1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
|
/*-------------------------------------------------------------------------
*
* prepqual.c
* Routines for preprocessing qualification expressions
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/prep/prepqual.c,v 1.19 1999/09/12 18:08:17 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include <sys/types.h>
#include "postgres.h"
#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/prep.h"
#include "utils/lsyscache.h"
static Expr *flatten_andors(Expr *qual);
static List *pull_ors(List *orlist);
static List *pull_ands(List *andlist);
static Expr *find_nots(Expr *qual);
static Expr *push_nots(Expr *qual);
static Expr *find_ors(Expr *qual);
static Expr *or_normalize(List *orlist);
static Expr *find_ands(Expr *qual);
static Expr *and_normalize(List *andlist);
/*****************************************************************************
*
* CNF/DNF CONVERSION ROUTINES
*
* These routines convert an arbitrary boolean expression into
* conjunctive normal form or disjunctive normal form.
*
* The result of these routines differs from a "true" CNF/DNF in that
* we do not bother to detect common subexpressions; e.g., ("AND" A A)
* does not get simplified to A. Testing for identical subexpressions
* is a waste of time if the query is written intelligently, and it
* takes an unreasonable amount of time if there are many subexpressions
* (since it's roughly O(N^2) in the number of subexpressions).
*
* Because of that restriction, it would be unwise to apply dnfify()
* to the result of cnfify() or vice versa. Instead apply both to
* the original user-written qual expression.
*
*****************************************************************************/
/*
* cnfify
* Convert a qualification to conjunctive normal form by applying
* successive normalizations.
*
* Returns the modified qualification.
*
* If 'removeAndFlag' is true then it removes explicit AND at the top level,
* producing a list of implicitly-ANDed conditions. Otherwise, a regular
* boolean expression is returned. Since most callers pass 'true', we
* prefer to declare the result as List *, not Expr *.
*/
List *
cnfify(Expr *qual, bool removeAndFlag)
{
Expr *newqual;
if (qual == NULL)
return NIL;
/* Flatten AND and OR groups throughout the tree.
* This improvement is always worthwhile.
*/
newqual = flatten_andors(qual);
/* Push down NOTs. We do this only in the top-level boolean
* expression, without examining arguments of operators/functions.
*/
newqual = find_nots(newqual);
/* Normalize into conjunctive normal form. */
newqual = find_ors(newqual);
if (removeAndFlag)
{
newqual = (Expr *) make_ands_implicit(newqual);
}
return (List *) newqual;
}
/*
* dnfify
* Convert a qualification to disjunctive normal form by applying
* successive normalizations.
*
* Returns the modified qualification.
*
* We do not offer a 'removeOrFlag' in this case; the usages are
* different.
*/
Expr *
dnfify(Expr *qual)
{
Expr *newqual;
if (qual == NULL)
return NULL;
/* Flatten AND and OR groups throughout the tree.
* This improvement is always worthwhile.
*/
newqual = flatten_andors(qual);
/* Push down NOTs. We do this only in the top-level boolean
* expression, without examining arguments of operators/functions.
*/
newqual = find_nots(newqual);
/* Normalize into disjunctive normal form. */
newqual = find_ands(newqual);
return newqual;
}
/*--------------------
* The parser regards AND and OR as purely binary operators, so a qual like
* (A = 1) OR (A = 2) OR (A = 3) ...
* will produce a nested parsetree
* (OR (A = 1) (OR (A = 2) (OR (A = 3) ...)))
* In reality, the optimizer and executor regard AND and OR as n-argument
* operators, so this tree can be flattened to
* (OR (A = 1) (A = 2) (A = 3) ...)
* which is the responsibility of the routines below.
*
* flatten_andors() does the basic transformation with no initial assumptions.
* pull_ands() and pull_ors() are used to maintain flatness of the AND/OR
* tree after local transformations that might introduce nested AND/ORs.
*--------------------
*/
/*--------------------
* flatten_andors
* Given a qualification, simplify nested AND/OR clauses into flat
* AND/OR clauses with more arguments.
*
* Returns the rebuilt expr (note original list structure is not touched).
*--------------------
*/
static Expr *
flatten_andors(Expr *qual)
{
if (qual == NULL)
return NULL;
if (and_clause((Node *) qual))
{
List *out_list = NIL;
List *arg;
foreach(arg, qual->args)
{
Expr *subexpr = flatten_andors((Expr *) lfirst(arg));
/*
* Note: we can destructively nconc the subexpression's arglist
* because we know the recursive invocation of flatten_andors
* will have built a new arglist not shared with any other expr.
* Otherwise we'd need a listCopy here.
*/
if (and_clause((Node *) subexpr))
out_list = nconc(out_list, subexpr->args);
else
out_list = lappend(out_list, subexpr);
}
return make_andclause(out_list);
}
else if (or_clause((Node *) qual))
{
List *out_list = NIL;
List *arg;
foreach(arg, qual->args)
{
Expr *subexpr = flatten_andors((Expr *) lfirst(arg));
/*
* Note: we can destructively nconc the subexpression's arglist
* because we know the recursive invocation of flatten_andors
* will have built a new arglist not shared with any other expr.
* Otherwise we'd need a listCopy here.
*/
if (or_clause((Node *) subexpr))
out_list = nconc(out_list, subexpr->args);
else
out_list = lappend(out_list, subexpr);
}
return make_orclause(out_list);
}
else if (not_clause((Node *) qual))
return make_notclause(flatten_andors(get_notclausearg(qual)));
else if (is_opclause((Node *) qual))
{
Expr *left = (Expr *) get_leftop(qual);
Expr *right = (Expr *) get_rightop(qual);
if (right)
return make_clause(qual->opType, qual->oper,
lcons(flatten_andors(left),
lcons(flatten_andors(right),
NIL)));
else
return make_clause(qual->opType, qual->oper,
lcons(flatten_andors(left),
NIL));
}
else
return qual;
}
/*
* pull_ors
* Pull the arguments of an 'or' clause nested within another 'or'
* clause up into the argument list of the parent.
*
* Input is the arglist of an OR clause.
* Returns the rebuilt arglist (note original list structure is not touched).
*/
static List *
pull_ors(List *orlist)
{
List *out_list = NIL;
List *arg;
foreach(arg, orlist)
{
Expr *subexpr = (Expr *) lfirst(arg);
/*
* Note: we can destructively nconc the subexpression's arglist
* because we know the recursive invocation of pull_ors
* will have built a new arglist not shared with any other expr.
* Otherwise we'd need a listCopy here.
*/
if (or_clause((Node *) subexpr))
out_list = nconc(out_list, pull_ors(subexpr->args));
else
out_list = lappend(out_list, subexpr);
}
return out_list;
}
/*
* pull_ands
* Pull the arguments of an 'and' clause nested within another 'and'
* clause up into the argument list of the parent.
*
* Returns the modified list.
*/
static List *
pull_ands(List *andlist)
{
List *out_list = NIL;
List *arg;
foreach(arg, andlist)
{
Expr *subexpr = (Expr *) lfirst(arg);
/*
* Note: we can destructively nconc the subexpression's arglist
* because we know the recursive invocation of pull_ands
* will have built a new arglist not shared with any other expr.
* Otherwise we'd need a listCopy here.
*/
if (and_clause((Node *) subexpr))
out_list = nconc(out_list, pull_ands(subexpr->args));
else
out_list = lappend(out_list, subexpr);
}
return out_list;
}
/*
* find_nots
* Traverse the qualification, looking for 'NOT's to take care of.
* For 'NOT' clauses, apply push_not() to try to push down the 'NOT'.
* For all other clause types, simply recurse.
*
* Returns the modified qualification. AND/OR flatness is preserved.
*/
static Expr *
find_nots(Expr *qual)
{
if (qual == NULL)
return NULL;
#ifdef NOT_USED
/* recursing into operator expressions is probably not worth it. */
if (is_opclause((Node *) qual))
{
Expr *left = (Expr *) get_leftop(qual);
Expr *right = (Expr *) get_rightop(qual);
if (right)
return make_clause(qual->opType, qual->oper,
lcons(find_nots(left),
lcons(find_nots(right),
NIL)));
else
return make_clause(qual->opType, qual->oper,
lcons(find_nots(left),
NIL));
}
#endif
if (and_clause((Node *) qual))
{
List *t_list = NIL;
List *temp;
foreach(temp, qual->args)
t_list = lappend(t_list, find_nots(lfirst(temp)));
return make_andclause(pull_ands(t_list));
}
else if (or_clause((Node *) qual))
{
List *t_list = NIL;
List *temp;
foreach(temp, qual->args)
t_list = lappend(t_list, find_nots(lfirst(temp)));
return make_orclause(pull_ors(t_list));
}
else if (not_clause((Node *) qual))
return push_nots(get_notclausearg(qual));
else
return qual;
}
/*
* push_nots
* Push down a 'NOT' as far as possible.
*
* Input is an expression to be negated (e.g., the argument of a NOT clause).
* Returns a new qual equivalent to the negation of the given qual.
*/
static Expr *
push_nots(Expr *qual)
{
if (qual == NULL)
return make_notclause(qual); /* XXX is this right? Or possible? */
/*
* Negate an operator clause if possible: ("NOT" (< A B)) => (> A B)
* Otherwise, retain the clause as it is (the 'not' can't be pushed
* down any farther).
*/
if (is_opclause((Node *) qual))
{
Oper *oper = (Oper *) ((Expr *) qual)->oper;
Oid negator = get_negator(oper->opno);
if (negator)
{
Oper *op = (Oper *) makeOper(negator,
InvalidOid,
oper->opresulttype,
0, NULL);
return make_opclause(op, get_leftop(qual), get_rightop(qual));
}
else
return make_notclause(qual);
}
else if (and_clause((Node *) qual))
{
/*--------------------
* Apply DeMorgan's Laws:
* ("NOT" ("AND" A B)) => ("OR" ("NOT" A) ("NOT" B))
* ("NOT" ("OR" A B)) => ("AND" ("NOT" A) ("NOT" B))
* i.e., swap AND for OR and negate all the subclauses.
*--------------------
*/
List *t_list = NIL;
List *temp;
foreach(temp, qual->args)
t_list = lappend(t_list, push_nots(lfirst(temp)));
return make_orclause(pull_ors(t_list));
}
else if (or_clause((Node *) qual))
{
List *t_list = NIL;
List *temp;
foreach(temp, qual->args)
t_list = lappend(t_list, push_nots(lfirst(temp)));
return make_andclause(pull_ands(t_list));
}
else if (not_clause((Node *) qual))
{
/*
* Another 'not' cancels this 'not', so eliminate the 'not' and
* stop negating this branch. But search the subexpression for
* more 'not's to simplify.
*/
return find_nots(get_notclausearg(qual));
}
else
{
/*
* We don't know how to negate anything else, place a 'not' at
* this level.
*/
return make_notclause(qual);
}
}
/*
* find_ors
* Given a qualification tree with the 'not's pushed down, convert it
* to a tree in CNF by repeatedly applying the rule:
* ("OR" A ("AND" B C)) => ("AND" ("OR" A B) ("OR" A C))
*
* Note that 'or' clauses will always be turned into 'and' clauses
* if they contain any 'and' subclauses.
*
* Returns the modified qualification. AND/OR flatness is preserved.
*/
static Expr *
find_ors(Expr *qual)
{
if (qual == NULL)
return NULL;
/* We used to recurse into opclauses here, but I see no reason to... */
if (and_clause((Node *) qual))
{
List *andlist = NIL;
List *temp;
foreach(temp, qual->args)
andlist = lappend(andlist, find_ors(lfirst(temp)));
return make_andclause(pull_ands(andlist));
}
else if (or_clause((Node *) qual))
{
List *orlist = NIL;
List *temp;
foreach(temp, qual->args)
orlist = lappend(orlist, find_ors(lfirst(temp)));
return or_normalize(pull_ors(orlist));
}
else if (not_clause((Node *) qual))
return make_notclause(find_ors(get_notclausearg(qual)));
else
return qual;
}
/*
* or_normalize
* Given a list of exprs which are 'or'ed together, try to apply
* the distributive law
* ("OR" A ("AND" B C)) => ("AND" ("OR" A B) ("OR" A C))
* to convert the top-level OR clause to a top-level AND clause.
*
* Returns the resulting expression (could be an AND clause, an OR
* clause, or maybe even a single subexpression).
*/
static Expr *
or_normalize(List *orlist)
{
Expr *distributable = NULL;
int num_subclauses = 1;
List *andclauses = NIL;
List *temp;
if (orlist == NIL)
return NULL; /* probably can't happen */
if (lnext(orlist) == NIL)
return lfirst(orlist); /* single-expression OR (can this happen?) */
/*
* If we have a choice of AND clauses, pick the one with the
* most subclauses. Because we initialized num_subclauses = 1,
* any AND clauses with only one arg will be ignored as useless.
*/
foreach(temp, orlist)
{
Expr *clause = lfirst(temp);
if (and_clause((Node *) clause))
{
int nclauses = length(clause->args);
if (nclauses > num_subclauses)
{
distributable = clause;
num_subclauses = nclauses;
}
}
}
/* if there's no suitable AND clause, we can't transform the OR */
if (! distributable)
return make_orclause(orlist);
/* Caution: lremove destructively modifies the input orlist.
* This should be OK, since or_normalize is only called with
* freshly constructed lists that are not referenced elsewhere.
*/
orlist = lremove(distributable, orlist);
foreach(temp, distributable->args)
{
Expr *andclause = lfirst(temp);
/* pull_ors is needed here in case andclause has a top-level OR.
* Then we recursively apply or_normalize, since there might
* be an AND subclause in the resulting OR-list.
* Note: we rely on pull_ors to build a fresh list,
* and not damage the given orlist.
*/
andclause = or_normalize(pull_ors(lcons(andclause, orlist)));
andclauses = lappend(andclauses, andclause);
}
/* pull_ands is needed in case any sub-or_normalize succeeded */
return make_andclause(pull_ands(andclauses));
}
/*
* find_ands
* Given a qualification tree with the 'not's pushed down, convert it
* to a tree in DNF by repeatedly applying the rule:
* ("AND" A ("OR" B C)) => ("OR" ("AND" A B) ("AND" A C))
*
* Note that 'and' clauses will always be turned into 'or' clauses
* if they contain any 'or' subclauses.
*
* Returns the modified qualification. AND/OR flatness is preserved.
*/
static Expr *
find_ands(Expr *qual)
{
if (qual == NULL)
return NULL;
/* We used to recurse into opclauses here, but I see no reason to... */
if (or_clause((Node *) qual))
{
List *orlist = NIL;
List *temp;
foreach(temp, qual->args)
orlist = lappend(orlist, find_ands(lfirst(temp)));
return make_orclause(pull_ors(orlist));
}
else if (and_clause((Node *) qual))
{
List *andlist = NIL;
List *temp;
foreach(temp, qual->args)
andlist = lappend(andlist, find_ands(lfirst(temp)));
return and_normalize(pull_ands(andlist));
}
else if (not_clause((Node *) qual))
return make_notclause(find_ands(get_notclausearg(qual)));
else
return qual;
}
/*
* and_normalize
* Given a list of exprs which are 'and'ed together, try to apply
* the distributive law
* ("AND" A ("OR" B C)) => ("OR" ("AND" A B) ("AND" A C))
* to convert the top-level AND clause to a top-level OR clause.
*
* Returns the resulting expression (could be an AND clause, an OR
* clause, or maybe even a single subexpression).
*/
static Expr *
and_normalize(List *andlist)
{
Expr *distributable = NULL;
int num_subclauses = 1;
List *orclauses = NIL;
List *temp;
if (andlist == NIL)
return NULL; /* probably can't happen */
if (lnext(andlist) == NIL)
return lfirst(andlist); /* single-expression AND (can this happen?) */
/*
* If we have a choice of OR clauses, pick the one with the
* most subclauses. Because we initialized num_subclauses = 1,
* any OR clauses with only one arg will be ignored as useless.
*/
foreach(temp, andlist)
{
Expr *clause = lfirst(temp);
if (or_clause((Node *) clause))
{
int nclauses = length(clause->args);
if (nclauses > num_subclauses)
{
distributable = clause;
num_subclauses = nclauses;
}
}
}
/* if there's no suitable OR clause, we can't transform the AND */
if (! distributable)
return make_andclause(andlist);
/* Caution: lremove destructively modifies the input andlist.
* This should be OK, since and_normalize is only called with
* freshly constructed lists that are not referenced elsewhere.
*/
andlist = lremove(distributable, andlist);
foreach(temp, distributable->args)
{
Expr *orclause = lfirst(temp);
/* pull_ands is needed here in case orclause has a top-level AND.
* Then we recursively apply and_normalize, since there might
* be an OR subclause in the resulting AND-list.
* Note: we rely on pull_ands to build a fresh list,
* and not damage the given andlist.
*/
orclause = and_normalize(pull_ands(lcons(orclause, andlist)));
orclauses = lappend(orclauses, orclause);
}
/* pull_ors is needed in case any sub-and_normalize succeeded */
return make_orclause(pull_ors(orclauses));
}
|