aboutsummaryrefslogtreecommitdiff
path: root/src/backend/optimizer/util/clauses.c
blob: fbb5a98e83db1501a7f779c863010f061a60c3ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
/*-------------------------------------------------------------------------
 *
 * clauses.c
 *	  routines to manipulate qualification clauses
 *
 * Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $Header: /cvsroot/pgsql/src/backend/optimizer/util/clauses.c,v 1.48 1999/08/22 20:14:53 tgl Exp $
 *
 * HISTORY
 *	  AUTHOR			DATE			MAJOR EVENT
 *	  Andrew Yu			Nov 3, 1994		clause.c and clauses.c combined
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include "catalog/pg_operator.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "nodes/plannodes.h"
#include "optimizer/clauses.h"
#include "optimizer/internal.h"
#include "optimizer/tlist.h"
#include "optimizer/var.h"
#include "utils/lsyscache.h"


typedef struct {
	List	   *groupClause;
	List	   *targetList;
} check_subplans_for_ungrouped_vars_context;

static bool pull_agg_clause_walker(Node *node, List **listptr);
static bool check_subplans_for_ungrouped_vars_walker(Node *node,
					check_subplans_for_ungrouped_vars_context *context);
static int is_single_func(Node *node);


Expr *
make_clause(int type, Node *oper, List *args)
{
	if (type == AND_EXPR || type == OR_EXPR || type == NOT_EXPR ||
		type == OP_EXPR || type == FUNC_EXPR)
	{
		Expr	   *expr = makeNode(Expr);

		/*
		 * assume type checking already done and we don't need the type of
		 * the expr any more.
		 */
		expr->typeOid = InvalidOid;
		expr->opType = type;
		expr->oper = oper;		/* ignored for AND, OR, NOT */
		expr->args = args;
		return expr;
	}
	else
	{
		elog(ERROR, "make_clause: unsupported type %d", type);
		/* will this ever happen? translated from lispy C code - ay 10/94 */
		return (Expr *) args;
	}
}


/*****************************************************************************
 *		OPERATOR clause functions
 *****************************************************************************/


/*
 * is_opclause
 *
 * Returns t iff the clause is an operator clause:
 *				(op expr expr) or (op expr).
 *
 * [historical note: is_clause has the exact functionality and is used
 *		throughout the code. They're renamed to is_opclause for clarity.
 *												- ay 10/94.]
 */
bool
is_opclause(Node *clause)
{
	return (clause != NULL &&
			IsA(clause, Expr) &&
			((Expr *) clause)->opType == OP_EXPR);
}

/*
 * make_opclause
 *	  Creates a clause given its operator left operand and right
 *	  operand (if it is non-null).
 *
 */
Expr *
make_opclause(Oper *op, Var *leftop, Var *rightop)
{
	Expr	   *expr = makeNode(Expr);

	expr->typeOid = InvalidOid; /* assume type checking done */
	expr->opType = OP_EXPR;
	expr->oper = (Node *) op;
	if (rightop)
		expr->args = lcons(leftop, lcons(rightop, NIL));
	else
		expr->args = lcons(leftop, NIL);
	return expr;
}

/*
 * get_leftop
 *
 * Returns the left operand of a clause of the form (op expr expr)
 *		or (op expr)
 * NB: it is assumed (for now) that all expr must be Var nodes
 */
Var *
get_leftop(Expr *clause)
{
	if (clause->args != NULL)
		return lfirst(clause->args);
	else
		return NULL;
}

/*
 * get_rightop
 *
 * Returns the right operand in a clause of the form (op expr expr).
 * NB: result will be NULL if applied to a unary op clause.
 */
Var *
get_rightop(Expr *clause)
{
	if (clause->args != NULL && lnext(clause->args) != NULL)
		return lfirst(lnext(clause->args));
	else
		return NULL;
}

/*****************************************************************************
 *		FUNC clause functions
 *****************************************************************************/

/*
 * is_funcclause
 *
 * Returns t iff the clause is a function clause: (func { expr }).
 *
 */
bool
is_funcclause(Node *clause)
{
	return (clause != NULL &&
			IsA(clause, Expr) &&
			((Expr *) clause)->opType == FUNC_EXPR);
}

/*
 * make_funcclause
 *
 * Creates a function clause given the FUNC node and the functional
 * arguments.
 *
 */
Expr *
make_funcclause(Func *func, List *funcargs)
{
	Expr	   *expr = makeNode(Expr);

	expr->typeOid = func->functype;
	expr->opType = FUNC_EXPR;
	expr->oper = (Node *) func;
	expr->args = funcargs;
	return expr;
}

/*****************************************************************************
 *		OR clause functions
 *****************************************************************************/

/*
 * or_clause
 *
 * Returns t iff the clause is an 'or' clause: (OR { expr }).
 *
 */
bool
or_clause(Node *clause)
{
	return (clause != NULL &&
			IsA(clause, Expr) &&
			((Expr *) clause)->opType == OR_EXPR);
}

/*
 * make_orclause
 *
 * Creates an 'or' clause given a list of its subclauses.
 *
 */
Expr *
make_orclause(List *orclauses)
{
	Expr	   *expr = makeNode(Expr);

	expr->typeOid = InvalidOid; /* assume type checking done */
	expr->opType = OR_EXPR;
	expr->oper = NULL;
	expr->args = orclauses;
	return expr;
}

/*****************************************************************************
 *		NOT clause functions
 *****************************************************************************/

/*
 * not_clause
 *
 * Returns t iff this is a 'not' clause: (NOT expr).
 *
 */
bool
not_clause(Node *clause)
{
	return (clause != NULL &&
			IsA(clause, Expr) &&
			((Expr *) clause)->opType == NOT_EXPR);
}

/*
 * make_notclause
 *
 * Create a 'not' clause given the expression to be negated.
 *
 */
Expr *
make_notclause(Expr *notclause)
{
	Expr	   *expr = makeNode(Expr);

	expr->typeOid = InvalidOid; /* assume type checking done */
	expr->opType = NOT_EXPR;
	expr->oper = NULL;
	expr->args = lcons(notclause, NIL);
	return expr;
}

/*
 * get_notclausearg
 *
 * Retrieve the clause within a 'not' clause
 *
 */
Expr *
get_notclausearg(Expr *notclause)
{
	return lfirst(notclause->args);
}

/*****************************************************************************
 *		AND clause functions
 *****************************************************************************/


/*
 * and_clause
 *
 * Returns t iff its argument is an 'and' clause: (AND { expr }).
 *
 */
bool
and_clause(Node *clause)
{
	return (clause != NULL &&
			IsA(clause, Expr) &&
			((Expr *) clause)->opType == AND_EXPR);
}

/*
 * make_andclause
 *
 * Create an 'and' clause given its arguments in a list.
 *
 */
Expr *
make_andclause(List *andclauses)
{
	Expr	   *expr = makeNode(Expr);

	expr->typeOid = InvalidOid; /* assume type checking done */
	expr->opType = AND_EXPR;
	expr->oper = NULL;
	expr->args = andclauses;
	return expr;
}

/*
 * Sometimes (such as in the result of cnfify), we use lists of expression
 * nodes with implicit AND semantics.  These functions convert between an
 * AND-semantics expression list and the ordinary representation of a
 * boolean expression.
 */
Expr *
make_ands_explicit(List *andclauses)
{
	if (andclauses == NIL)
		return NULL;
	else if (length(andclauses) == 1)
		return (Expr *) lfirst(andclauses);
	else
		return make_andclause(andclauses);
}

List *
make_ands_implicit(Expr *clause)
{
	if (clause == NULL)
		return NIL;
	else if (and_clause((Node *) clause))
		return clause->args;
	else
		return lcons(clause, NIL);
}


/*****************************************************************************
 *																			 *
 *		General clause-manipulating routines								 *
 *																			 *
 *****************************************************************************/


/*
 * pull_constant_clauses
 *	  Scans through a list of qualifications and find those that
 *	  contain no variables.
 *
 * Returns a list of the constant clauses in constantQual and the remaining
 * quals as the return value.
 *
 */
List *
pull_constant_clauses(List *quals, List **constantQual)
{
	List	   *q;
	List	   *constqual = NIL;
	List	   *restqual = NIL;

	foreach(q, quals)
	{
		if (!contain_var_clause(lfirst(q)))
			constqual = lcons(lfirst(q), constqual);
		else
			restqual = lcons(lfirst(q), restqual);
	}
	*constantQual = constqual;
	return restqual;
}

/*
 * pull_agg_clause
 *	  Recursively pulls all Aggref nodes from an expression tree.
 *
 *	  Returns list of Aggref nodes found.  Note the nodes themselves are not
 *	  copied, only referenced.
 */
List *
pull_agg_clause(Node *clause)
{
	List	   *result = NIL;

	pull_agg_clause_walker(clause, &result);
	return result;
}

static bool
pull_agg_clause_walker(Node *node, List **listptr)
{
	if (node == NULL)
		return false;
	if (IsA(node, Aggref))
	{
		*listptr = lappend(*listptr, node);
		/* continue, to iterate over agg's arg as well (do nested aggregates
		 * actually work?)
		 */
	}
	return expression_tree_walker(node, pull_agg_clause_walker,
								  (void *) listptr);
}

/*
 * check_subplans_for_ungrouped_vars
 *		Check for subplans that are being passed ungrouped variables as
 *		parameters; return TRUE if any are found.
 *
 * In most contexts, ungrouped variables will be detected by the parser (see
 * parse_agg.c, exprIsAggOrGroupCol()). But that routine currently does not
 * check subplans, because the necessary info is not computed until the
 * planner runs.  So we do it here, after we have processed the subplan.
 * This ought to be cleaned up someday.
 *
 * 'clause' is the expression tree to be searched for subplans.
 * 'groupClause' is the GROUP BY list (a list of GroupClause nodes).
 * 'targetList' is the target list that the group clauses refer to.
 */
bool
check_subplans_for_ungrouped_vars(Node *clause,
								  List *groupClause,
								  List *targetList)
{
	check_subplans_for_ungrouped_vars_context context;

	context.groupClause = groupClause;
	context.targetList = targetList;
	return check_subplans_for_ungrouped_vars_walker(clause, &context);
}

static bool
check_subplans_for_ungrouped_vars_walker(Node *node,
					check_subplans_for_ungrouped_vars_context *context)
{
	if (node == NULL)
		return false;
	/*
	 * We can ignore Vars other than in subplan args lists,
	 * since the parser already checked 'em.
	 */
	if (is_subplan(node))
	{
		/*
		 * The args list of the subplan node represents attributes from
		 * outside passed into the sublink.
		 */
		List	*t;

		foreach(t, ((Expr *) node)->args)
		{
			Node	   *thisarg = lfirst(t);
			bool		contained_in_group_clause = false;
			List	   *gl;

			foreach(gl, context->groupClause)
			{
				GroupClause	   *gcl = lfirst(gl);
				Node		   *groupexpr;

				groupexpr = get_sortgroupclause_expr(gcl,
													 context->targetList);
				if (equal(thisarg, groupexpr))
				{
					contained_in_group_clause = true;
					break;
				}
			}

			if (!contained_in_group_clause)
				return true;	/* found an ungrouped argument */
		}
	}
	return expression_tree_walker(node,
								  check_subplans_for_ungrouped_vars_walker,
								  (void *) context);
}


/*
 * clause_relids_vars
 *	  Retrieves distinct relids and vars appearing within a clause.
 *
 * '*relids' is set to an integer list of all distinct "varno"s appearing
 *		in Vars within the clause.
 * '*vars' is set to a list of all distinct Vars appearing within the clause.
 *		Var nodes are considered distinct if they have different varno
 *		or varattno values.  If there are several occurrences of the same
 *		varno/varattno, you get a randomly chosen one...
 */
void
clause_get_relids_vars(Node *clause, Relids *relids, List **vars)
{
	List	   *clvars = pull_var_clause(clause);
	List	   *varno_list = NIL;
	List	   *var_list = NIL;
	List	   *i;

	foreach(i, clvars)
	{
		Var		   *var = (Var *) lfirst(i);
		List	   *vi;

		Assert(var->varlevelsup == 0);
		if (!intMember(var->varno, varno_list))
			varno_list = lconsi(var->varno, varno_list);
		foreach(vi, var_list)
		{
			Var		   *in_list = (Var *) lfirst(vi);

			if (in_list->varno == var->varno &&
				in_list->varattno == var->varattno)
				break;
		}
		if (vi == NIL)
			var_list = lcons(var, var_list);
	}
	freeList(clvars);

	*relids = varno_list;
	*vars = var_list;
}

/*
 * NumRelids
 *		(formerly clause_relids)
 *
 * Returns the number of different relations referenced in 'clause'.
 */
int
NumRelids(Node *clause)
{
	List	   *varno_list = pull_varnos(clause);
	int			result = length(varno_list);

	freeList(varno_list);
	return result;
}

/*
 * get_relattval
 *		Extract information from a restriction or join clause for
 *		selectivity estimation.  The inputs are an expression
 *		and a relation number (which can be 0 if we don't care which
 *		relation is used; that'd normally be the case for restriction
 *		clauses, where the caller already knows that only one relation
 *		is referenced in the clause).  The routine checks that the
 *		expression is of the form (var op something) or (something op var)
 *		where the var is an attribute of the specified relation, or
 *		a function of a var of the specified relation.  If so, it
 *		returns the following info:
 *			the found relation number (same as targetrelid unless that is 0)
 *			the found var number (or InvalidAttrNumber if a function)
 *			if the "something" is a constant, the value of the constant
 *			flags indicating whether a constant was found, and on which side.
 *		Default values are returned if the expression is too complicated,
 *		specifically -1 for the relid and attno, 0 for the constant value.
 *		Note that InvalidAttrNumber is *not* -1, but 0.
 */
void
get_relattval(Node *clause,
			  int targetrelid,
			  int *relid,
			  AttrNumber *attno,
			  Datum *constval,
			  int *flag)
{
	Var		   *left,
			   *right,
			   *other;
	int			funcvarno;

	/* Careful; the passed clause might not be a binary operator at all */

	if (!is_opclause(clause))
		goto default_results;

	left = get_leftop((Expr *) clause);
	right = get_rightop((Expr *) clause);

	if (!right)
		goto default_results;

	/* First look for the var or func */

	if (IsA(left, Var) &&
		(targetrelid == 0 || targetrelid == left->varno))
	{
		*relid = left->varno;
		*attno = left->varattno;
		*flag = SEL_RIGHT;
	}
	else if (IsA(right, Var) &&
			 (targetrelid == 0 || targetrelid == right->varno))
	{
		*relid = right->varno;
		*attno = right->varattno;
		*flag = 0;
	}
	else if ((funcvarno = is_single_func((Node *) left)) != 0 &&
			 (targetrelid == 0 || targetrelid == funcvarno))
	{
		*relid = funcvarno;
		*attno = InvalidAttrNumber;
		*flag = SEL_RIGHT;
	}
	else if ((funcvarno = is_single_func((Node *) right)) != 0 &&
			 (targetrelid == 0 || targetrelid == funcvarno))
	{
		*relid = funcvarno;
		*attno = InvalidAttrNumber;
		*flag = 0;
	}
	else
	{
		/* Duh, it's too complicated for me... */
default_results:
		*relid = -1;
		*attno = -1;
		*constval = 0;
		*flag = 0;
		return;
	}

	/* OK, we identified the var or func; now look at the other side */

	other = (*flag == 0) ? left : right;

	if (IsA(other, Const))
	{
		*constval = ((Const *) other)->constvalue;
		*flag |= SEL_CONSTANT;
	}
	else
	{
		*constval = 0;
	}
}

/*
 * is_single_func
 *   If the given expression is a function of a single relation,
 *   return the relation number; else return 0
 */
static int is_single_func(Node *node)
{
	if (is_funcclause(node))
	{
		List	   *varnos = pull_varnos(node);

		if (length(varnos) == 1)
		{
			int		funcvarno = lfirsti(varnos);

			freeList(varnos);
			return funcvarno;
		}
		freeList(varnos);
	}
	return 0;
}

/*
 * get_rels_atts
 *
 * Returns the info
 *				( relid1 attno1 relid2 attno2 )
 *		for a joinclause.
 *
 * If the clause is not of the form (var op var) or if any of the vars
 * refer to nested attributes, then -1's are returned.
 *
 */
void
get_rels_atts(Node *clause,
			  int *relid1,
			  AttrNumber *attno1,
			  int *relid2,
			  AttrNumber *attno2)
{
	/* set default values */
	*relid1 = -1;
	*attno1 = -1;
	*relid2 = -1;
	*attno2 = -1;

	if (is_opclause(clause))
	{
		Var		   *left = get_leftop((Expr *) clause);
		Var		   *right = get_rightop((Expr *) clause);

		if (left && right)
		{
			int			funcvarno;

			if (IsA(left, Var))
			{
				*relid1 = left->varno;
				*attno1 = left->varattno;
			}
			else if ((funcvarno = is_single_func((Node *) left)) != 0)
			{
				*relid1 = funcvarno;
				*attno1 = InvalidAttrNumber;
			}

			if (IsA(right, Var))
			{
				*relid2 = right->varno;
				*attno2 = right->varattno;
			}
			else if ((funcvarno = is_single_func((Node *) right)) != 0)
			{
				*relid2 = funcvarno;
				*attno2 = InvalidAttrNumber;
			}
		}
	}
}

/*--------------------
 * CommuteClause: commute a binary operator clause
 *
 * XXX the clause is destructively modified!
 *--------------------
 */
void
CommuteClause(Expr *clause)
{
	HeapTuple	heapTup;
	Form_pg_operator commuTup;
	Oper	   *commu;
	Node	   *temp;

	if (!is_opclause((Node *) clause) ||
		length(clause->args) != 2)
		elog(ERROR, "CommuteClause: applied to non-binary-operator clause");

	heapTup = (HeapTuple)
		get_operator_tuple(get_commutator(((Oper *) clause->oper)->opno));

	if (heapTup == (HeapTuple) NULL)
		elog(ERROR, "CommuteClause: no commutator for operator %u",
			 ((Oper *) clause->oper)->opno);

	commuTup = (Form_pg_operator) GETSTRUCT(heapTup);

	commu = makeOper(heapTup->t_data->t_oid,
					 commuTup->oprcode,
					 commuTup->oprresult,
					 ((Oper *) clause->oper)->opsize,
					 NULL);

	/*
	 * re-form the clause in-place!
	 */
	clause->oper = (Node *) commu;
	temp = lfirst(clause->args);
	lfirst(clause->args) = lsecond(clause->args);
	lsecond(clause->args) = temp;
}


/*
 * Standard expression-tree walking support
 *
 * We used to have near-duplicate code in many different routines that
 * understood how to recurse through an expression node tree.  That was
 * a pain to maintain, and we frequently had bugs due to some particular
 * routine neglecting to support a particular node type.  In most cases,
 * these routines only actually care about certain node types, and don't
 * care about other types except insofar as they have to recurse through
 * non-primitive node types.  Therefore, we now provide generic tree-walking
 * logic to consolidate the redundant "boilerplate" code.  There are
 * two versions: expression_tree_walker() and expression_tree_mutator().
 */

/*--------------------
 * expression_tree_walker() is designed to support routines that traverse
 * a tree in a read-only fashion (although it will also work for routines
 * that modify nodes in-place but never add/delete/replace nodes).
 * A walker routine should look like this:
 *
 * bool my_walker (Node *node, my_struct *context)
 * {
 *		if (node == NULL)
 *			return false;
 *		// check for nodes that special work is required for, eg:
 *		if (IsA(node, Var))
 *		{
 *			... do special actions for Var nodes
 *		}
 *		else if (IsA(node, ...))
 *		{
 *			... do special actions for other node types
 *		}
 *		// for any node type not specially processed, do:
 *		return expression_tree_walker(node, my_walker, (void *) context);
 * }
 *
 * The "context" argument points to a struct that holds whatever context
 * information the walker routine needs --- it can be used to return data
 * gathered by the walker, too.  This argument is not touched by
 * expression_tree_walker, but it is passed down to recursive sub-invocations
 * of my_walker.  The tree walk is started from a setup routine that
 * fills in the appropriate context struct, calls my_walker with the top-level
 * node of the tree, and then examines the results.
 *
 * The walker routine should return "false" to continue the tree walk, or
 * "true" to abort the walk and immediately return "true" to the top-level
 * caller.  This can be used to short-circuit the traversal if the walker
 * has found what it came for.  "false" is returned to the top-level caller
 * iff no invocation of the walker returned "true".
 *
 * The node types handled by expression_tree_walker include all those
 * normally found in target lists and qualifier clauses during the planning
 * stage.  In particular, it handles List nodes since a cnf-ified qual clause
 * will have List structure at the top level, and it handles TargetEntry nodes
 * so that a scan of a target list can be handled without additional code.
 * (But only the "expr" part of a TargetEntry is examined, unless the walker
 * chooses to process TargetEntry nodes specially.)
 *
 * expression_tree_walker will handle a SUBPLAN_EXPR node by recursing into
 * the args and slink->oper lists (which belong to the outer plan), but it
 * will *not* visit the inner plan, since that's typically what expression
 * tree walkers want.  A walker that wants to visit the subplan can force
 * appropriate behavior by recognizing subplan nodes and doing the right
 * thing.
 *
 * Bare SubLink nodes (without a SUBPLAN_EXPR) are handled by recursing into
 * the "lefthand" argument list only.  (A bare SubLink should be seen only if
 * the tree has not yet been processed by subselect.c.)  Again, this can be
 * overridden by the walker, but it seems to be the most useful default
 * behavior.
 *--------------------
 */

bool
expression_tree_walker(Node *node, bool (*walker) (), void *context)
{
	List	   *temp;

	/*
	 * The walker has already visited the current node,
	 * and so we need only recurse into any sub-nodes it has.
	 *
	 * We assume that the walker is not interested in List nodes per se,
	 * so when we expect a List we just recurse directly to self without
	 * bothering to call the walker.
	 */
	if (node == NULL)
		return false;
	switch (nodeTag(node))
	{
		case T_Ident:
		case T_Const:
		case T_Var:
		case T_Param:
			/* primitive node types with no subnodes */
			break;
		case T_Expr:
			{
				Expr   *expr = (Expr *) node;
				if (expr->opType == SUBPLAN_EXPR)
				{
					/* examine args list (params to be passed to subplan) */
					if (expression_tree_walker((Node *) expr->args,
											   walker, context))
						return true;
					/* examine oper list as well */
					if (expression_tree_walker(
						(Node *) ((SubPlan *) expr->oper)->sublink->oper,
						walker, context))
						return true;
					/* but not the subplan itself */
				}
				else
				{
					/* for other Expr node types, just examine args list */
					if (expression_tree_walker((Node *) expr->args,
											   walker, context))
						return true;
				}
			}
			break;
		case T_Aggref:
			return walker(((Aggref *) node)->target, context);
		case T_Iter:
			return walker(((Iter *) node)->iterexpr, context);
		case T_ArrayRef:
			{
				ArrayRef   *aref = (ArrayRef *) node;
				/* recurse directly for upper/lower array index lists */
				if (expression_tree_walker((Node *) aref->refupperindexpr,
										   walker, context))
					return true;
				if (expression_tree_walker((Node *) aref->reflowerindexpr,
										   walker, context))
					return true;
				/* walker must see the refexpr and refassgnexpr, however */
				if (walker(aref->refexpr, context))
					return true;
				if (walker(aref->refassgnexpr, context))
					return true;
			}
			break;
		case T_CaseExpr:
			{
				CaseExpr   *caseexpr = (CaseExpr *) node;
				/* we assume walker doesn't care about CaseWhens, either */
				foreach(temp, caseexpr->args)
				{
					CaseWhen   *when = (CaseWhen *) lfirst(temp);
					Assert(IsA(when, CaseWhen));
					if (walker(when->expr, context))
						return true;
					if (walker(when->result, context))
						return true;
				}
				/* caseexpr->arg should be null, but we'll check it anyway */
				if (walker(caseexpr->arg, context))
					return true;
				if (walker(caseexpr->defresult, context))
					return true;
			}
			break;
		case T_SubLink:
			/* A "bare" SubLink (note we will not come here if we found
			 * a SUBPLAN_EXPR node above it).  Examine the lefthand side,
			 * but not the oper list nor the subquery.
			 */
			return walker(((SubLink *) node)->lefthand, context);
		case T_List:
			foreach(temp, (List *) node)
			{
				if (walker((Node *) lfirst(temp), context))
					return true;
			}
			break;
		case T_TargetEntry:
			return walker(((TargetEntry *) node)->expr, context);
		default:
			elog(ERROR, "expression_tree_walker: Unexpected node type %d",
				 nodeTag(node));
			break;
	}
	return false;
}

/*--------------------
 * expression_tree_mutator() is designed to support routines that make a
 * modified copy of an expression tree, with some nodes being added,
 * removed, or replaced by new subtrees.  The original tree is (normally)
 * not changed.  Each recursion level is responsible for returning a copy of
 * (or appropriately modified substitute for) the subtree it is handed.
 * A mutator routine should look like this:
 *
 * Node * my_mutator (Node *node, my_struct *context)
 * {
 *		if (node == NULL)
 *			return NULL;
 *		// check for nodes that special work is required for, eg:
 *		if (IsA(node, Var))
 *		{
 *			... create and return modified copy of Var node
 *		}
 *		else if (IsA(node, ...))
 *		{
 *			... do special transformations of other node types
 *		}
 *		// for any node type not specially processed, do:
 *		return expression_tree_mutator(node, my_mutator, (void *) context);
 * }
 *
 * The "context" argument points to a struct that holds whatever context
 * information the mutator routine needs --- it can be used to return extra
 * data gathered by the mutator, too.  This argument is not touched by
 * expression_tree_mutator, but it is passed down to recursive sub-invocations
 * of my_mutator.  The tree walk is started from a setup routine that
 * fills in the appropriate context struct, calls my_mutator with the
 * top-level node of the tree, and does any required post-processing.
 *
 * Each level of recursion must return an appropriately modified Node.
 * If expression_tree_mutator() is called, it will make an exact copy
 * of the given Node, but invoke my_mutator() to copy the sub-node(s)
 * of that Node.  In this way, my_mutator() has full control over the
 * copying process but need not directly deal with expression trees
 * that it has no interest in.
 *
 * Just as for expression_tree_walker, the node types handled by
 * expression_tree_mutator include all those normally found in target lists
 * and qualifier clauses during the planning stage.
 *
 * expression_tree_mutator will handle a SUBPLAN_EXPR node by recursing into
 * the args and slink->oper lists (which belong to the outer plan), but it
 * will simply copy the link to the inner plan, since that's typically what
 * expression tree mutators want.  A mutator that wants to modify the subplan
 * can force appropriate behavior by recognizing subplan nodes and doing the
 * right thing.
 *
 * Bare SubLink nodes (without a SUBPLAN_EXPR) are handled by recursing into
 * the "lefthand" argument list only.  (A bare SubLink should be seen only if
 * the tree has not yet been processed by subselect.c.)  Again, this can be
 * overridden by the mutator, but it seems to be the most useful default
 * behavior.
 *--------------------
 */

Node *
expression_tree_mutator(Node *node, Node * (*mutator) (), void *context)
{
	/*
	 * The mutator has already decided not to modify the current node,
	 * but we must call the mutator for any sub-nodes.
	 */

#define FLATCOPY(newnode, node, nodetype)  \
	( (newnode) = makeNode(nodetype), \
	  memcpy((newnode), (node), sizeof(nodetype)) )

#define CHECKFLATCOPY(newnode, node, nodetype)  \
	( AssertMacro(IsA((node), nodetype)), \
	  (newnode) = makeNode(nodetype), \
	  memcpy((newnode), (node), sizeof(nodetype)) )

#define MUTATE(newfield, oldfield, fieldtype)  \
		( (newfield) = (fieldtype) mutator((Node *) (oldfield), context) )

	if (node == NULL)
		return NULL;
	switch (nodeTag(node))
	{
		case T_Ident:
		case T_Const:
		case T_Var:
		case T_Param:
			/* primitive node types with no subnodes */
			return (Node *) copyObject(node);
		case T_Expr:
			{
				Expr   *expr = (Expr *) node;
				Expr   *newnode;

				FLATCOPY(newnode, expr, Expr);

				if (expr->opType == SUBPLAN_EXPR)
				{
					SubLink	   *oldsublink = ((SubPlan *) expr->oper)->sublink;
					SubPlan	   *newsubplan;

					/* flat-copy the oper node, which is a SubPlan */
					CHECKFLATCOPY(newsubplan, expr->oper, SubPlan);
					newnode->oper = (Node *) newsubplan;
					/* likewise its SubLink node */
					CHECKFLATCOPY(newsubplan->sublink, oldsublink, SubLink);
					/* transform args list (params to be passed to subplan) */
					MUTATE(newnode->args, expr->args, List *);
					/* transform sublink's oper list as well */
					MUTATE(newsubplan->sublink->oper, oldsublink->oper, List*);
					/* but not the subplan itself, which is referenced as-is */
				}
				else
				{
					/* for other Expr node types, just transform args list,
					 * linking to original oper node (OK?)
					 */
					MUTATE(newnode->args, expr->args, List *);
				}
				return (Node *) newnode;
			}
			break;
		case T_Aggref:
			{
				Aggref   *aggref = (Aggref *) node;
				Aggref   *newnode;

				FLATCOPY(newnode, aggref, Aggref);
				MUTATE(newnode->target, aggref->target, Node *);
				return (Node *) newnode;
			}
			break;
		case T_Iter:
			{
				Iter   *iter = (Iter *) node;
				Iter   *newnode;

				FLATCOPY(newnode, iter, Iter);
				MUTATE(newnode->iterexpr, iter->iterexpr, Node *);
				return (Node *) newnode;
			}
			break;
		case T_ArrayRef:
			{
				ArrayRef   *arrayref = (ArrayRef *) node;
				ArrayRef   *newnode;

				FLATCOPY(newnode, arrayref, ArrayRef);
				MUTATE(newnode->refupperindexpr, arrayref->refupperindexpr,
					   List *);
				MUTATE(newnode->reflowerindexpr, arrayref->reflowerindexpr,
					   List *);
				MUTATE(newnode->refexpr, arrayref->refexpr,
					   Node *);
				MUTATE(newnode->refassgnexpr, arrayref->refassgnexpr,
					   Node *);
				return (Node *) newnode;
			}
			break;
		case T_CaseExpr:
			{
				CaseExpr   *caseexpr = (CaseExpr *) node;
				CaseExpr   *newnode;

				FLATCOPY(newnode, caseexpr, CaseExpr);
				MUTATE(newnode->args, caseexpr->args, List *);
				/* caseexpr->arg should be null, but we'll check it anyway */
				MUTATE(newnode->arg, caseexpr->arg, Node *);
				MUTATE(newnode->defresult, caseexpr->defresult, Node *);
				return (Node *) newnode;
			}
			break;
		case T_CaseWhen:
			{
				CaseWhen   *casewhen = (CaseWhen *) node;
				CaseWhen   *newnode;

				FLATCOPY(newnode, casewhen, CaseWhen);
				MUTATE(newnode->expr, casewhen->expr, Node *);
				MUTATE(newnode->result, casewhen->result, Node *);
				return (Node *) newnode;
			}
			break;
		case T_SubLink:
			{
				/* A "bare" SubLink (note we will not come here if we found
				 * a SUBPLAN_EXPR node above it).  Transform the lefthand side,
				 * but not the oper list nor the subquery.
				 */
				SubLink   *sublink = (SubLink *) node;
				SubLink   *newnode;

				FLATCOPY(newnode, sublink, SubLink);
				MUTATE(newnode->lefthand, sublink->lefthand, List *);
				return (Node *) newnode;
			}
			break;
		case T_List:
			{
				/* We assume the mutator isn't interested in the list nodes
				 * per se, so just invoke it on each list element.
				 * NOTE: this would fail badly on a list with integer elements!
				 */
				List	   *resultlist = NIL;
				List	   *temp;

				foreach(temp, (List *) node)
				{
					resultlist = lappend(resultlist,
										 mutator((Node *) lfirst(temp),
												 context));
				}
				return (Node *) resultlist;
			}
			break;
		case T_TargetEntry:
			{
				/* We mutate the expression, but not the resdom, by default. */
				TargetEntry   *targetentry = (TargetEntry *) node;
				TargetEntry   *newnode;

				FLATCOPY(newnode, targetentry, TargetEntry);
				MUTATE(newnode->expr, targetentry->expr, Node *);
				return (Node *) newnode;
			}
			break;
		default:
			elog(ERROR, "expression_tree_mutator: Unexpected node type %d",
				 nodeTag(node));
			break;
	}
	/* can't get here, but keep compiler happy */
	return NULL;
}