aboutsummaryrefslogtreecommitdiff
path: root/src/backend/parser/parse_agg.c
blob: c984b7d5e469fbc13ae246682d9ce76140d82d3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
/*-------------------------------------------------------------------------
 *
 * parse_agg.c
 *	  handle aggregates and window functions in parser
 *
 * Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/parser/parse_agg.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "catalog/pg_aggregate.h"
#include "catalog/pg_constraint.h"
#include "catalog/pg_type.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/tlist.h"
#include "parser/parse_agg.h"
#include "parser/parse_clause.h"
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteManip.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"


typedef struct
{
	ParseState *pstate;
	int			min_varlevel;
	int			min_agglevel;
	int			sublevels_up;
} check_agg_arguments_context;

typedef struct
{
	ParseState *pstate;
	Query	   *qry;
	List	   *groupClauses;
	bool		have_non_var_grouping;
	List	  **func_grouped_rels;
	int			sublevels_up;
	bool		in_agg_direct_args;
} check_ungrouped_columns_context;

static int check_agg_arguments(ParseState *pstate,
					List *directargs,
					List *args,
					Expr *filter);
static bool check_agg_arguments_walker(Node *node,
						   check_agg_arguments_context *context);
static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
						List *groupClauses, bool have_non_var_grouping,
						List **func_grouped_rels);
static bool check_ungrouped_columns_walker(Node *node,
							   check_ungrouped_columns_context *context);


/*
 * transformAggregateCall -
 *		Finish initial transformation of an aggregate call
 *
 * parse_func.c has recognized the function as an aggregate, and has set up
 * all the fields of the Aggref except aggdirectargs, args, aggorder,
 * aggdistinct and agglevelsup.  The passed-in args list has been through
 * standard expression transformation and type coercion to match the agg's
 * declared arg types, while the passed-in aggorder list hasn't been
 * transformed at all.
 *
 * Here we separate the args list into direct and aggregated args, storing the
 * former in agg->aggdirectargs and the latter in agg->args.  The regular
 * args, but not the direct args, are converted into a targetlist by inserting
 * TargetEntry nodes.  We then transform the aggorder and agg_distinct
 * specifications to produce lists of SortGroupClause nodes for agg->aggorder
 * and agg->aggdistinct.  (For a regular aggregate, this might result in
 * adding resjunk expressions to the targetlist; but for ordered-set
 * aggregates the aggorder list will always be one-to-one with the aggregated
 * args.)
 *
 * We must also determine which query level the aggregate actually belongs to,
 * set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
 * pstate level.
 */
void
transformAggregateCall(ParseState *pstate, Aggref *agg,
					   List *args, List *aggorder, bool agg_distinct)
{
	List	   *tlist = NIL;
	List	   *torder = NIL;
	List	   *tdistinct = NIL;
	AttrNumber	attno = 1;
	int			save_next_resno;
	int			min_varlevel;
	ListCell   *lc;
	const char *err;
	bool		errkind;

	if (AGGKIND_IS_ORDERED_SET(agg->aggkind))
	{
		/*
		 * For an ordered-set agg, the args list includes direct args and
		 * aggregated args; we must split them apart.
		 */
		int			numDirectArgs = list_length(args) - list_length(aggorder);
		List	   *aargs;
		ListCell   *lc2;

		Assert(numDirectArgs >= 0);

		aargs = list_copy_tail(args, numDirectArgs);
		agg->aggdirectargs = list_truncate(args, numDirectArgs);

		/*
		 * Build a tlist from the aggregated args, and make a sortlist entry
		 * for each one.  Note that the expressions in the SortBy nodes are
		 * ignored (they are the raw versions of the transformed args); we are
		 * just looking at the sort information in the SortBy nodes.
		 */
		forboth(lc, aargs, lc2, aggorder)
		{
			Expr	   *arg = (Expr *) lfirst(lc);
			SortBy	   *sortby = (SortBy *) lfirst(lc2);
			TargetEntry *tle;

			/* We don't bother to assign column names to the entries */
			tle = makeTargetEntry(arg, attno++, NULL, false);
			tlist = lappend(tlist, tle);

			torder = addTargetToSortList(pstate, tle,
										 torder, tlist, sortby,
										 true /* fix unknowns */ );
		}

		/* Never any DISTINCT in an ordered-set agg */
		Assert(!agg_distinct);
	}
	else
	{
		/* Regular aggregate, so it has no direct args */
		agg->aggdirectargs = NIL;

		/*
		 * Transform the plain list of Exprs into a targetlist.
		 */
		foreach(lc, args)
		{
			Expr	   *arg = (Expr *) lfirst(lc);
			TargetEntry *tle;

			/* We don't bother to assign column names to the entries */
			tle = makeTargetEntry(arg, attno++, NULL, false);
			tlist = lappend(tlist, tle);
		}

		/*
		 * If we have an ORDER BY, transform it.  This will add columns to the
		 * tlist if they appear in ORDER BY but weren't already in the arg
		 * list.  They will be marked resjunk = true so we can tell them apart
		 * from regular aggregate arguments later.
		 *
		 * We need to mess with p_next_resno since it will be used to number
		 * any new targetlist entries.
		 */
		save_next_resno = pstate->p_next_resno;
		pstate->p_next_resno = attno;

		torder = transformSortClause(pstate,
									 aggorder,
									 &tlist,
									 EXPR_KIND_ORDER_BY,
									 true /* fix unknowns */ ,
									 true /* force SQL99 rules */ );

		/*
		 * If we have DISTINCT, transform that to produce a distinctList.
		 */
		if (agg_distinct)
		{
			tdistinct = transformDistinctClause(pstate, &tlist, torder, true);

			/*
			 * Remove this check if executor support for hashed distinct for
			 * aggregates is ever added.
			 */
			foreach(lc, tdistinct)
			{
				SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);

				if (!OidIsValid(sortcl->sortop))
				{
					Node	   *expr = get_sortgroupclause_expr(sortcl, tlist);

					ereport(ERROR,
							(errcode(ERRCODE_UNDEFINED_FUNCTION),
							 errmsg("could not identify an ordering operator for type %s",
									format_type_be(exprType(expr))),
							 errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
							 parser_errposition(pstate, exprLocation(expr))));
				}
			}
		}

		pstate->p_next_resno = save_next_resno;
	}

	/* Update the Aggref with the transformation results */
	agg->args = tlist;
	agg->aggorder = torder;
	agg->aggdistinct = tdistinct;

	/*
	 * Check the arguments to compute the aggregate's level and detect
	 * improper nesting.
	 */
	min_varlevel = check_agg_arguments(pstate,
									   agg->aggdirectargs,
									   agg->args,
									   agg->aggfilter);
	agg->agglevelsup = min_varlevel;

	/* Mark the correct pstate level as having aggregates */
	while (min_varlevel-- > 0)
		pstate = pstate->parentParseState;
	pstate->p_hasAggs = true;

	/*
	 * Check to see if the aggregate function is in an invalid place within
	 * its aggregation query.
	 *
	 * For brevity we support two schemes for reporting an error here: set
	 * "err" to a custom message, or set "errkind" true if the error context
	 * is sufficiently identified by what ParseExprKindName will return, *and*
	 * what it will return is just a SQL keyword.  (Otherwise, use a custom
	 * message to avoid creating translation problems.)
	 */
	err = NULL;
	errkind = false;
	switch (pstate->p_expr_kind)
	{
		case EXPR_KIND_NONE:
			Assert(false);		/* can't happen */
			break;
		case EXPR_KIND_OTHER:
			/* Accept aggregate here; caller must throw error if wanted */
			break;
		case EXPR_KIND_JOIN_ON:
		case EXPR_KIND_JOIN_USING:
			err = _("aggregate functions are not allowed in JOIN conditions");
			break;
		case EXPR_KIND_FROM_SUBSELECT:
			/* Should only be possible in a LATERAL subquery */
			Assert(pstate->p_lateral_active);
			/* Aggregate scope rules make it worth being explicit here */
			err = _("aggregate functions are not allowed in FROM clause of their own query level");
			break;
		case EXPR_KIND_FROM_FUNCTION:
			err = _("aggregate functions are not allowed in functions in FROM");
			break;
		case EXPR_KIND_WHERE:
			errkind = true;
			break;
		case EXPR_KIND_HAVING:
			/* okay */
			break;
		case EXPR_KIND_FILTER:
			errkind = true;
			break;
		case EXPR_KIND_WINDOW_PARTITION:
			/* okay */
			break;
		case EXPR_KIND_WINDOW_ORDER:
			/* okay */
			break;
		case EXPR_KIND_WINDOW_FRAME_RANGE:
			err = _("aggregate functions are not allowed in window RANGE");
			break;
		case EXPR_KIND_WINDOW_FRAME_ROWS:
			err = _("aggregate functions are not allowed in window ROWS");
			break;
		case EXPR_KIND_SELECT_TARGET:
			/* okay */
			break;
		case EXPR_KIND_INSERT_TARGET:
		case EXPR_KIND_UPDATE_SOURCE:
		case EXPR_KIND_UPDATE_TARGET:
			errkind = true;
			break;
		case EXPR_KIND_GROUP_BY:
			errkind = true;
			break;
		case EXPR_KIND_ORDER_BY:
			/* okay */
			break;
		case EXPR_KIND_DISTINCT_ON:
			/* okay */
			break;
		case EXPR_KIND_LIMIT:
		case EXPR_KIND_OFFSET:
			errkind = true;
			break;
		case EXPR_KIND_RETURNING:
			errkind = true;
			break;
		case EXPR_KIND_VALUES:
			errkind = true;
			break;
		case EXPR_KIND_CHECK_CONSTRAINT:
		case EXPR_KIND_DOMAIN_CHECK:
			err = _("aggregate functions are not allowed in check constraints");
			break;
		case EXPR_KIND_COLUMN_DEFAULT:
		case EXPR_KIND_FUNCTION_DEFAULT:
			err = _("aggregate functions are not allowed in DEFAULT expressions");
			break;
		case EXPR_KIND_INDEX_EXPRESSION:
			err = _("aggregate functions are not allowed in index expressions");
			break;
		case EXPR_KIND_INDEX_PREDICATE:
			err = _("aggregate functions are not allowed in index predicates");
			break;
		case EXPR_KIND_ALTER_COL_TRANSFORM:
			err = _("aggregate functions are not allowed in transform expressions");
			break;
		case EXPR_KIND_EXECUTE_PARAMETER:
			err = _("aggregate functions are not allowed in EXECUTE parameters");
			break;
		case EXPR_KIND_TRIGGER_WHEN:
			err = _("aggregate functions are not allowed in trigger WHEN conditions");
			break;

			/*
			 * There is intentionally no default: case here, so that the
			 * compiler will warn if we add a new ParseExprKind without
			 * extending this switch.  If we do see an unrecognized value at
			 * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
			 * which is sane anyway.
			 */
	}
	if (err)
		ereport(ERROR,
				(errcode(ERRCODE_GROUPING_ERROR),
				 errmsg_internal("%s", err),
				 parser_errposition(pstate, agg->location)));
	if (errkind)
		ereport(ERROR,
				(errcode(ERRCODE_GROUPING_ERROR),
		/* translator: %s is name of a SQL construct, eg GROUP BY */
				 errmsg("aggregate functions are not allowed in %s",
						ParseExprKindName(pstate->p_expr_kind)),
				 parser_errposition(pstate, agg->location)));
}

/*
 * check_agg_arguments
 *	  Scan the arguments of an aggregate function to determine the
 *	  aggregate's semantic level (zero is the current select's level,
 *	  one is its parent, etc).
 *
 * The aggregate's level is the same as the level of the lowest-level variable
 * or aggregate in its aggregated arguments (including any ORDER BY columns)
 * or filter expression; or if it contains no variables at all, we presume it
 * to be local.
 *
 * Vars/Aggs in direct arguments are *not* counted towards determining the
 * agg's level, as those arguments aren't evaluated per-row but only
 * per-group, and so in some sense aren't really agg arguments.  However,
 * this can mean that we decide an agg is upper-level even when its direct
 * args contain lower-level Vars/Aggs, and that case has to be disallowed.
 * (This is a little strange, but the SQL standard seems pretty definite that
 * direct args are not to be considered when setting the agg's level.)
 *
 * We also take this opportunity to detect any aggregates or window functions
 * nested within the arguments.  We can throw error immediately if we find
 * a window function.  Aggregates are a bit trickier because it's only an
 * error if the inner aggregate is of the same semantic level as the outer,
 * which we can't know until we finish scanning the arguments.
 */
static int
check_agg_arguments(ParseState *pstate,
					List *directargs,
					List *args,
					Expr *filter)
{
	int			agglevel;
	check_agg_arguments_context context;

	context.pstate = pstate;
	context.min_varlevel = -1;	/* signifies nothing found yet */
	context.min_agglevel = -1;
	context.sublevels_up = 0;

	(void) expression_tree_walker((Node *) args,
								  check_agg_arguments_walker,
								  (void *) &context);

	(void) expression_tree_walker((Node *) filter,
								  check_agg_arguments_walker,
								  (void *) &context);

	/*
	 * If we found no vars nor aggs at all, it's a level-zero aggregate;
	 * otherwise, its level is the minimum of vars or aggs.
	 */
	if (context.min_varlevel < 0)
	{
		if (context.min_agglevel < 0)
			agglevel = 0;
		else
			agglevel = context.min_agglevel;
	}
	else if (context.min_agglevel < 0)
		agglevel = context.min_varlevel;
	else
		agglevel = Min(context.min_varlevel, context.min_agglevel);

	/*
	 * If there's a nested aggregate of the same semantic level, complain.
	 */
	if (agglevel == context.min_agglevel)
	{
		int			aggloc;

		aggloc = locate_agg_of_level((Node *) args, agglevel);
		if (aggloc < 0)
			aggloc = locate_agg_of_level((Node *) filter, agglevel);
		ereport(ERROR,
				(errcode(ERRCODE_GROUPING_ERROR),
				 errmsg("aggregate function calls cannot be nested"),
				 parser_errposition(pstate, aggloc)));
	}

	/*
	 * Now check for vars/aggs in the direct arguments, and throw error if
	 * needed.  Note that we allow a Var of the agg's semantic level, but not
	 * an Agg of that level.  In principle such Aggs could probably be
	 * supported, but it would create an ordering dependency among the
	 * aggregates at execution time.  Since the case appears neither to be
	 * required by spec nor particularly useful, we just treat it as a
	 * nested-aggregate situation.
	 */
	if (directargs)
	{
		context.min_varlevel = -1;
		context.min_agglevel = -1;
		(void) expression_tree_walker((Node *) directargs,
									  check_agg_arguments_walker,
									  (void *) &context);
		if (context.min_varlevel >= 0 && context.min_varlevel < agglevel)
			ereport(ERROR,
					(errcode(ERRCODE_GROUPING_ERROR),
					 errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments"),
					 parser_errposition(pstate,
									 locate_var_of_level((Node *) directargs,
													context.min_varlevel))));
		if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel)
			ereport(ERROR,
					(errcode(ERRCODE_GROUPING_ERROR),
					 errmsg("aggregate function calls cannot be nested"),
					 parser_errposition(pstate,
									 locate_agg_of_level((Node *) directargs,
													context.min_agglevel))));
	}

	return agglevel;
}

static bool
check_agg_arguments_walker(Node *node,
						   check_agg_arguments_context *context)
{
	if (node == NULL)
		return false;
	if (IsA(node, Var))
	{
		int			varlevelsup = ((Var *) node)->varlevelsup;

		/* convert levelsup to frame of reference of original query */
		varlevelsup -= context->sublevels_up;
		/* ignore local vars of subqueries */
		if (varlevelsup >= 0)
		{
			if (context->min_varlevel < 0 ||
				context->min_varlevel > varlevelsup)
				context->min_varlevel = varlevelsup;
		}
		return false;
	}
	if (IsA(node, Aggref))
	{
		int			agglevelsup = ((Aggref *) node)->agglevelsup;

		/* convert levelsup to frame of reference of original query */
		agglevelsup -= context->sublevels_up;
		/* ignore local aggs of subqueries */
		if (agglevelsup >= 0)
		{
			if (context->min_agglevel < 0 ||
				context->min_agglevel > agglevelsup)
				context->min_agglevel = agglevelsup;
		}
		/* no need to examine args of the inner aggregate */
		return false;
	}
	/* We can throw error on sight for a window function */
	if (IsA(node, WindowFunc))
		ereport(ERROR,
				(errcode(ERRCODE_GROUPING_ERROR),
				 errmsg("aggregate function calls cannot contain window function calls"),
				 parser_errposition(context->pstate,
									((WindowFunc *) node)->location)));
	if (IsA(node, Query))
	{
		/* Recurse into subselects */
		bool		result;

		context->sublevels_up++;
		result = query_tree_walker((Query *) node,
								   check_agg_arguments_walker,
								   (void *) context,
								   0);
		context->sublevels_up--;
		return result;
	}
	return expression_tree_walker(node,
								  check_agg_arguments_walker,
								  (void *) context);
}

/*
 * transformWindowFuncCall -
 *		Finish initial transformation of a window function call
 *
 * parse_func.c has recognized the function as a window function, and has set
 * up all the fields of the WindowFunc except winref.  Here we must (1) add
 * the WindowDef to the pstate (if not a duplicate of one already present) and
 * set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate.
 * Unlike aggregates, only the most closely nested pstate level need be
 * considered --- there are no "outer window functions" per SQL spec.
 */
void
transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc,
						WindowDef *windef)
{
	const char *err;
	bool		errkind;

	/*
	 * A window function call can't contain another one (but aggs are OK). XXX
	 * is this required by spec, or just an unimplemented feature?
	 *
	 * Note: we don't need to check the filter expression here, because the
	 * context checks done below and in transformAggregateCall would have
	 * already rejected any window funcs or aggs within the filter.
	 */
	if (pstate->p_hasWindowFuncs &&
		contain_windowfuncs((Node *) wfunc->args))
		ereport(ERROR,
				(errcode(ERRCODE_WINDOWING_ERROR),
				 errmsg("window function calls cannot be nested"),
				 parser_errposition(pstate,
								  locate_windowfunc((Node *) wfunc->args))));

	/*
	 * Check to see if the window function is in an invalid place within the
	 * query.
	 *
	 * For brevity we support two schemes for reporting an error here: set
	 * "err" to a custom message, or set "errkind" true if the error context
	 * is sufficiently identified by what ParseExprKindName will return, *and*
	 * what it will return is just a SQL keyword.  (Otherwise, use a custom
	 * message to avoid creating translation problems.)
	 */
	err = NULL;
	errkind = false;
	switch (pstate->p_expr_kind)
	{
		case EXPR_KIND_NONE:
			Assert(false);		/* can't happen */
			break;
		case EXPR_KIND_OTHER:
			/* Accept window func here; caller must throw error if wanted */
			break;
		case EXPR_KIND_JOIN_ON:
		case EXPR_KIND_JOIN_USING:
			err = _("window functions are not allowed in JOIN conditions");
			break;
		case EXPR_KIND_FROM_SUBSELECT:
			/* can't get here, but just in case, throw an error */
			errkind = true;
			break;
		case EXPR_KIND_FROM_FUNCTION:
			err = _("window functions are not allowed in functions in FROM");
			break;
		case EXPR_KIND_WHERE:
			errkind = true;
			break;
		case EXPR_KIND_HAVING:
			errkind = true;
			break;
		case EXPR_KIND_FILTER:
			errkind = true;
			break;
		case EXPR_KIND_WINDOW_PARTITION:
		case EXPR_KIND_WINDOW_ORDER:
		case EXPR_KIND_WINDOW_FRAME_RANGE:
		case EXPR_KIND_WINDOW_FRAME_ROWS:
			err = _("window functions are not allowed in window definitions");
			break;
		case EXPR_KIND_SELECT_TARGET:
			/* okay */
			break;
		case EXPR_KIND_INSERT_TARGET:
		case EXPR_KIND_UPDATE_SOURCE:
		case EXPR_KIND_UPDATE_TARGET:
			errkind = true;
			break;
		case EXPR_KIND_GROUP_BY:
			errkind = true;
			break;
		case EXPR_KIND_ORDER_BY:
			/* okay */
			break;
		case EXPR_KIND_DISTINCT_ON:
			/* okay */
			break;
		case EXPR_KIND_LIMIT:
		case EXPR_KIND_OFFSET:
			errkind = true;
			break;
		case EXPR_KIND_RETURNING:
			errkind = true;
			break;
		case EXPR_KIND_VALUES:
			errkind = true;
			break;
		case EXPR_KIND_CHECK_CONSTRAINT:
		case EXPR_KIND_DOMAIN_CHECK:
			err = _("window functions are not allowed in check constraints");
			break;
		case EXPR_KIND_COLUMN_DEFAULT:
		case EXPR_KIND_FUNCTION_DEFAULT:
			err = _("window functions are not allowed in DEFAULT expressions");
			break;
		case EXPR_KIND_INDEX_EXPRESSION:
			err = _("window functions are not allowed in index expressions");
			break;
		case EXPR_KIND_INDEX_PREDICATE:
			err = _("window functions are not allowed in index predicates");
			break;
		case EXPR_KIND_ALTER_COL_TRANSFORM:
			err = _("window functions are not allowed in transform expressions");
			break;
		case EXPR_KIND_EXECUTE_PARAMETER:
			err = _("window functions are not allowed in EXECUTE parameters");
			break;
		case EXPR_KIND_TRIGGER_WHEN:
			err = _("window functions are not allowed in trigger WHEN conditions");
			break;

			/*
			 * There is intentionally no default: case here, so that the
			 * compiler will warn if we add a new ParseExprKind without
			 * extending this switch.  If we do see an unrecognized value at
			 * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
			 * which is sane anyway.
			 */
	}
	if (err)
		ereport(ERROR,
				(errcode(ERRCODE_WINDOWING_ERROR),
				 errmsg_internal("%s", err),
				 parser_errposition(pstate, wfunc->location)));
	if (errkind)
		ereport(ERROR,
				(errcode(ERRCODE_WINDOWING_ERROR),
		/* translator: %s is name of a SQL construct, eg GROUP BY */
				 errmsg("window functions are not allowed in %s",
						ParseExprKindName(pstate->p_expr_kind)),
				 parser_errposition(pstate, wfunc->location)));

	/*
	 * If the OVER clause just specifies a window name, find that WINDOW
	 * clause (which had better be present).  Otherwise, try to match all the
	 * properties of the OVER clause, and make a new entry in the p_windowdefs
	 * list if no luck.
	 */
	if (windef->name)
	{
		Index		winref = 0;
		ListCell   *lc;

		Assert(windef->refname == NULL &&
			   windef->partitionClause == NIL &&
			   windef->orderClause == NIL &&
			   windef->frameOptions == FRAMEOPTION_DEFAULTS);

		foreach(lc, pstate->p_windowdefs)
		{
			WindowDef  *refwin = (WindowDef *) lfirst(lc);

			winref++;
			if (refwin->name && strcmp(refwin->name, windef->name) == 0)
			{
				wfunc->winref = winref;
				break;
			}
		}
		if (lc == NULL)			/* didn't find it? */
			ereport(ERROR,
					(errcode(ERRCODE_UNDEFINED_OBJECT),
					 errmsg("window \"%s\" does not exist", windef->name),
					 parser_errposition(pstate, windef->location)));
	}
	else
	{
		Index		winref = 0;
		ListCell   *lc;

		foreach(lc, pstate->p_windowdefs)
		{
			WindowDef  *refwin = (WindowDef *) lfirst(lc);

			winref++;
			if (refwin->refname && windef->refname &&
				strcmp(refwin->refname, windef->refname) == 0)
				 /* matched on refname */ ;
			else if (!refwin->refname && !windef->refname)
				 /* matched, no refname */ ;
			else
				continue;
			if (equal(refwin->partitionClause, windef->partitionClause) &&
				equal(refwin->orderClause, windef->orderClause) &&
				refwin->frameOptions == windef->frameOptions &&
				equal(refwin->startOffset, windef->startOffset) &&
				equal(refwin->endOffset, windef->endOffset))
			{
				/* found a duplicate window specification */
				wfunc->winref = winref;
				break;
			}
		}
		if (lc == NULL)			/* didn't find it? */
		{
			pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef);
			wfunc->winref = list_length(pstate->p_windowdefs);
		}
	}

	pstate->p_hasWindowFuncs = true;
}

/*
 * parseCheckAggregates
 *	Check for aggregates where they shouldn't be and improper grouping.
 *	This function should be called after the target list and qualifications
 *	are finalized.
 *
 *	Misplaced aggregates are now mostly detected in transformAggregateCall,
 *	but it seems more robust to check for aggregates in recursive queries
 *	only after everything is finalized.  In any case it's hard to detect
 *	improper grouping on-the-fly, so we have to make another pass over the
 *	query for that.
 */
void
parseCheckAggregates(ParseState *pstate, Query *qry)
{
	List	   *groupClauses = NIL;
	bool		have_non_var_grouping;
	List	   *func_grouped_rels = NIL;
	ListCell   *l;
	bool		hasJoinRTEs;
	bool		hasSelfRefRTEs;
	PlannerInfo *root;
	Node	   *clause;

	/* This should only be called if we found aggregates or grouping */
	Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual);

	/*
	 * Scan the range table to see if there are JOIN or self-reference CTE
	 * entries.  We'll need this info below.
	 */
	hasJoinRTEs = hasSelfRefRTEs = false;
	foreach(l, pstate->p_rtable)
	{
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);

		if (rte->rtekind == RTE_JOIN)
			hasJoinRTEs = true;
		else if (rte->rtekind == RTE_CTE && rte->self_reference)
			hasSelfRefRTEs = true;
	}

	/*
	 * Build a list of the acceptable GROUP BY expressions for use by
	 * check_ungrouped_columns().
	 */
	foreach(l, qry->groupClause)
	{
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
		Node	   *expr;

		expr = get_sortgroupclause_expr(grpcl, qry->targetList);
		if (expr == NULL)
			continue;			/* probably cannot happen */
		groupClauses = lcons(expr, groupClauses);
	}

	/*
	 * If there are join alias vars involved, we have to flatten them to the
	 * underlying vars, so that aliased and unaliased vars will be correctly
	 * taken as equal.  We can skip the expense of doing this if no rangetable
	 * entries are RTE_JOIN kind. We use the planner's flatten_join_alias_vars
	 * routine to do the flattening; it wants a PlannerInfo root node, which
	 * fortunately can be mostly dummy.
	 */
	if (hasJoinRTEs)
	{
		root = makeNode(PlannerInfo);
		root->parse = qry;
		root->planner_cxt = CurrentMemoryContext;
		root->hasJoinRTEs = true;

		groupClauses = (List *) flatten_join_alias_vars(root,
													  (Node *) groupClauses);
	}
	else
		root = NULL;			/* keep compiler quiet */

	/*
	 * Detect whether any of the grouping expressions aren't simple Vars; if
	 * they're all Vars then we don't have to work so hard in the recursive
	 * scans.  (Note we have to flatten aliases before this.)
	 */
	have_non_var_grouping = false;
	foreach(l, groupClauses)
	{
		if (!IsA((Node *) lfirst(l), Var))
		{
			have_non_var_grouping = true;
			break;
		}
	}

	/*
	 * Check the targetlist and HAVING clause for ungrouped variables.
	 *
	 * Note: because we check resjunk tlist elements as well as regular ones,
	 * this will also find ungrouped variables that came from ORDER BY and
	 * WINDOW clauses.  For that matter, it's also going to examine the
	 * grouping expressions themselves --- but they'll all pass the test ...
	 */
	clause = (Node *) qry->targetList;
	if (hasJoinRTEs)
		clause = flatten_join_alias_vars(root, clause);
	check_ungrouped_columns(clause, pstate, qry,
							groupClauses, have_non_var_grouping,
							&func_grouped_rels);

	clause = (Node *) qry->havingQual;
	if (hasJoinRTEs)
		clause = flatten_join_alias_vars(root, clause);
	check_ungrouped_columns(clause, pstate, qry,
							groupClauses, have_non_var_grouping,
							&func_grouped_rels);

	/*
	 * Per spec, aggregates can't appear in a recursive term.
	 */
	if (pstate->p_hasAggs && hasSelfRefRTEs)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_RECURSION),
				 errmsg("aggregate functions are not allowed in a recursive query's recursive term"),
				 parser_errposition(pstate,
									locate_agg_of_level((Node *) qry, 0))));
}

/*
 * check_ungrouped_columns -
 *	  Scan the given expression tree for ungrouped variables (variables
 *	  that are not listed in the groupClauses list and are not within
 *	  the arguments of aggregate functions).  Emit a suitable error message
 *	  if any are found.
 *
 * NOTE: we assume that the given clause has been transformed suitably for
 * parser output.  This means we can use expression_tree_walker.
 *
 * NOTE: we recognize grouping expressions in the main query, but only
 * grouping Vars in subqueries.  For example, this will be rejected,
 * although it could be allowed:
 *		SELECT
 *			(SELECT x FROM bar where y = (foo.a + foo.b))
 *		FROM foo
 *		GROUP BY a + b;
 * The difficulty is the need to account for different sublevels_up.
 * This appears to require a whole custom version of equal(), which is
 * way more pain than the feature seems worth.
 */
static void
check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
						List *groupClauses, bool have_non_var_grouping,
						List **func_grouped_rels)
{
	check_ungrouped_columns_context context;

	context.pstate = pstate;
	context.qry = qry;
	context.groupClauses = groupClauses;
	context.have_non_var_grouping = have_non_var_grouping;
	context.func_grouped_rels = func_grouped_rels;
	context.sublevels_up = 0;
	context.in_agg_direct_args = false;
	check_ungrouped_columns_walker(node, &context);
}

static bool
check_ungrouped_columns_walker(Node *node,
							   check_ungrouped_columns_context *context)
{
	ListCell   *gl;

	if (node == NULL)
		return false;
	if (IsA(node, Const) ||
		IsA(node, Param))
		return false;			/* constants are always acceptable */

	if (IsA(node, Aggref))
	{
		Aggref	   *agg = (Aggref *) node;

		if ((int) agg->agglevelsup == context->sublevels_up)
		{
			/*
			 * If we find an aggregate call of the original level, do not
			 * recurse into its normal arguments, ORDER BY arguments, or
			 * filter; ungrouped vars there are not an error.  But we should
			 * check direct arguments as though they weren't in an aggregate.
			 * We set a special flag in the context to help produce a useful
			 * error message for ungrouped vars in direct arguments.
			 */
			bool		result;

			Assert(!context->in_agg_direct_args);
			context->in_agg_direct_args = true;
			result = check_ungrouped_columns_walker((Node *) agg->aggdirectargs,
													context);
			context->in_agg_direct_args = false;
			return result;
		}

		/*
		 * We can skip recursing into aggregates of higher levels altogether,
		 * since they could not possibly contain Vars of concern to us (see
		 * transformAggregateCall).  We do need to look at aggregates of lower
		 * levels, however.
		 */
		if ((int) agg->agglevelsup > context->sublevels_up)
			return false;
	}

	/*
	 * If we have any GROUP BY items that are not simple Vars, check to see if
	 * subexpression as a whole matches any GROUP BY item. We need to do this
	 * at every recursion level so that we recognize GROUPed-BY expressions
	 * before reaching variables within them. But this only works at the outer
	 * query level, as noted above.
	 */
	if (context->have_non_var_grouping && context->sublevels_up == 0)
	{
		foreach(gl, context->groupClauses)
		{
			if (equal(node, lfirst(gl)))
				return false;	/* acceptable, do not descend more */
		}
	}

	/*
	 * If we have an ungrouped Var of the original query level, we have a
	 * failure.  Vars below the original query level are not a problem, and
	 * neither are Vars from above it.  (If such Vars are ungrouped as far as
	 * their own query level is concerned, that's someone else's problem...)
	 */
	if (IsA(node, Var))
	{
		Var		   *var = (Var *) node;
		RangeTblEntry *rte;
		char	   *attname;

		if (var->varlevelsup != context->sublevels_up)
			return false;		/* it's not local to my query, ignore */

		/*
		 * Check for a match, if we didn't do it above.
		 */
		if (!context->have_non_var_grouping || context->sublevels_up != 0)
		{
			foreach(gl, context->groupClauses)
			{
				Var		   *gvar = (Var *) lfirst(gl);

				if (IsA(gvar, Var) &&
					gvar->varno == var->varno &&
					gvar->varattno == var->varattno &&
					gvar->varlevelsup == 0)
					return false;		/* acceptable, we're okay */
			}
		}

		/*
		 * Check whether the Var is known functionally dependent on the GROUP
		 * BY columns.  If so, we can allow the Var to be used, because the
		 * grouping is really a no-op for this table.  However, this deduction
		 * depends on one or more constraints of the table, so we have to add
		 * those constraints to the query's constraintDeps list, because it's
		 * not semantically valid anymore if the constraint(s) get dropped.
		 * (Therefore, this check must be the last-ditch effort before raising
		 * error: we don't want to add dependencies unnecessarily.)
		 *
		 * Because this is a pretty expensive check, and will have the same
		 * outcome for all columns of a table, we remember which RTEs we've
		 * already proven functional dependency for in the func_grouped_rels
		 * list.  This test also prevents us from adding duplicate entries to
		 * the constraintDeps list.
		 */
		if (list_member_int(*context->func_grouped_rels, var->varno))
			return false;		/* previously proven acceptable */

		Assert(var->varno > 0 &&
			   (int) var->varno <= list_length(context->pstate->p_rtable));
		rte = rt_fetch(var->varno, context->pstate->p_rtable);
		if (rte->rtekind == RTE_RELATION)
		{
			if (check_functional_grouping(rte->relid,
										  var->varno,
										  0,
										  context->groupClauses,
										  &context->qry->constraintDeps))
			{
				*context->func_grouped_rels =
					lappend_int(*context->func_grouped_rels, var->varno);
				return false;	/* acceptable */
			}
		}

		/* Found an ungrouped local variable; generate error message */
		attname = get_rte_attribute_name(rte, var->varattno);
		if (context->sublevels_up == 0)
			ereport(ERROR,
					(errcode(ERRCODE_GROUPING_ERROR),
					 errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
							rte->eref->aliasname, attname),
					 context->in_agg_direct_args ?
					 errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns.") : 0,
					 parser_errposition(context->pstate, var->location)));
		else
			ereport(ERROR,
					(errcode(ERRCODE_GROUPING_ERROR),
					 errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
							rte->eref->aliasname, attname),
					 parser_errposition(context->pstate, var->location)));
	}

	if (IsA(node, Query))
	{
		/* Recurse into subselects */
		bool		result;

		context->sublevels_up++;
		result = query_tree_walker((Query *) node,
								   check_ungrouped_columns_walker,
								   (void *) context,
								   0);
		context->sublevels_up--;
		return result;
	}
	return expression_tree_walker(node, check_ungrouped_columns_walker,
								  (void *) context);
}

/*
 * get_aggregate_argtypes
 *	Identify the specific datatypes passed to an aggregate call.
 *
 * Given an Aggref, extract the actual datatypes of the input arguments.
 * The input datatypes are reported in a way that matches up with the
 * aggregate's declaration, ie, any ORDER BY columns attached to a plain
 * aggregate are ignored, but we report both direct and aggregated args of
 * an ordered-set aggregate.
 *
 * Datatypes are returned into inputTypes[], which must reference an array
 * of length FUNC_MAX_ARGS.
 *
 * The function result is the number of actual arguments.
 */
int
get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
{
	int			numArguments = 0;
	ListCell   *lc;

	/* Any direct arguments of an ordered-set aggregate come first */
	foreach(lc, aggref->aggdirectargs)
	{
		Node	   *expr = (Node *) lfirst(lc);

		inputTypes[numArguments] = exprType(expr);
		numArguments++;
	}

	/* Now get the regular (aggregated) arguments */
	foreach(lc, aggref->args)
	{
		TargetEntry *tle = (TargetEntry *) lfirst(lc);

		/* Ignore ordering columns of a plain aggregate */
		if (tle->resjunk)
			continue;

		inputTypes[numArguments] = exprType((Node *) tle->expr);
		numArguments++;
	}

	return numArguments;
}

/*
 * resolve_aggregate_transtype
 *	Identify the transition state value's datatype for an aggregate call.
 *
 * This function resolves a polymorphic aggregate's state datatype.
 * It must be passed the aggtranstype from the aggregate's catalog entry,
 * as well as the actual argument types extracted by get_aggregate_argtypes.
 * (We could fetch these values internally, but for all existing callers that
 * would just duplicate work the caller has to do too, so we pass them in.)
 */
Oid
resolve_aggregate_transtype(Oid aggfuncid,
							Oid aggtranstype,
							Oid *inputTypes,
							int numArguments)
{
	/* resolve actual type of transition state, if polymorphic */
	if (IsPolymorphicType(aggtranstype))
	{
		/* have to fetch the agg's declared input types... */
		Oid		   *declaredArgTypes;
		int			agg_nargs;

		(void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs);

		/*
		 * VARIADIC ANY aggs could have more actual than declared args, but
		 * such extra args can't affect polymorphic type resolution.
		 */
		Assert(agg_nargs <= numArguments);

		aggtranstype = enforce_generic_type_consistency(inputTypes,
														declaredArgTypes,
														agg_nargs,
														aggtranstype,
														false);
		pfree(declaredArgTypes);
	}
	return aggtranstype;
}

/*
 * Create expression trees for the transition and final functions
 * of an aggregate.  These are needed so that polymorphic functions
 * can be used within an aggregate --- without the expression trees,
 * such functions would not know the datatypes they are supposed to use.
 * (The trees will never actually be executed, however, so we can skimp
 * a bit on correctness.)
 *
 * agg_input_types, agg_state_type, agg_result_type identify the input,
 * transition, and result types of the aggregate.  These should all be
 * resolved to actual types (ie, none should ever be ANYELEMENT etc).
 * agg_input_collation is the aggregate function's input collation.
 *
 * For an ordered-set aggregate, remember that agg_input_types describes
 * the direct arguments followed by the aggregated arguments.
 *
 * transfn_oid, invtransfn_oid and finalfn_oid identify the funcs to be
 * called; the latter two may be InvalidOid.
 *
 * Pointers to the constructed trees are returned into *transfnexpr,
 * *invtransfnexpr and *finalfnexpr. If there is no invtransfn or finalfn,
 * the respective pointers are set to NULL.  Since use of the invtransfn is
 * optional, NULL may be passed for invtransfnexpr.
 */
void
build_aggregate_fnexprs(Oid *agg_input_types,
						int agg_num_inputs,
						int agg_num_direct_inputs,
						int num_finalfn_inputs,
						bool agg_variadic,
						Oid agg_state_type,
						Oid agg_result_type,
						Oid agg_input_collation,
						Oid transfn_oid,
						Oid invtransfn_oid,
						Oid finalfn_oid,
						Expr **transfnexpr,
						Expr **invtransfnexpr,
						Expr **finalfnexpr)
{
	Param	   *argp;
	List	   *args;
	FuncExpr   *fexpr;
	int			i;

	/*
	 * Build arg list to use in the transfn FuncExpr node. We really only care
	 * that transfn can discover the actual argument types at runtime using
	 * get_fn_expr_argtype(), so it's okay to use Param nodes that don't
	 * correspond to any real Param.
	 */
	argp = makeNode(Param);
	argp->paramkind = PARAM_EXEC;
	argp->paramid = -1;
	argp->paramtype = agg_state_type;
	argp->paramtypmod = -1;
	argp->paramcollid = agg_input_collation;
	argp->location = -1;

	args = list_make1(argp);

	for (i = agg_num_direct_inputs; i < agg_num_inputs; i++)
	{
		argp = makeNode(Param);
		argp->paramkind = PARAM_EXEC;
		argp->paramid = -1;
		argp->paramtype = agg_input_types[i];
		argp->paramtypmod = -1;
		argp->paramcollid = agg_input_collation;
		argp->location = -1;
		args = lappend(args, argp);
	}

	fexpr = makeFuncExpr(transfn_oid,
						 agg_state_type,
						 args,
						 InvalidOid,
						 agg_input_collation,
						 COERCE_EXPLICIT_CALL);
	fexpr->funcvariadic = agg_variadic;
	*transfnexpr = (Expr *) fexpr;

	/*
	 * Build invtransfn expression if requested, with same args as transfn
	 */
	if (invtransfnexpr != NULL)
	{
		if (OidIsValid(invtransfn_oid))
		{
			fexpr = makeFuncExpr(invtransfn_oid,
								 agg_state_type,
								 args,
								 InvalidOid,
								 agg_input_collation,
								 COERCE_EXPLICIT_CALL);
			fexpr->funcvariadic = agg_variadic;
			*invtransfnexpr = (Expr *) fexpr;
		}
		else
			*invtransfnexpr = NULL;
	}

	/* see if we have a final function */
	if (!OidIsValid(finalfn_oid))
	{
		*finalfnexpr = NULL;
		return;
	}

	/*
	 * Build expr tree for final function
	 */
	argp = makeNode(Param);
	argp->paramkind = PARAM_EXEC;
	argp->paramid = -1;
	argp->paramtype = agg_state_type;
	argp->paramtypmod = -1;
	argp->paramcollid = agg_input_collation;
	argp->location = -1;
	args = list_make1(argp);

	/* finalfn may take additional args, which match agg's input types */
	for (i = 0; i < num_finalfn_inputs - 1; i++)
	{
		argp = makeNode(Param);
		argp->paramkind = PARAM_EXEC;
		argp->paramid = -1;
		argp->paramtype = agg_input_types[i];
		argp->paramtypmod = -1;
		argp->paramcollid = agg_input_collation;
		argp->location = -1;
		args = lappend(args, argp);
	}

	*finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
										 agg_result_type,
										 args,
										 InvalidOid,
										 agg_input_collation,
										 COERCE_EXPLICIT_CALL);
	/* finalfn is currently never treated as variadic */
}