------------------------------------------------
*
* tuplestore.c
* Generalized routines for temporary tuple storage.
*
* This module handles temporary storage of tuples for purposes such
* as Materialize nodes, hashjoin batch files, etc. It is essentially
* a dumbed-down version of tuplesort.c; it does no sorting of tuples
* but can only store and regurgitate a sequence of tuples. However,
* because no sort is required, it is allowed to start reading the sequence
* before it has all been written. This is particularly useful for cursors,
* because it allows random access within the already-scanned portion of
* a query without having to process the underlying scan to completion.
* A temporary file is used to handle the data if it exceeds the
* space limit specified by the caller.
*
* The (approximate) amount of memory allowed to the tuplestore is specified
* in kilobytes by the caller. We absorb tuples and simply store them in an
* in-memory array as long as we haven't exceeded maxKBytes. If we do exceed
* maxKBytes, we dump all the tuples into a temp file and then read from that
* when needed.
*
* When the caller requests backward-scan capability, we write the temp file
* in a format that allows either forward or backward scan. Otherwise, only
* forward scan is allowed. Rewind and markpos/restorepos are normally allowed
* but can be turned off via tuplestore_set_eflags; turning off both backward
* scan and rewind enables truncation of the tuplestore at the mark point
* (if any) for minimal memory usage.
*
* Because we allow reading before writing is complete, there are two
* interesting positions in the temp file: the current read position and
* the current write position. At any given instant, the temp file's seek
* position corresponds to one of these, and the other one is remembered in
* the Tuplestore's state.
*
*
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/sort/tuplestore.c,v 1.39 2008/05/12 00:00:53 alvherre Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "commands/tablespace.h"
#include "executor/executor.h"
#include "storage/buffile.h"
#include "utils/memutils.h"
#include "utils/tuplestore.h"
/*
* Possible states of a Tuplestore object. These denote the states that
* persist between calls of Tuplestore routines.
*/
typedef enum
{
TSS_INMEM, /* Tuples still fit in memory */
TSS_WRITEFILE, /* Writing to temp file */
TSS_READFILE /* Reading from temp file */
} TupStoreStatus;
/*
* Private state of a Tuplestore operation.
*/
struct Tuplestorestate
{
TupStoreStatus status; /* enumerated value as shown above */
int eflags; /* capability flags */
bool interXact; /* keep open through transactions? */
long availMem; /* remaining memory available, in bytes */
BufFile *myfile; /* underlying file, or NULL if none */
/*
* These function pointers decouple the routines that must know what kind
* of tuple we are handling from the routines that don't need to know it.
* They are set up by the tuplestore_begin_xxx routines.
*
* (Although tuplestore.c currently only supports heap tuples, I've copied
* this part of tuplesort.c so that extension to other kinds of objects
* will be easy if it's ever needed.)
*
* Function to copy a supplied input tuple into palloc'd space. (NB: we
* assume that a single pfree() is enough to release the tuple later, so
* the representation must be "flat" in one palloc chunk.) state->availMem
* must be decreased by the amount of space used.
*/
void *(*copytup) (Tuplestorestate *state, void *tup);
/*
* Function to write a stored tuple onto tape. The representation of the
* tuple on tape need not be the same as it is in memory; requirements on
* the tape representation are given below. After writing the tuple,
* pfree() it, and increase state->availMem by the amount of memory space
* thereby released.
*/
void (*writetup) (Tuplestorestate *state, void *tup);
/*
* Function to read a stored tuple from tape back into memory. 'len' is
* the already-read length of the stored tuple. Create and return a
* palloc'd copy, and decrease state->availMem by the amount of memory
* space consumed.
*/
void *(*readtup) (Tuplestorestate *state, unsigned int len);
/*
* This array holds pointers to tuples in memory if we are in state INMEM.
* In states WRITEFILE and READFILE it's not used.
*/
void **memtuples; /* array of pointers to palloc'd tuples */
int memtupcount; /* number of tuples currently present */
int memtupsize; /* allocated length of memtuples array */
/*
* These variables are used to keep track of the current position.
*
* In state WRITEFILE, the current file seek position is the write point,
* and the read position is remembered in readpos_xxx; in state READFILE,
* the current file seek position is the read point, and the write
* position is remembered in writepos_xxx. (The write position is the
* same as EOF, but since BufFileSeek doesn't currently implement
* SEEK_END, we have to remember it explicitly.)
*
* Special case: if we are in WRITEFILE state and eof_reached is true,
* then the read position is implicitly equal to the write position (and
* hence to the file seek position); this way we need not update the
* readpos_xxx variables on each write.
*/
bool eof_reached; /* read reached EOF (always valid) */
int current; /* next array index (valid if INMEM) */
int readpos_file; /* file# (valid if WRITEFILE and not eof) */
off_t readpos_offset; /* offset (valid if WRITEFILE and not eof) */
int writepos_file; /* file# (valid if READFILE) */
off_t writepos_offset; /* offset (valid if READFILE) */
/* markpos_xxx holds marked position for mark and restore */
int markpos_current; /* saved "current" */
int markpos_file; /* saved "readpos_file" */
off_t markpos_offset; /* saved "readpos_offset" */
};
#define COPYTUP(state,tup) ((*(state)->copytup) (state, tup))
#define WRITETUP(state,tup) ((*(state)->writetup) (state, tup))
#define READTUP(state,len) ((*(state)->readtup) (state, len))
#define LACKMEM(state) ((state)->availMem < 0)
#define USEMEM(state,amt) ((state)->availMem -= (amt))
#define FREEMEM(state,amt) ((state)->availMem += (amt))
/*--------------------
*
* NOTES about on-tape representation of tuples:
*
* We require the first "unsigned int" of a stored tuple to be the total size
* on-tape of the tuple, including itself (so it is never zero).
* The remainder of the stored tuple
* may or may not match the in-memory representation of the tuple ---
* any conversion needed is the job of the writetup and readtup routines.
*
* If state->eflags & EXEC_FLAG_BACKWARD, then the stored representation of
* the tuple must be followed by another "unsigned int" that is a copy of the
* length --- so the total tape space used is actually sizeof(unsigned int)
* more than the stored length value. This allows read-backwards. When
* EXEC_FLAG_BACKWARD is not set, the write/read routines may omit the extra
* length word.
*
* writetup is expected to write both length words as well as the tuple
* data. When readtup is called, the tape is positioned just after the
* front length word; readtup must read the tuple data and advance past
* the back length word (if present).
*
* The write/read routines can make use of the tuple description data
* stored in the Tuplestorestate record, if needed. They are also expected
* to adjust state->availMem by the amount of memory space (not tape space!)
* released or consumed. There is no error return from either writetup
* or readtup; they should ereport() on failure.
*
*
* NOTES about memory consumption calculations:
*
* We count space allocated for tuples against the maxKBytes limit,
* plus the space used by the variable-size array memtuples.
* Fixed-size space (primarily the BufFile I/O buffer) is not counted.
*
* Note that we count actual space used (as shown by GetMemoryChunkSpace)
* rather than the originally-requested size. This is important since
* palloc can add substantial overhead. It's not a complete answer since
* we won't count any wasted space in palloc allocation blocks, but it's
* a lot better than what we were doing before 7.3.
*
*--------------------
*/
static Tuplestorestate *tuplestore_begin_common(int eflags,
bool interXact,
int maxKBytes);
static void tuplestore_puttuple_common(Tuplestorestate *state, void *tuple);
static void dumptuples(Tuplestorestate *state);
static void tuplestore_trim(Tuplestorestate *state, int ntuples);
static unsigned int getlen(Tuplestorestate *state, bool eofOK);
static void *copytup_heap(Tuplestorestate *state, void *tup);
static void writetup_heap(Tuplestorestate *state, void *tup);
static void *readtup_heap(Tuplestorestate *state, unsigned int len);
/*
* tuplestore_begin_xxx
*
* Initialize for a tuple store operation.
*/
static Tuplestorestate *
tuplestore_begin_common(int eflags, bool interXact, int maxKBytes)
{
Tuplestorestate *state;
state = (Tuplestorestate *) palloc0(sizeof(Tuplestorestate));
state->status = TSS_INMEM;
state->eflags = eflags;
state->interXact = interXact;
state->availMem = maxKBytes * 1024L;
state->myfile = NULL;
state->memtupcount = 0;
state->memtupsize = 1024; /* initial guess */
state->memtuples = (void **) palloc(state->memtupsize * sizeof(void *));
USEMEM(state, GetMemoryChunkSpace(state->memtuples));
state->eof_reached = false;
state->current = 0;
return state;
}
/*
* tuplestore_begin_heap
*
* Create a new tuplestore; other types of tuple stores (other than
* "heap" tuple stores, for heap tuples) are possible, but not presently
* implemented.
*
* randomAccess: if true, both forward and backward accesses to the
* tuple store are allowed.
*
* interXact: if true, the files used for on-disk storage persist beyond the
* end of the current transaction. NOTE: It's the caller's responsibility to
* create such a tuplestore in a memory context that will also survive
* transaction boundaries, and to ensure the tuplestore is closed when it's
* no longer wanted.
*
* maxKBytes: how much data to store in memory (any data beyond this
* amount is paged to disk). When in doubt, use work_mem.
*/
Tuplestorestate *
tuplestore_begin_heap(bool randomAccess, bool interXact, int maxKBytes)
{
Tuplestorestate *state;
int eflags;
/*
* This interpretation of the meaning of randomAccess is compatible with
* the pre-8.3 behavior of tuplestores.
*/
eflags = randomAccess ?
(EXEC_FLAG_BACKWARD | EXEC_FLAG_REWIND | EXEC_FLAG_MARK) :
(EXEC_FLAG_REWIND | EXEC_FLAG_MARK);
state = tuplestore_begin_common(eflags, interXact, maxKBytes);
state->copytup = copytup_heap;
state->writetup = writetup_heap;
state->readtup = readtup_heap;
return state;
}
/*
* tuplestore_set_eflags
*
* Set capability flags at a finer grain than is allowed by
* tuplestore_begin_xxx. This must be called before inserting any data
* into the tuplestore.
*
* eflags is a bitmask following the meanings used for executor node
* startup flags (see executor.h). tuplestore pays attention to these bits:
* EXEC_FLAG_REWIND need rewind to start
* EXEC_FLAG_BACKWARD need backward fetch
* EXEC_FLAG_MARK need mark/restore
* If tuplestore_set_eflags is not called, REWIND and MARK are allowed,
* and BACKWARD is set per "randomAccess" in the tuplestore_begin_xxx call.
*/
void
tuplestore_set_eflags(Tuplestorestate *state, int eflags)
{
Assert(state->status == TSS_INMEM);
Assert(state->memtupcount == 0);
state->eflags = eflags;
}
/*
* tuplestore_end
*
* Release resources and clean up.
*/
void
tuplestore_end(Tuplestorestate *state)
{
int i;
if (state->myfile)
BufFileClose(state->myfile);
if (state->memtuples)
{
for (i = 0; i < state->memtupcount; i++)
pfree(state->memtuples[i]);
pfree(state->memtuples);
}
pfree(state);
}
/*
* tuplestore_ateof
*
* Returns the current eof_reached state.
*/
bool
tuplestore_ateof(Tuplestorestate *state)
{
return state->eof_reached;
}
/*
* Accept one tuple and append it to the tuplestore.
*
* Note that the input tuple is always copied; the caller need not save it.
*
* If the read status is currently "AT EOF" then it remains so (the read
* pointer advances along with the write pointer); otherwise the read
* pointer is unchanged. This is for the convenience of nodeMaterial.c.
*
* tuplestore_puttupleslot() is a convenience routine to collect data from
* a TupleTableSlot without an extra copy operation.
*/
void
tuplestore_puttupleslot(Tuplestorestate *state,
TupleTableSlot *slot)
{
MinimalTuple tuple;
/*
* Form a MinimalTuple in working memory
*/
tuple = ExecCopySlotMinimalTuple(slot);
USEMEM(state, GetMemoryChunkSpace(tuple));
tuplestore_puttuple_common(state, (void *) tuple);
}
/*
* "Standard" case to copy from a HeapTuple. This is actually now somewhat
* deprecated, but not worth getting rid of in view of the number of callers.
*/
void
tuplestore_puttuple(Tuplestorestate *state, HeapTuple tuple)
{
/*
* Copy the tuple. (Must do this even in WRITEFILE case.)
*/
tuple = COPYTUP(state, tuple);
tuplestore_puttuple_common(state, (void *) tuple);
}
/*
* Similar to tuplestore_puttuple(), but start from the values + nulls
* array. This avoids requiring that the caller construct a HeapTuple,
* saving a copy.
*/
void
tuplestore_putvalues(Tuplestorestate *state, TupleDesc tdesc,
Datum *values, bool *isnull)
{
MinimalTuple tuple;
tuple = heap_form_minimal_tuple(tdesc, values, isnull);
tuplestore_puttuple_common(state, (void *) tuple);
}
static void
tuplestore_puttuple_common(Tuplestorestate *state, void *tuple)
{
switch (state->status)
{
case TSS_INMEM:
/*
* Grow the array as needed. Note that we try to grow the array
* when there is still one free slot remaining --- if we fail,
* there'll still be room to store the incoming tuple, and then
* we'll switch to tape-based operation.
*/
if (state->memtupcount >= state->memtupsize - 1)
{
/*
* See grow_memtuples() in tuplesort.c for the rationale
* behind these two tests.
*/
if (state->availMem > (long) (state->memtupsize * sizeof(void *)) &&
(Size) (state->memtupsize * 2) < MaxAllocSize / sizeof(void *))
{
FREEMEM(state, GetMemoryChunkSpace(state->memtuples));
state->memtupsize *= 2;
state->memtuples = (void **)
repalloc(state->memtuples,
state->memtupsize * sizeof(void *));
USEMEM(state, GetMemoryChunkSpace(state->memtuples));
}
}
/* Stash the tuple in the in-memory array */
state->memtuples[state->memtupcount++] = tuple;
/* If eof_reached, keep read position in sync */
if (state->eof_reached)
state->current = state->memtupcount;
/*
* Done if we still fit in available memory and have array slots.
*/
if (state->memtupcount < state->memtupsize && !LACKMEM(state))
return;
/*
* Nope; time to switch to tape-based operation. Make sure that
* the temp file(s) are created in suitable temp tablespaces.
*/
PrepareTempTablespaces();
state->myfile = BufFileCreateTemp(state->interXact);
state->status = TSS_WRITEFILE;
dumptuples(state);
break;
case TSS_WRITEFILE:
WRITETUP(state, tuple);
break;
case TSS_READFILE:
/*
* Switch from reading to writing.
*/
if (!state->eof_reached)
BufFileTell(state->myfile,
&state->readpos_file, &state->readpos_offset);
if (BufFileSeek(state->myfile,
state->writepos_file, state->writepos_offset,
SEEK_SET) != 0)
elog(ERROR, "seek to EOF failed");
state->status = TSS_WRITEFILE;
WRITETUP(state, tuple);
break;
default:
elog(ERROR, "invalid tuplestore state");
break;
}
}
/*
* Fetch the next tuple in either forward or back direction.
* Returns NULL if no more tuples. If should_free is set, the
* caller must pfree the returned tuple when done with it.
*
* Backward scan is only allowed if randomAccess was set true or
* EXEC_FLAG_BACKWARD was specified to tuplestore_set_eflags().
*/
static void *
tuplestore_gettuple(Tuplestorestate *state, bool forward,
bool *should_free)
{
unsigned int tuplen;
void *tup;
Assert(forward || (state->eflags & EXEC_FLAG_BACKWARD));
switch (state->status)
{
case TSS_INMEM:
*should_free = false;
if (forward)
{
if (state->current < state->memtupcount)
return state->memtuples[state->current++];
state->eof_reached = true;
return NULL;
}
else
{
if (state->current <= 0)
return NULL;
/*
* if all tuples are fetched already then we return last
* tuple, else - tuple before last returned.
*/
if (state->eof_reached)
state->eof_reached = false;
else
{
state->current--; /* last returned tuple */
if (state->current <= 0)
return NULL;
}
return state->memtuples[state->current - 1];
}
break;
case TSS_WRITEFILE:
/* Skip state change if we'll just return NULL */
if (state->eof_reached && forward)
return NULL;
/*
* Switch from writing to reading.
*/
BufFileTell(state->myfile,
&state->writepos_file, &state->writepos_offset);
if (!state->eof_reached)
if (BufFileSeek(state->myfile,
state->readpos_file, state->readpos_offset,
SEEK_SET) != 0)
elog(ERROR, "seek failed");
state->status = TSS_READFILE;
/* FALL THRU into READFILE case */
case TSS_READFILE:
*should_free = true;
if (forward)
{
if ((tuplen = getlen(state, true)) != 0)
{
tup = READTUP(state, tuplen);
return tup;
}
else
{
state->eof_reached = true;
return NULL;
}
}
/*
* Backward.
*
* if all tuples are fetched already then we return last tuple,
* else - tuple before last returned.
*
* Back up to fetch previously-returned tuple's ending length
* word. If seek fails, assume we are at start of file.
*/
if (BufFileSeek(state->myfile, 0, -(long) sizeof(unsigned int),
SEEK_CUR) != 0)
return NULL;
tuplen = getlen(state, false);
if (state->eof_reached)
{
state->eof_reached = false;
/* We will return the tuple returned before returning NULL */
}
else
{
/*
* Back up to get ending length word of tuple before it.
*/
if (BufFileSeek(state->myfile, 0,
-(long) (tuplen + 2 * sizeof(unsigned int)),
SEEK_CUR) != 0)
{
/*
* If that fails, presumably the prev tuple is the first
* in the file. Back up so that it becomes next to read
* in forward direction (not obviously right, but that is
* what in-memory case does).
*/
if (BufFileSeek(state->myfile, 0,
-(long) (tuplen + sizeof(unsigned int)),
SEEK_CUR) != 0)
elog(ERROR, "bogus tuple length in backward scan");
return NULL;
}
tuplen = getlen(state, false);
}
/*
* Now we have the length of the prior tuple, back up and read it.
* Note: READTUP expects we are positioned after the initial
* length word of the tuple, so back up to that point.
*/
if (BufFileSeek(state->myfile, 0,
-(long) tuplen,
SEEK_CUR) != 0)
elog(ERROR, "bogus tuple length in backward scan");
tup = READTUP(state, tuplen);
return tup;
default:
elog(ERROR, "invalid tuplestore state");
return NULL; /* keep compiler quiet */
}
}
/*
* tuplestore_gettupleslot - exported function to fetch a MinimalTuple
*
* If successful, put tuple in slot and return TRUE; else, clear the slot
* and return FALSE.
*/
bool
tuplestore_gettupleslot(Tuplestorestate *state, bool forward,
TupleTableSlot *slot)
{
MinimalTuple tuple;
bool should_free;
tuple = (MinimalTuple) tuplestore_gettuple(state, forward, &should_free);
if (tuple)
{
ExecStoreMinimalTuple(tuple, slot, should_free);
return true;
}
else
{
ExecClearTuple(slot);
return false;
}
}
/*
* tuplestore_advance - exported function to adjust position without fetching
*
* We could optimize this case to avoid palloc/pfree overhead, but for the
* moment it doesn't seem worthwhile.
*/
bool
tuplestore_advance(Tuplestorestate *state, bool forward)
{
void *tuple;
bool should_free;
tuple = tuplestore_gettuple(state, forward, &should_free);
if (tuple)
{
if (should_free)
pfree(tuple);
return true;
}
else
{
return false;
}
}
/*
* dumptuples - remove tuples from memory and write to tape
*
* As a side effect, we must set readpos and markpos to the value
* corresponding to "current"; otherwise, a dump would lose the current read
* position.
*/
static void
dumptuples(Tuplestorestate *state)
{
int i;
for (i = 0;; i++)
{
if (i == state->current)
BufFileTell(state->myfile,
&state->readpos_file, &state->readpos_offset);
if (i == state->markpos_current)
BufFileTell(state->myfile,
&state->markpos_file, &state->markpos_offset);
if (i >= state->memtupcount)
break;
WRITETUP(state, state->memtuples[i]);
}
state->memtupcount = 0;
}
/*
* tuplestore_rescan - rewind and replay the scan
*/
void
tuplestore_rescan(Tuplestorestate *state)
{
Assert(state->eflags & EXEC_FLAG_REWIND);
switch (state->status)
{
case TSS_INMEM:
state->eof_reached = false;
state->current = 0;
break;
case TSS_WRITEFILE:
state->eof_reached = false;
state->readpos_file = 0;
state->readpos_offset = 0L;
break;
case TSS_READFILE:
state->eof_reached = false;
if (BufFileSeek(state->myfile, 0, 0L, SEEK_SET) != 0)
elog(ERROR, "seek to start failed");
break;
default:
elog(ERROR, "invalid tuplestore state");
break;
}
}
/*
* tuplestore_markpos - saves current position in the tuple sequence
*/
void
tuplestore_markpos(Tuplestorestate *state)
{
Assert(state->eflags & EXEC_FLAG_MARK);
switch (state->status)
{
case TSS_INMEM:
state->markpos_current = state->current;
/*
* We can truncate the tuplestore if neither backward scan nor
* rewind capability are required by the caller. There will never
* be a need to back up past the mark point.
*
* Note: you might think we could remove all the tuples before
* "current", since that one is the next to be returned. However,
* since tuplestore_gettuple returns a direct pointer to our
* internal copy of the tuple, it's likely that the caller has
* still got the tuple just before "current" referenced in a slot.
* Don't free it yet.
*/
if (!(state->eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_REWIND)))
tuplestore_trim(state, 1);
break;
case TSS_WRITEFILE:
if (state->eof_reached)
{
/* Need to record the implicit read position */
BufFileTell(state->myfile,
&state->markpos_file,
&state->markpos_offset);
}
else
{
state->markpos_file = state->readpos_file;
state->markpos_offset = state->readpos_offset;
}
break;
case TSS_READFILE:
BufFileTell(state->myfile,
&state->markpos_file,
&state->markpos_offset);
break;
default:
elog(ERROR, "invalid tuplestore state");
break;
}
}
/*
* tuplestore_restorepos - restores current position in tuple sequence to
* last saved position
*/
void
tuplestore_restorepos(Tuplestorestate *state)
{
Assert(state->eflags & EXEC_FLAG_MARK);
switch (state->status)
{
case TSS_INMEM:
state->eof_reached = false;
state->current = state->markpos_current;
break;
case TSS_WRITEFILE:
state->eof_reached = false;
state->readpos_file = state->markpos_file;
state->readpos_offset = state->markpos_offset;
break;
case TSS_READFILE:
state->eof_reached = false;
if (BufFileSeek(state->myfile,
state->markpos_file,
state->markpos_offset,
SEEK_SET) != 0)
elog(ERROR, "tuplestore_restorepos failed");
break;
default:
elog(ERROR, "invalid tuplestore state");
break;
}
}
/*
* tuplestore_trim - remove all but ntuples tuples before current
*/
static void
tuplestore_trim(Tuplestorestate *state, int ntuples)
{
int nremove;
int i;
/*
* We don't bother trimming temp files since it usually would mean more
* work than just letting them sit in kernel buffers until they age out.
*/
if (state->status != TSS_INMEM)
return;
nremove = state->current - ntuples;
if (nremove <= 0)
return; /* nothing to do */
Assert(nremove <= state->memtupcount);
/* Release no-longer-needed tuples */
for (i = 0; i < nremove; i++)
{
FREEMEM(state, GetMemoryChunkSpace(state->memtuples[i]));
pfree(state->memtuples[i]);
}
/*
* Slide the array down and readjust pointers. This may look pretty
* stupid, but we expect that there will usually not be very many
* tuple-pointers to move, so this isn't that expensive; and it keeps a
* lot of other logic simple.
*
* In fact, in the current usage for merge joins, it's demonstrable that
* there will always be exactly one non-removed tuple; so optimize that
* case.
*/
if (nremove + 1 == state->memtupcount)
state->memtuples[0] = state->memtuples[nremove];
else
memmove(state->memtuples, state->memtuples + nremove,
(state->memtupcount - nremove) * sizeof(void *));
state->memtupcount -= nremove;
state->current -= nremove;
state->markpos_current -= nremove;
}
/*
* Tape interface routines
*/
static unsigned int
getlen(Tuplestorestate *state, bool eofOK)
{
unsigned int len;
size_t nbytes;
nbytes = BufFileRead(state->myfile, (void *) &len, sizeof(len));
if (nbytes == sizeof(len))
return len;
if (nbytes != 0)
elog(ERROR, "unexpected end of tape");
if (!eofOK)
elog(ERROR, "unexpected end of data");
return 0;
}
/*
* Routines specialized for HeapTuple case
*
* The stored form is actually a MinimalTuple, but for largely historical
* reasons we allow COPYTUP to work from a HeapTuple.
*
* Since MinimalTuple already has length in its first word, we don't need
* to write that separately.
*/
static void *
copytup_heap(Tuplestorestate *state, void *tup)
{
MinimalTuple tuple;
tuple = minimal_tuple_from_heap_tuple((HeapTuple) tup);
USEMEM(state, GetMemoryChunkSpace(tuple));
return (void *) tuple;
}
static void
writetup_heap(Tuplestorestate *state, void *tup)
{
MinimalTuple tuple = (MinimalTuple) tup;
unsigned int tuplen = tuple->t_len;
if (BufFileWrite(state->myfile, (void *) tuple, tuplen) != (size_t) tuplen)
elog(ERROR, "write failed");
if (state->eflags & EXEC_FLAG_BACKWARD) /* need trailing length word? */
if (BufFileWrite(state->myfile, (void *) &tuplen,
sizeof(tuplen)) != sizeof(tuplen))
elog(ERROR, "write failed");
FREEMEM(state, GetMemoryChunkSpace(tuple));
heap_free_minimal_tuple(tuple);
}
static void *
readtup_heap(Tuplestorestate *state, unsigned int len)
{
MinimalTuple tuple = (MinimalTuple) palloc(len);
unsigned int tuplen;
USEMEM(state, GetMemoryChunkSpace(tuple));
/* read in the tuple proper */
tuple->t_len = len;
if (BufFileRead(state->myfile, (void *) ((char *) tuple + sizeof(int)),
len - sizeof(int)) != (size_t) (len - sizeof(int)))
elog(ERROR, "unexpected end of data");
if (state->eflags & EXEC_FLAG_BACKWARD) /* need trailing length word? */
if (BufFileRead(state->myfile, (void *) &tuplen,
sizeof(tuplen)) != sizeof(tuplen))
elog(ERROR, "unexpected end of data");
return (void *) tuple;
}
|