1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
|
/*-------------------------------------------------------------------------
*
* deadlock.c
* POSTGRES deadlock detection code
*
* See src/backend/storage/lmgr/README for a description of the deadlock
* detection and resolution algorithms.
*
*
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/storage/lmgr/deadlock.c,v 1.3 2001/03/22 03:59:46 momjian Exp $
*
* Interface:
*
* DeadLockCheck()
* InitDeadLockChecking()
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "miscadmin.h"
#include "storage/proc.h"
#include "utils/memutils.h"
/* One edge in the waits-for graph */
typedef struct
{
PROC *waiter; /* the waiting process */
PROC *blocker; /* the process it is waiting for */
int pred; /* workspace for TopoSort */
int link; /* workspace for TopoSort */
} EDGE;
/* One potential reordering of a lock's wait queue */
typedef struct
{
LOCK *lock; /* the lock whose wait queue is described */
PROC **procs; /* array of PROC *'s in new wait order */
int nProcs;
} WAIT_ORDER;
static bool DeadLockCheckRecurse(PROC *proc);
static bool TestConfiguration(PROC *startProc);
static bool FindLockCycle(PROC *checkProc,
EDGE *softEdges, int *nSoftEdges);
static bool FindLockCycleRecurse(PROC *checkProc,
EDGE *softEdges, int *nSoftEdges);
static bool ExpandConstraints(EDGE *constraints, int nConstraints);
static bool TopoSort(LOCK *lock, EDGE *constraints, int nConstraints,
PROC **ordering);
#ifdef DEBUG_DEADLOCK
static void PrintLockQueue(LOCK *lock, const char *info);
#endif
/*
* Working space for the deadlock detector
*/
/* Workspace for FindLockCycle */
static PROC **visitedProcs; /* Array of visited procs */
static int nVisitedProcs;
/* Workspace for TopoSort */
static PROC **topoProcs; /* Array of not-yet-output procs */
static int *beforeConstraints; /* Counts of remaining before-constraints */
static int *afterConstraints; /* List head for after-constraints */
/* Output area for ExpandConstraints */
static WAIT_ORDER *waitOrders; /* Array of proposed queue rearrangements */
static int nWaitOrders;
static PROC **waitOrderProcs; /* Space for waitOrders queue contents */
/* Current list of constraints being considered */
static EDGE *curConstraints;
static int nCurConstraints;
static int maxCurConstraints;
/* Storage space for results from FindLockCycle */
static EDGE *possibleConstraints;
static int nPossibleConstraints;
static int maxPossibleConstraints;
/*
* InitDeadLockChecking -- initialize deadlock checker during backend startup
*
* This does per-backend initialization of the deadlock checker; primarily,
* allocation of working memory for DeadLockCheck. We do this per-backend
* since there's no percentage in making the kernel do copy-on-write
* inheritance of workspace from the postmaster. We want to allocate the
* space at startup because the deadlock checker might be invoked when there's
* no free memory left.
*/
void
InitDeadLockChecking(void)
{
MemoryContext oldcxt;
/* Make sure allocations are permanent */
oldcxt = MemoryContextSwitchTo(TopMemoryContext);
/*
* FindLockCycle needs at most MaxBackends entries in visitedProcs[]
*/
visitedProcs = (PROC **) palloc(MaxBackends * sizeof(PROC *));
/*
* TopoSort needs to consider at most MaxBackends wait-queue entries,
* and it needn't run concurrently with FindLockCycle.
*/
topoProcs = visitedProcs; /* re-use this space */
beforeConstraints = (int *) palloc(MaxBackends * sizeof(int));
afterConstraints = (int *) palloc(MaxBackends * sizeof(int));
/*
* We need to consider rearranging at most MaxBackends/2 wait queues
* (since it takes at least two waiters in a queue to create a soft
* edge), and the expanded form of the wait queues can't involve more
* than MaxBackends total waiters.
*/
waitOrders = (WAIT_ORDER *) palloc((MaxBackends / 2) * sizeof(WAIT_ORDER));
waitOrderProcs = (PROC **) palloc(MaxBackends * sizeof(PROC *));
/*
* Allow at most MaxBackends distinct constraints in a configuration.
* (Is this enough? In practice it seems it should be, but I don't
* quite see how to prove it. If we run out, we might fail to find a
* workable wait queue rearrangement even though one exists.) NOTE
* that this number limits the maximum recursion depth of
* DeadLockCheckRecurse. Making it really big might potentially allow
* a stack-overflow problem.
*/
maxCurConstraints = MaxBackends;
curConstraints = (EDGE *) palloc(maxCurConstraints * sizeof(EDGE));
/*
* Allow up to 3*MaxBackends constraints to be saved without having to
* re-run TestConfiguration. (This is probably more than enough, but
* we can survive if we run low on space by doing excess runs of
* TestConfiguration to re-compute constraint lists each time needed.)
* The last MaxBackends entries in possibleConstraints[] are reserved
* as output workspace for FindLockCycle.
*/
maxPossibleConstraints = MaxBackends * 4;
possibleConstraints =
(EDGE *) palloc(maxPossibleConstraints * sizeof(EDGE));
MemoryContextSwitchTo(oldcxt);
}
/*
* DeadLockCheck -- Checks for deadlocks for a given process
*
* This code looks for deadlocks involving the given process. If any
* are found, it tries to rearrange lock wait queues to resolve the
* deadlock. If resolution is impossible, return TRUE --- the caller
* is then expected to abort the given proc's transaction.
*
* We can't block on user locks, so no sense testing for deadlock
* because there is no blocking, and no timer for the block. So,
* only look at regular locks.
*
* We must have already locked the master lock before being called.
* NOTE: although the lockctl structure appears to allow each lock
* table to have a different spinlock, all locks that can block had
* better use the same spinlock, else this code will not be adequately
* interlocked!
*/
bool
DeadLockCheck(PROC *proc)
{
int i,
j;
/* Initialize to "no constraints" */
nCurConstraints = 0;
nPossibleConstraints = 0;
nWaitOrders = 0;
/* Search for deadlocks and possible fixes */
if (DeadLockCheckRecurse(proc))
return true; /* cannot find a non-deadlocked state */
/* Apply any needed rearrangements of wait queues */
for (i = 0; i < nWaitOrders; i++)
{
LOCK *lock = waitOrders[i].lock;
PROC **procs = waitOrders[i].procs;
int nProcs = waitOrders[i].nProcs;
PROC_QUEUE *waitQueue = &(lock->waitProcs);
Assert(nProcs == waitQueue->size);
#ifdef DEBUG_DEADLOCK
PrintLockQueue(lock, "DeadLockCheck:");
#endif
/* Reset the queue and re-add procs in the desired order */
ProcQueueInit(waitQueue);
for (j = 0; j < nProcs; j++)
{
SHMQueueInsertBefore(&(waitQueue->links), &(procs[j]->links));
waitQueue->size++;
}
#ifdef DEBUG_DEADLOCK
PrintLockQueue(lock, "rearranged to:");
#endif
/* See if any waiters for the lock can be woken up now */
ProcLockWakeup(GetLocksMethodTable(lock), lock);
}
return false;
}
/*
* DeadLockCheckRecurse -- recursively search for valid orderings
*
* curConstraints[] holds the current set of constraints being considered
* by an outer level of recursion. Add to this each possible solution
* constraint for any cycle detected at this level.
*
* Returns TRUE if no solution exists. Returns FALSE if a deadlock-free
* state is attainable, in which case waitOrders[] shows the required
* rearrangements of lock wait queues (if any).
*/
static bool
DeadLockCheckRecurse(PROC *proc)
{
int nEdges;
int oldPossibleConstraints;
bool savedList;
int i;
nEdges = TestConfiguration(proc);
if (nEdges < 0)
return true; /* hard deadlock --- no solution */
if (nEdges == 0)
return false; /* good configuration found */
if (nCurConstraints >= maxCurConstraints)
return true; /* out of room for active constraints? */
oldPossibleConstraints = nPossibleConstraints;
if (nPossibleConstraints + nEdges + MaxBackends <= maxPossibleConstraints)
{
/* We can save the edge list in possibleConstraints[] */
nPossibleConstraints += nEdges;
savedList = true;
}
else
{
/* Not room; will need to regenerate the edges on-the-fly */
savedList = false;
}
/*
* Try each available soft edge as an addition to the configuration.
*/
for (i = 0; i < nEdges; i++)
{
if (!savedList && i > 0)
{
/* Regenerate the list of possible added constraints */
if (nEdges != TestConfiguration(proc))
elog(FATAL, "DeadLockCheckRecurse: inconsistent results");
}
curConstraints[nCurConstraints] =
possibleConstraints[oldPossibleConstraints + i];
nCurConstraints++;
if (!DeadLockCheckRecurse(proc))
return false; /* found a valid solution! */
/* give up on that added constraint, try again */
nCurConstraints--;
}
nPossibleConstraints = oldPossibleConstraints;
return true; /* no solution found */
}
/*--------------------
* Test a configuration (current set of constraints) for validity.
*
* Returns:
* 0: the configuration is good (no deadlocks)
* -1: the configuration has a hard deadlock or is not self-consistent
* >0: the configuration has one or more soft deadlocks
*
* In the soft-deadlock case, one of the soft cycles is chosen arbitrarily
* and a list of its soft edges is returned beginning at
* possibleConstraints+nPossibleConstraints. The return value is the
* number of soft edges.
*--------------------
*/
static bool
TestConfiguration(PROC *startProc)
{
int softFound = 0;
EDGE *softEdges = possibleConstraints + nPossibleConstraints;
int nSoftEdges;
int i;
/*
* Make sure we have room for FindLockCycle's output.
*/
if (nPossibleConstraints + MaxBackends > maxPossibleConstraints)
return -1;
/*
* Expand current constraint set into wait orderings. Fail if the
* constraint set is not self-consistent.
*/
if (!ExpandConstraints(curConstraints, nCurConstraints))
return -1;
/*
* Check for cycles involving startProc or any of the procs mentioned
* in constraints. We check startProc last because if it has a soft
* cycle still to be dealt with, we want to deal with that first.
*/
for (i = 0; i < nCurConstraints; i++)
{
if (FindLockCycle(curConstraints[i].waiter, softEdges, &nSoftEdges))
{
if (nSoftEdges == 0)
return -1; /* hard deadlock detected */
softFound = nSoftEdges;
}
if (FindLockCycle(curConstraints[i].blocker, softEdges, &nSoftEdges))
{
if (nSoftEdges == 0)
return -1; /* hard deadlock detected */
softFound = nSoftEdges;
}
}
if (FindLockCycle(startProc, softEdges, &nSoftEdges))
{
if (nSoftEdges == 0)
return -1; /* hard deadlock detected */
softFound = nSoftEdges;
}
return softFound;
}
/*
* FindLockCycle -- basic check for deadlock cycles
*
* Scan outward from the given proc to see if there is a cycle in the
* waits-for graph that includes this proc. Return TRUE if a cycle
* is found, else FALSE. If a cycle is found, we also return a list of
* the "soft edges", if any, included in the cycle. These edges could
* potentially be eliminated by rearranging wait queues.
*
* Since we need to be able to check hypothetical configurations that would
* exist after wait queue rearrangement, the routine pays attention to the
* table of hypothetical queue orders in waitOrders[]. These orders will
* be believed in preference to the actual ordering seen in the locktable.
*/
static bool
FindLockCycle(PROC *checkProc,
EDGE *softEdges, /* output argument */
int *nSoftEdges) /* output argument */
{
nVisitedProcs = 0;
*nSoftEdges = 0;
return FindLockCycleRecurse(checkProc, softEdges, nSoftEdges);
}
static bool
FindLockCycleRecurse(PROC *checkProc,
EDGE *softEdges, /* output argument */
int *nSoftEdges) /* output argument */
{
PROC *proc;
LOCK *lock;
HOLDER *holder;
SHM_QUEUE *lockHolders;
LOCKMETHODTABLE *lockMethodTable;
LOCKMETHODCTL *lockctl;
PROC_QUEUE *waitQueue;
int queue_size;
int conflictMask;
int i;
int numLockModes,
lm;
/*
* Have we already seen this proc?
*/
for (i = 0; i < nVisitedProcs; i++)
{
if (visitedProcs[i] == checkProc)
{
/* If we return to starting point, we have a deadlock cycle */
if (i == 0)
return true;
/*
* Otherwise, we have a cycle but it does not include the
* start point, so say "no deadlock".
*/
return false;
}
}
/* Mark proc as seen */
Assert(nVisitedProcs < MaxBackends);
visitedProcs[nVisitedProcs++] = checkProc;
/*
* If the proc is not waiting, we have no outgoing waits-for edges.
*/
if (checkProc->links.next == INVALID_OFFSET)
return false;
lock = checkProc->waitLock;
if (lock == NULL)
return false;
lockMethodTable = GetLocksMethodTable(lock);
lockctl = lockMethodTable->ctl;
numLockModes = lockctl->numLockModes;
conflictMask = lockctl->conflictTab[checkProc->waitLockMode];
/*
* Scan for procs that already hold conflicting locks. These are
* "hard" edges in the waits-for graph.
*/
lockHolders = &(lock->lockHolders);
holder = (HOLDER *) SHMQueueNext(lockHolders, lockHolders,
offsetof(HOLDER, lockLink));
while (holder)
{
proc = (PROC *) MAKE_PTR(holder->tag.proc);
/* A proc never blocks itself */
if (proc != checkProc)
{
for (lm = 1; lm <= numLockModes; lm++)
{
if (holder->holding[lm] > 0 &&
((1 << lm) & conflictMask) != 0)
{
/* This proc hard-blocks checkProc */
if (FindLockCycleRecurse(proc, softEdges, nSoftEdges))
return true;
/* If no deadlock, we're done looking at this holder */
break;
}
}
}
holder = (HOLDER *) SHMQueueNext(lockHolders, &holder->lockLink,
offsetof(HOLDER, lockLink));
}
/*
* Scan for procs that are ahead of this one in the lock's wait queue.
* Those that have conflicting requests soft-block this one. This
* must be done after the hard-block search, since if another proc
* both hard- and soft-blocks this one, we want to call it a hard
* edge.
*
* If there is a proposed re-ordering of the lock's wait order, use that
* rather than the current wait order.
*/
for (i = 0; i < nWaitOrders; i++)
{
if (waitOrders[i].lock == lock)
break;
}
if (i < nWaitOrders)
{
/* Use the given hypothetical wait queue order */
PROC **procs = waitOrders[i].procs;
queue_size = waitOrders[i].nProcs;
for (i = 0; i < queue_size; i++)
{
proc = procs[i];
/* Done when we reach the target proc */
if (proc == checkProc)
break;
/* Is there a conflict with this guy's request? */
if (((1 << proc->waitLockMode) & conflictMask) != 0)
{
/* This proc soft-blocks checkProc */
if (FindLockCycleRecurse(proc, softEdges, nSoftEdges))
{
/*
* Add this edge to the list of soft edges in the
* cycle
*/
Assert(*nSoftEdges < MaxBackends);
softEdges[*nSoftEdges].waiter = checkProc;
softEdges[*nSoftEdges].blocker = proc;
(*nSoftEdges)++;
return true;
}
}
}
}
else
{
/* Use the true lock wait queue order */
waitQueue = &(lock->waitProcs);
queue_size = waitQueue->size;
proc = (PROC *) MAKE_PTR(waitQueue->links.next);
while (queue_size-- > 0)
{
/* Done when we reach the target proc */
if (proc == checkProc)
break;
/* Is there a conflict with this guy's request? */
if (((1 << proc->waitLockMode) & conflictMask) != 0)
{
/* This proc soft-blocks checkProc */
if (FindLockCycleRecurse(proc, softEdges, nSoftEdges))
{
/*
* Add this edge to the list of soft edges in the
* cycle
*/
Assert(*nSoftEdges < MaxBackends);
softEdges[*nSoftEdges].waiter = checkProc;
softEdges[*nSoftEdges].blocker = proc;
(*nSoftEdges)++;
return true;
}
}
proc = (PROC *) MAKE_PTR(proc->links.next);
}
}
/*
* No conflict detected here.
*/
return false;
}
/*
* ExpandConstraints -- expand a list of constraints into a set of
* specific new orderings for affected wait queues
*
* Input is a list of soft edges to be reversed. The output is a list
* of nWaitOrders WAIT_ORDER structs in waitOrders[], with PROC array
* workspace in waitOrderProcs[].
*
* Returns TRUE if able to build an ordering that satisfies all the
* constraints, FALSE if not (there are contradictory constraints).
*/
static bool
ExpandConstraints(EDGE *constraints,
int nConstraints)
{
int nWaitOrderProcs = 0;
int i,
j;
nWaitOrders = 0;
/*
* Scan constraint list backwards. This is because the last-added
* constraint is the only one that could fail, and so we want to test
* it for inconsistency first.
*/
for (i = nConstraints; --i >= 0;)
{
PROC *proc = constraints[i].waiter;
LOCK *lock = proc->waitLock;
/* Did we already make a list for this lock? */
for (j = nWaitOrders; --j >= 0;)
{
if (waitOrders[j].lock == lock)
break;
}
if (j >= 0)
continue;
/* No, so allocate a new list */
waitOrders[nWaitOrders].lock = lock;
waitOrders[nWaitOrders].procs = waitOrderProcs + nWaitOrderProcs;
waitOrders[nWaitOrders].nProcs = lock->waitProcs.size;
nWaitOrderProcs += lock->waitProcs.size;
Assert(nWaitOrderProcs <= MaxBackends);
/*
* Do the topo sort. TopoSort need not examine constraints after
* this one, since they must be for different locks.
*/
if (!TopoSort(lock, constraints, i + 1,
waitOrders[nWaitOrders].procs))
return false;
nWaitOrders++;
}
return true;
}
/*
* TopoSort -- topological sort of a wait queue
*
* Generate a re-ordering of a lock's wait queue that satisfies given
* constraints about certain procs preceding others. (Each such constraint
* is a fact of a partial ordering.) Minimize rearrangement of the queue
* not needed to achieve the partial ordering.
*
* This is a lot simpler and slower than, for example, the topological sort
* algorithm shown in Knuth's Volume 1. However, Knuth's method doesn't
* try to minimize the damage to the existing order. In practice we are
* not likely to be working with more than a few constraints, so the apparent
* slowness of the algorithm won't really matter.
*
* The initial queue ordering is taken directly from the lock's wait queue.
* The output is an array of PROC pointers, of length equal to the lock's
* wait queue length (the caller is responsible for providing this space).
* The partial order is specified by an array of EDGE structs. Each EDGE
* is one that we need to reverse, therefore the "waiter" must appear before
* the "blocker" in the output array. The EDGE array may well contain
* edges associated with other locks; these should be ignored.
*
* Returns TRUE if able to build an ordering that satisfies all the
* constraints, FALSE if not (there are contradictory constraints).
*/
static bool
TopoSort(LOCK *lock,
EDGE *constraints,
int nConstraints,
PROC **ordering) /* output argument */
{
PROC_QUEUE *waitQueue = &(lock->waitProcs);
int queue_size = waitQueue->size;
PROC *proc;
int i,
j,
k,
last;
/* First, fill topoProcs[] array with the procs in their current order */
proc = (PROC *) MAKE_PTR(waitQueue->links.next);
for (i = 0; i < queue_size; i++)
{
topoProcs[i] = proc;
proc = (PROC *) MAKE_PTR(proc->links.next);
}
/*
* Scan the constraints, and for each proc in the array, generate a
* count of the number of constraints that say it must be before
* something else, plus a list of the constraints that say it must be
* after something else. The count for the j'th proc is stored in
* beforeConstraints[j], and the head of its list in
* afterConstraints[j]. Each constraint stores its list link in
* constraints[i].link (note any constraint will be in just one list).
* The array index for the before-proc of the i'th constraint is
* remembered in constraints[i].pred.
*/
MemSet(beforeConstraints, 0, queue_size * sizeof(int));
MemSet(afterConstraints, 0, queue_size * sizeof(int));
for (i = 0; i < nConstraints; i++)
{
proc = constraints[i].waiter;
/* Ignore constraint if not for this lock */
if (proc->waitLock != lock)
continue;
/* Find the waiter proc in the array */
for (j = queue_size; --j >= 0;)
{
if (topoProcs[j] == proc)
break;
}
Assert(j >= 0); /* should have found a match */
/* Find the blocker proc in the array */
proc = constraints[i].blocker;
for (k = queue_size; --k >= 0;)
{
if (topoProcs[k] == proc)
break;
}
Assert(k >= 0); /* should have found a match */
beforeConstraints[j]++; /* waiter must come before */
/* add this constraint to list of after-constraints for blocker */
constraints[i].pred = j;
constraints[i].link = afterConstraints[k];
afterConstraints[k] = i + 1;
}
/*--------------------
* Now scan the topoProcs array backwards. At each step, output the
* last proc that has no remaining before-constraints, and decrease
* the beforeConstraints count of each of the procs it was constrained
* against.
* i = index of ordering[] entry we want to output this time
* j = search index for topoProcs[]
* k = temp for scanning constraint list for proc j
* last = last non-null index in topoProcs (avoid redundant searches)
*--------------------
*/
last = queue_size - 1;
for (i = queue_size; --i >= 0;)
{
/* Find next candidate to output */
while (topoProcs[last] == NULL)
last--;
for (j = last; j >= 0; j--)
{
if (topoProcs[j] != NULL && beforeConstraints[j] == 0)
break;
}
/* If no available candidate, topological sort fails */
if (j < 0)
return false;
/* Output candidate, and mark it done by zeroing topoProcs[] entry */
ordering[i] = topoProcs[j];
topoProcs[j] = NULL;
/* Update beforeConstraints counts of its predecessors */
for (k = afterConstraints[j]; k > 0; k = constraints[k - 1].link)
beforeConstraints[constraints[k - 1].pred]--;
}
/* Done */
return true;
}
#ifdef DEBUG_DEADLOCK
static void
PrintLockQueue(LOCK *lock, const char *info)
{
PROC_QUEUE *waitQueue = &(lock->waitProcs);
int queue_size = waitQueue->size;
PROC *proc;
int i;
printf("%s lock %lx queue ", info, MAKE_OFFSET(lock));
proc = (PROC *) MAKE_PTR(waitQueue->links.next);
for (i = 0; i < queue_size; i++)
{
printf(" %d", proc->pid);
proc = (PROC *) MAKE_PTR(proc->links.next);
}
printf("\n");
fflush(stdout);
}
#endif
|