aboutsummaryrefslogtreecommitdiff
path: root/src/backend/optimizer/path/pathkeys.c
blob: e2fdcd3163c2e1e99568ea65942ba5056f994d64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
/*-------------------------------------------------------------------------
 *
 * pathkeys.c
 *	  Utilities for matching and building path keys
 *
 * See src/backend/optimizer/README for a great deal of information about
 * the nature and use of path keys.
 *
 *
 * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  src/backend/optimizer/path/pathkeys.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include <float.h>

#include "miscadmin.h"
#include "access/stratnum.h"
#include "catalog/pg_opfamily.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "nodes/plannodes.h"
#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "partitioning/partbounds.h"
#include "utils/lsyscache.h"
#include "utils/selfuncs.h"

/* Consider reordering of GROUP BY keys? */
bool		enable_group_by_reordering = true;

static bool pathkey_is_redundant(PathKey *new_pathkey, List *pathkeys);
static bool matches_boolean_partition_clause(RestrictInfo *rinfo,
											 RelOptInfo *partrel,
											 int partkeycol);
static Var *find_var_for_subquery_tle(RelOptInfo *rel, TargetEntry *tle);
static bool right_merge_direction(PlannerInfo *root, PathKey *pathkey);


/****************************************************************************
 *		PATHKEY CONSTRUCTION AND REDUNDANCY TESTING
 ****************************************************************************/

/*
 * make_canonical_pathkey
 *	  Given the parameters for a PathKey, find any pre-existing matching
 *	  pathkey in the query's list of "canonical" pathkeys.  Make a new
 *	  entry if there's not one already.
 *
 * Note that this function must not be used until after we have completed
 * merging EquivalenceClasses.
 */
PathKey *
make_canonical_pathkey(PlannerInfo *root,
					   EquivalenceClass *eclass, Oid opfamily,
					   int strategy, bool nulls_first)
{
	PathKey    *pk;
	ListCell   *lc;
	MemoryContext oldcontext;

	/* Can't make canonical pathkeys if the set of ECs might still change */
	if (!root->ec_merging_done)
		elog(ERROR, "too soon to build canonical pathkeys");

	/* The passed eclass might be non-canonical, so chase up to the top */
	while (eclass->ec_merged)
		eclass = eclass->ec_merged;

	foreach(lc, root->canon_pathkeys)
	{
		pk = (PathKey *) lfirst(lc);
		if (eclass == pk->pk_eclass &&
			opfamily == pk->pk_opfamily &&
			strategy == pk->pk_strategy &&
			nulls_first == pk->pk_nulls_first)
			return pk;
	}

	/*
	 * Be sure canonical pathkeys are allocated in the main planning context.
	 * Not an issue in normal planning, but it is for GEQO.
	 */
	oldcontext = MemoryContextSwitchTo(root->planner_cxt);

	pk = makeNode(PathKey);
	pk->pk_eclass = eclass;
	pk->pk_opfamily = opfamily;
	pk->pk_strategy = strategy;
	pk->pk_nulls_first = nulls_first;

	root->canon_pathkeys = lappend(root->canon_pathkeys, pk);

	MemoryContextSwitchTo(oldcontext);

	return pk;
}

/*
 * append_pathkeys
 *		Append all non-redundant PathKeys in 'source' onto 'target' and
 *		returns the updated 'target' list.
 */
List *
append_pathkeys(List *target, List *source)
{
	ListCell   *lc;

	Assert(target != NIL);

	foreach(lc, source)
	{
		PathKey    *pk = lfirst_node(PathKey, lc);

		if (!pathkey_is_redundant(pk, target))
			target = lappend(target, pk);
	}
	return target;
}

/*
 * pathkey_is_redundant
 *	   Is a pathkey redundant with one already in the given list?
 *
 * We detect two cases:
 *
 * 1. If the new pathkey's equivalence class contains a constant, and isn't
 * below an outer join, then we can disregard it as a sort key.  An example:
 *			SELECT ... WHERE x = 42 ORDER BY x, y;
 * We may as well just sort by y.  Note that because of opfamily matching,
 * this is semantically correct: we know that the equality constraint is one
 * that actually binds the variable to a single value in the terms of any
 * ordering operator that might go with the eclass.  This rule not only lets
 * us simplify (or even skip) explicit sorts, but also allows matching index
 * sort orders to a query when there are don't-care index columns.
 *
 * 2. If the new pathkey's equivalence class is the same as that of any
 * existing member of the pathkey list, then it is redundant.  Some examples:
 *			SELECT ... ORDER BY x, x;
 *			SELECT ... ORDER BY x, x DESC;
 *			SELECT ... WHERE x = y ORDER BY x, y;
 * In all these cases the second sort key cannot distinguish values that are
 * considered equal by the first, and so there's no point in using it.
 * Note in particular that we need not compare opfamily (all the opfamilies
 * of the EC have the same notion of equality) nor sort direction.
 *
 * Both the given pathkey and the list members must be canonical for this
 * to work properly, but that's okay since we no longer ever construct any
 * non-canonical pathkeys.  (Note: the notion of a pathkey *list* being
 * canonical includes the additional requirement of no redundant entries,
 * which is exactly what we are checking for here.)
 *
 * Because the equivclass.c machinery forms only one copy of any EC per query,
 * pointer comparison is enough to decide whether canonical ECs are the same.
 */
static bool
pathkey_is_redundant(PathKey *new_pathkey, List *pathkeys)
{
	EquivalenceClass *new_ec = new_pathkey->pk_eclass;
	ListCell   *lc;

	/* Check for EC containing a constant --- unconditionally redundant */
	if (EC_MUST_BE_REDUNDANT(new_ec))
		return true;

	/* If same EC already used in list, then redundant */
	foreach(lc, pathkeys)
	{
		PathKey    *old_pathkey = (PathKey *) lfirst(lc);

		if (new_ec == old_pathkey->pk_eclass)
			return true;
	}

	return false;
}

/*
 * make_pathkey_from_sortinfo
 *	  Given an expression and sort-order information, create a PathKey.
 *	  The result is always a "canonical" PathKey, but it might be redundant.
 *
 * expr is the expression, and nullable_relids is the set of base relids
 * that are potentially nullable below it.
 *
 * If the PathKey is being generated from a SortGroupClause, sortref should be
 * the SortGroupClause's SortGroupRef; otherwise zero.
 *
 * If rel is not NULL, it identifies a specific relation we're considering
 * a path for, and indicates that child EC members for that relation can be
 * considered.  Otherwise child members are ignored.  (See the comments for
 * get_eclass_for_sort_expr.)
 *
 * create_it is true if we should create any missing EquivalenceClass
 * needed to represent the sort key.  If it's false, we return NULL if the
 * sort key isn't already present in any EquivalenceClass.
 */
static PathKey *
make_pathkey_from_sortinfo(PlannerInfo *root,
						   Expr *expr,
						   Relids nullable_relids,
						   Oid opfamily,
						   Oid opcintype,
						   Oid collation,
						   bool reverse_sort,
						   bool nulls_first,
						   Index sortref,
						   Relids rel,
						   bool create_it)
{
	int16		strategy;
	Oid			equality_op;
	List	   *opfamilies;
	EquivalenceClass *eclass;

	strategy = reverse_sort ? BTGreaterStrategyNumber : BTLessStrategyNumber;

	/*
	 * EquivalenceClasses need to contain opfamily lists based on the family
	 * membership of mergejoinable equality operators, which could belong to
	 * more than one opfamily.  So we have to look up the opfamily's equality
	 * operator and get its membership.
	 */
	equality_op = get_opfamily_member(opfamily,
									  opcintype,
									  opcintype,
									  BTEqualStrategyNumber);
	if (!OidIsValid(equality_op))	/* shouldn't happen */
		elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
			 BTEqualStrategyNumber, opcintype, opcintype, opfamily);
	opfamilies = get_mergejoin_opfamilies(equality_op);
	if (!opfamilies)			/* certainly should find some */
		elog(ERROR, "could not find opfamilies for equality operator %u",
			 equality_op);

	/* Now find or (optionally) create a matching EquivalenceClass */
	eclass = get_eclass_for_sort_expr(root, expr, nullable_relids,
									  opfamilies, opcintype, collation,
									  sortref, rel, create_it);

	/* Fail if no EC and !create_it */
	if (!eclass)
		return NULL;

	/* And finally we can find or create a PathKey node */
	return make_canonical_pathkey(root, eclass, opfamily,
								  strategy, nulls_first);
}

/*
 * make_pathkey_from_sortop
 *	  Like make_pathkey_from_sortinfo, but work from a sort operator.
 *
 * This should eventually go away, but we need to restructure SortGroupClause
 * first.
 */
static PathKey *
make_pathkey_from_sortop(PlannerInfo *root,
						 Expr *expr,
						 Relids nullable_relids,
						 Oid ordering_op,
						 bool nulls_first,
						 Index sortref,
						 bool create_it)
{
	Oid			opfamily,
				opcintype,
				collation;
	int16		strategy;

	/* Find the operator in pg_amop --- failure shouldn't happen */
	if (!get_ordering_op_properties(ordering_op,
									&opfamily, &opcintype, &strategy))
		elog(ERROR, "operator %u is not a valid ordering operator",
			 ordering_op);

	/* Because SortGroupClause doesn't carry collation, consult the expr */
	collation = exprCollation((Node *) expr);

	return make_pathkey_from_sortinfo(root,
									  expr,
									  nullable_relids,
									  opfamily,
									  opcintype,
									  collation,
									  (strategy == BTGreaterStrategyNumber),
									  nulls_first,
									  sortref,
									  NULL,
									  create_it);
}


/****************************************************************************
 *		PATHKEY COMPARISONS
 ****************************************************************************/

/*
 * compare_pathkeys
 *	  Compare two pathkeys to see if they are equivalent, and if not whether
 *	  one is "better" than the other.
 *
 *	  We assume the pathkeys are canonical, and so they can be checked for
 *	  equality by simple pointer comparison.
 */
PathKeysComparison
compare_pathkeys(List *keys1, List *keys2)
{
	ListCell   *key1,
			   *key2;

	/*
	 * Fall out quickly if we are passed two identical lists.  This mostly
	 * catches the case where both are NIL, but that's common enough to
	 * warrant the test.
	 */
	if (keys1 == keys2)
		return PATHKEYS_EQUAL;

	forboth(key1, keys1, key2, keys2)
	{
		PathKey    *pathkey1 = (PathKey *) lfirst(key1);
		PathKey    *pathkey2 = (PathKey *) lfirst(key2);

		if (pathkey1 != pathkey2)
			return PATHKEYS_DIFFERENT;	/* no need to keep looking */
	}

	/*
	 * If we reached the end of only one list, the other is longer and
	 * therefore not a subset.
	 */
	if (key1 != NULL)
		return PATHKEYS_BETTER1;	/* key1 is longer */
	if (key2 != NULL)
		return PATHKEYS_BETTER2;	/* key2 is longer */
	return PATHKEYS_EQUAL;
}

/*
 * pathkeys_contained_in
 *	  Common special case of compare_pathkeys: we just want to know
 *	  if keys2 are at least as well sorted as keys1.
 */
bool
pathkeys_contained_in(List *keys1, List *keys2)
{
	switch (compare_pathkeys(keys1, keys2))
	{
		case PATHKEYS_EQUAL:
		case PATHKEYS_BETTER2:
			return true;
		default:
			break;
	}
	return false;
}

/*
 * group_keys_reorder_by_pathkeys
 *		Reorder GROUP BY keys to match pathkeys of input path.
 *
 * Function returns new lists (pathkeys and clauses), original GROUP BY lists
 * stay untouched.
 *
 * Returns the number of GROUP BY keys with a matching pathkey.
 */
int
group_keys_reorder_by_pathkeys(List *pathkeys, List **group_pathkeys,
							   List **group_clauses)
{
	List	   *new_group_pathkeys = NIL,
			   *new_group_clauses = NIL;
	ListCell   *lc;
	int			n;

	if (pathkeys == NIL || *group_pathkeys == NIL)
		return 0;

	/*
	 * Walk the pathkeys (determining ordering of the input path) and see if
	 * there's a matching GROUP BY key. If we find one, we append it to the
	 * list, and do the same for the clauses.
	 *
	 * Once we find the first pathkey without a matching GROUP BY key, the
	 * rest of the pathkeys are useless and can't be used to evaluate the
	 * grouping, so we abort the loop and ignore the remaining pathkeys.
	 *
	 * XXX Pathkeys are built in a way to allow simply comparing pointers.
	 */
	foreach(lc, pathkeys)
	{
		PathKey    *pathkey = (PathKey *) lfirst(lc);
		SortGroupClause *sgc;

		/* abort on first mismatch */
		if (!list_member_ptr(*group_pathkeys, pathkey))
			break;

		new_group_pathkeys = lappend(new_group_pathkeys, pathkey);

		sgc = get_sortgroupref_clause(pathkey->pk_eclass->ec_sortref,
									  *group_clauses);

		new_group_clauses = lappend(new_group_clauses, sgc);
	}

	/* remember the number of pathkeys with a matching GROUP BY key */
	n = list_length(new_group_pathkeys);

	/* append the remaining group pathkeys (will be treated as not sorted) */
	*group_pathkeys = list_concat_unique_ptr(new_group_pathkeys,
											 *group_pathkeys);
	*group_clauses = list_concat_unique_ptr(new_group_clauses,
											*group_clauses);

	return n;
}

/*
 * Used to generate all permutations of a pathkey list.
 */
typedef struct PathkeyMutatorState
{
	List	   *elemsList;
	ListCell  **elemCells;
	void	  **elems;
	int		   *positions;
	int			mutatorNColumns;
	int			count;
} PathkeyMutatorState;


/*
 * PathkeyMutatorInit
 *		Initialize state of the permutation generator.
 *
 * We want to generate permutations of elements in the "elems" list. We may want
 * to skip some number of elements at the beginning (when treating as presorted)
 * or at the end (we only permute a limited number of group keys).
 *
 * The list is decomposed into elements, and we also keep pointers to individual
 * cells. This allows us to build the permuted list quickly and cheaply, without
 * creating any copies.
 */
static void
PathkeyMutatorInit(PathkeyMutatorState *state, List *elems, int start, int end)
{
	int			i;
	int			n = end - start;
	ListCell   *lc;

	memset(state, 0, sizeof(*state));

	state->mutatorNColumns = n;

	state->elemsList = list_copy(elems);

	state->elems = palloc(sizeof(void *) * n);
	state->elemCells = palloc(sizeof(ListCell *) * n);
	state->positions = palloc(sizeof(int) * n);

	i = 0;
	for_each_cell(lc, state->elemsList, list_nth_cell(state->elemsList, start))
	{
		state->elemCells[i] = lc;
		state->elems[i] = lfirst(lc);
		state->positions[i] = i + 1;
		i++;

		if (i >= n)
			break;
	}
}

/* Swap two elements of an array. */
static void
PathkeyMutatorSwap(int *a, int i, int j)
{
	int			s = a[i];

	a[i] = a[j];
	a[j] = s;
}

/*
 * Generate the next permutation of elements.
 */
static bool
PathkeyMutatorNextSet(int *a, int n)
{
	int			j,
				k,
				l,
				r;

	j = n - 2;

	while (j >= 0 && a[j] >= a[j + 1])
		j--;

	if (j < 0)
		return false;

	k = n - 1;

	while (k >= 0 && a[j] >= a[k])
		k--;

	PathkeyMutatorSwap(a, j, k);

	l = j + 1;
	r = n - 1;

	while (l < r)
		PathkeyMutatorSwap(a, l++, r--);

	return true;
}

/*
 * PathkeyMutatorNext
 *		Generate the next permutation of list of elements.
 *
 * Returns the next permutation (as a list of elements) or NIL if there are no
 * more permutations.
 */
static List *
PathkeyMutatorNext(PathkeyMutatorState *state)
{
	int			i;

	state->count++;

	/* first permutation is original list */
	if (state->count == 1)
		return state->elemsList;

	/* when there are no more permutations, return NIL */
	if (!PathkeyMutatorNextSet(state->positions, state->mutatorNColumns))
	{
		pfree(state->elems);
		pfree(state->elemCells);
		pfree(state->positions);

		list_free(state->elemsList);

		return NIL;
	}

	/* update the list cells to point to the right elements */
	for (i = 0; i < state->mutatorNColumns; i++)
		lfirst(state->elemCells[i]) =
			(void *) state->elems[state->positions[i] - 1];

	return state->elemsList;
}

/*
 * Cost of comparing pathkeys.
 */
typedef struct PathkeySortCost
{
	Cost		cost;
	PathKey    *pathkey;
} PathkeySortCost;

static int
pathkey_sort_cost_comparator(const void *_a, const void *_b)
{
	const PathkeySortCost *a = (PathkeySortCost *) _a;
	const PathkeySortCost *b = (PathkeySortCost *) _b;

	if (a->cost < b->cost)
		return -1;
	else if (a->cost == b->cost)
		return 0;
	return 1;
}

/*
 * get_cheapest_group_keys_order
 *		Reorders the group pathkeys / clauses to minimize the comparison cost.
 *
 * Given the list of pathkeys in '*group_pathkeys', we try to arrange these
 * in an order that minimizes the sort costs that will be incurred by the
 * GROUP BY.  The costs mainly depend on the cost of the sort comparator
 * function(s) and the number of distinct values in each column of the GROUP
 * BY clause (*group_clauses).  Sorting on subsequent columns is only required
 * for tiebreak situations where two values sort equally.
 *
 * In case the input is partially sorted, only the remaining pathkeys are
 * considered.  'n_preordered' denotes how many of the leading *group_pathkeys
 * the input is presorted by.
 *
 * Returns true and sets *group_pathkeys and *group_clauses to the newly
 * ordered versions of the lists that were passed in via these parameters.
 * If no reordering was deemed necessary then we return false, in which case
 * the *group_pathkeys and *group_clauses lists are left untouched. The
 * original *group_pathkeys and *group_clauses parameter values are never
 * destructively modified in place.
 */
static bool
get_cheapest_group_keys_order(PlannerInfo *root, double nrows,
							  List **group_pathkeys, List **group_clauses,
							  int n_preordered)
{
	List	   *new_group_pathkeys = NIL,
			   *new_group_clauses = NIL,
			   *var_group_pathkeys;

	ListCell   *cell;
	PathkeyMutatorState mstate;
	double		cheapest_sort_cost = DBL_MAX;

	int			nFreeKeys;
	int			nToPermute;

	/* If there are less than 2 unsorted pathkeys, we're done. */
	if (list_length(*group_pathkeys) - n_preordered < 2)
		return false;

	/*
	 * We could exhaustively cost all possible orderings of the pathkeys, but
	 * for a large number of pathkeys it might be prohibitively expensive. So
	 * we try to apply simple cheap heuristics first - we sort the pathkeys by
	 * sort cost (as if the pathkey was sorted independently) and then check
	 * only the four cheapest pathkeys. The remaining pathkeys are kept
	 * ordered by cost.
	 *
	 * XXX This is a very simple heuristics, but likely to work fine for most
	 * cases (because the number of GROUP BY clauses tends to be lower than
	 * 4). But it ignores how the number of distinct values in each pathkey
	 * affects the following steps. It might be better to use "more expensive"
	 * pathkey first if it has many distinct values, because it then limits
	 * the number of comparisons for the remaining pathkeys. But evaluating
	 * that is likely quite the expensive.
	 */
	nFreeKeys = list_length(*group_pathkeys) - n_preordered;
	nToPermute = 4;
	if (nFreeKeys > nToPermute)
	{
		PathkeySortCost *costs = palloc(sizeof(PathkeySortCost) * nFreeKeys);
		PathkeySortCost *cost = costs;

		/*
		 * Estimate cost for sorting individual pathkeys skipping the
		 * pre-ordered pathkeys.
		 */
		for_each_from(cell, *group_pathkeys, n_preordered)
		{
			PathKey    *pathkey = (PathKey *) lfirst(cell);
			List	   *to_cost = list_make1(pathkey);

			cost->pathkey = pathkey;
			cost->cost = cost_sort_estimate(root, to_cost, 0, nrows);
			cost++;

			list_free(to_cost);
		}

		/* sort the pathkeys by sort cost in ascending order */
		qsort(costs, nFreeKeys, sizeof(*costs), pathkey_sort_cost_comparator);

		/*
		 * Rebuild the list of pathkeys - first the preordered ones, then the
		 * rest ordered by cost.
		 */
		new_group_pathkeys = list_copy_head(*group_pathkeys, n_preordered);

		for (int i = 0; i < nFreeKeys; i++)
			new_group_pathkeys = lappend(new_group_pathkeys, costs[i].pathkey);

		pfree(costs);
	}
	else
	{
		/* Copy the list, so that we can free the new list by list_free. */
		new_group_pathkeys = list_copy(*group_pathkeys);
		nToPermute = nFreeKeys;
	}

	Assert(list_length(new_group_pathkeys) == list_length(*group_pathkeys));

	/*
	 * Generate pathkey lists with permutations of the first nToPermute
	 * pathkeys.
	 *
	 * XXX We simply calculate sort cost for each individual pathkey list, but
	 * there's room for two dynamic programming optimizations here. Firstly,
	 * we may pass the current "best" cost to cost_sort_estimate so that it
	 * can "abort" if the estimated pathkeys list exceeds it. Secondly, it
	 * could pass the return information about the position when it exceeded
	 * the cost, and we could skip all permutations with the same prefix.
	 *
	 * Imagine we've already found ordering with cost C1, and we're evaluating
	 * another ordering - cost_sort_estimate() calculates cost by adding the
	 * pathkeys one by one (more or less), and the cost only grows. If at any
	 * point it exceeds C1, it can't possibly be "better" so we can discard
	 * it. But we also know that we can discard all ordering with the same
	 * prefix, because if we're estimating (a,b,c,d) and we exceed C1 at (a,b)
	 * then the same thing will happen for any ordering with this prefix.
	 */
	PathkeyMutatorInit(&mstate, new_group_pathkeys, n_preordered, n_preordered + nToPermute);

	while ((var_group_pathkeys = PathkeyMutatorNext(&mstate)) != NIL)
	{
		Cost		cost;

		cost = cost_sort_estimate(root, var_group_pathkeys, n_preordered, nrows);

		if (cost < cheapest_sort_cost)
		{
			list_free(new_group_pathkeys);
			new_group_pathkeys = list_copy(var_group_pathkeys);
			cheapest_sort_cost = cost;
		}
	}

	/* Reorder the group clauses according to the reordered pathkeys. */
	foreach(cell, new_group_pathkeys)
	{
		PathKey    *pathkey = (PathKey *) lfirst(cell);

		new_group_clauses = lappend(new_group_clauses,
									get_sortgroupref_clause(pathkey->pk_eclass->ec_sortref,
															*group_clauses));
	}

	/* Just append the rest GROUP BY clauses */
	new_group_clauses = list_concat_unique_ptr(new_group_clauses,
											   *group_clauses);

	*group_pathkeys = new_group_pathkeys;
	*group_clauses = new_group_clauses;

	return true;
}

/*
 * get_useful_group_keys_orderings
 *		Determine which orderings of GROUP BY keys are potentially interesting.
 *
 * Returns list of PathKeyInfo items, each representing an interesting ordering
 * of GROUP BY keys. Each item stores pathkeys and clauses in matching order.
 *
 * The function considers (and keeps) multiple group by orderings:
 *
 * - the original ordering, as specified by the GROUP BY clause
 *
 * - GROUP BY keys reordered to minimize the sort cost
 *
 * - GROUP BY keys reordered to match path ordering (as much as possible), with
 *   the tail reordered to minimize the sort cost
 *
 * - GROUP BY keys to match target ORDER BY clause (as much as possible), with
 *   the tail reordered to minimize the sort cost
 *
 * There are other potentially interesting orderings (e.g. it might be best to
 * match the first ORDER BY key, order the remaining keys differently and then
 * rely on the incremental sort to fix this), but we ignore those for now. To
 * make this work we'd have to pretty much generate all possible permutations.
 */
List *
get_useful_group_keys_orderings(PlannerInfo *root, double nrows,
								List *path_pathkeys,
								List *group_pathkeys, List *group_clauses,
								List *aggregate_pathkeys)
{
	Query	   *parse = root->parse;
	List	   *infos = NIL;
	PathKeyInfo *info;
	int			n_preordered = 0;

	List	   *pathkeys = group_pathkeys;
	List	   *clauses = group_clauses;

	/* always return at least the original pathkeys/clauses */
	info = makeNode(PathKeyInfo);
	if (aggregate_pathkeys != NIL)
		info->pathkeys = list_concat_copy(pathkeys, aggregate_pathkeys);
	else
		info->pathkeys = pathkeys;
	info->clauses = clauses;

	infos = lappend(infos, info);

	/*
	 * Should we try generating alternative orderings of the group keys? If
	 * not, we produce only the order specified in the query, i.e. the
	 * optimization is effectively disabled.
	 */
	if (!enable_group_by_reordering)
		return infos;

	/* for grouping sets we can't do any reordering */
	if (parse->groupingSets)
		return infos;

	/*
	 * Try reordering pathkeys to minimize the sort cost, ignoring both the
	 * target ordering (ORDER BY) and ordering of the input path.
	 */
	if (get_cheapest_group_keys_order(root, nrows, &pathkeys, &clauses,
									  n_preordered))
	{
		info = makeNode(PathKeyInfo);
		if (aggregate_pathkeys != NIL)
			info->pathkeys = list_concat_copy(pathkeys, aggregate_pathkeys);
		else
			info->pathkeys = pathkeys;
		info->clauses = clauses;

		infos = lappend(infos, info);
	}

	/*
	 * If the path is sorted in some way, try reordering the group keys to
	 * match as much of the ordering as possible - we get this sort for free
	 * (mostly).
	 *
	 * We must not do this when there are no grouping sets, because those use
	 * more complex logic to decide the ordering.
	 *
	 * XXX Isn't this somewhat redundant with presorted_keys? Actually, it's
	 * more a complement, because it allows benefiting from incremental sort
	 * as much as possible.
	 *
	 * XXX This does nothing if (n_preordered == 0). We shouldn't create the
	 * info in this case.
	 */
	if (path_pathkeys)
	{
		n_preordered = group_keys_reorder_by_pathkeys(path_pathkeys,
													  &pathkeys,
													  &clauses);

		/* reorder the tail to minimize sort cost */
		get_cheapest_group_keys_order(root, nrows, &pathkeys, &clauses,
									  n_preordered);

		/*
		 * reorder the tail to minimize sort cost
		 *
		 * XXX Ignore the return value - there may be nothing to reorder, in
		 * which case get_cheapest_group_keys_order returns false. But we
		 * still want to keep the keys reordered to path_pathkeys.
		 */
		info = makeNode(PathKeyInfo);
		if (aggregate_pathkeys != NIL)
			info->pathkeys = list_concat_copy(pathkeys, aggregate_pathkeys);
		else
			info->pathkeys = pathkeys;
		info->clauses = clauses;

		infos = lappend(infos, info);
	}

	/*
	 * Try reordering pathkeys to minimize the sort cost (this time consider
	 * the ORDER BY clause, but only if set debug_group_by_match_order_by).
	 */
	if (root->sort_pathkeys)
	{
		n_preordered = group_keys_reorder_by_pathkeys(root->sort_pathkeys,
													  &pathkeys,
													  &clauses);

		/*
		 * reorder the tail to minimize sort cost
		 *
		 * XXX Ignore the return value - there may be nothing to reorder, in
		 * which case get_cheapest_group_keys_order returns false. But we
		 * still want to keep the keys reordered to sort_pathkeys.
		 */
		get_cheapest_group_keys_order(root, nrows, &pathkeys, &clauses,
									  n_preordered);

		/* keep the group keys reordered to match ordering of input path */
		info = makeNode(PathKeyInfo);
		if (aggregate_pathkeys != NIL)
			info->pathkeys = list_concat_copy(pathkeys, aggregate_pathkeys);
		else
			info->pathkeys = pathkeys;
		info->clauses = clauses;

		infos = lappend(infos, info);
	}

	return infos;
}

/*
 * pathkeys_count_contained_in
 *    Same as pathkeys_contained_in, but also sets length of longest
 *    common prefix of keys1 and keys2.
 */
bool
pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
{
	int			n = 0;
	ListCell   *key1,
			   *key2;

	/*
	 * See if we can avoiding looping through both lists. This optimization
	 * gains us several percent in planning time in a worst-case test.
	 */
	if (keys1 == keys2)
	{
		*n_common = list_length(keys1);
		return true;
	}
	else if (keys1 == NIL)
	{
		*n_common = 0;
		return true;
	}
	else if (keys2 == NIL)
	{
		*n_common = 0;
		return false;
	}

	/*
	 * If both lists are non-empty, iterate through both to find out how many
	 * items are shared.
	 */
	forboth(key1, keys1, key2, keys2)
	{
		PathKey    *pathkey1 = (PathKey *) lfirst(key1);
		PathKey    *pathkey2 = (PathKey *) lfirst(key2);

		if (pathkey1 != pathkey2)
		{
			*n_common = n;
			return false;
		}
		n++;
	}

	/* If we ended with a null value, then we've processed the whole list. */
	*n_common = n;
	return (key1 == NULL);
}

/*
 * get_cheapest_path_for_pathkeys
 *	  Find the cheapest path (according to the specified criterion) that
 *	  satisfies the given pathkeys and parameterization.
 *	  Return NULL if no such path.
 *
 * 'paths' is a list of possible paths that all generate the same relation
 * 'pathkeys' represents a required ordering (in canonical form!)
 * 'required_outer' denotes allowable outer relations for parameterized paths
 * 'cost_criterion' is STARTUP_COST or TOTAL_COST
 * 'require_parallel_safe' causes us to consider only parallel-safe paths
 */
Path *
get_cheapest_path_for_pathkeys(List *paths, List *pathkeys,
							   Relids required_outer,
							   CostSelector cost_criterion,
							   bool require_parallel_safe)
{
	Path	   *matched_path = NULL;
	ListCell   *l;

	foreach(l, paths)
	{
		Path	   *path = (Path *) lfirst(l);

		/*
		 * Since cost comparison is a lot cheaper than pathkey comparison, do
		 * that first.  (XXX is that still true?)
		 */
		if (matched_path != NULL &&
			compare_path_costs(matched_path, path, cost_criterion) <= 0)
			continue;

		if (require_parallel_safe && !path->parallel_safe)
			continue;

		if (pathkeys_contained_in(pathkeys, path->pathkeys) &&
			bms_is_subset(PATH_REQ_OUTER(path), required_outer))
			matched_path = path;
	}
	return matched_path;
}

/*
 * get_cheapest_fractional_path_for_pathkeys
 *	  Find the cheapest path (for retrieving a specified fraction of all
 *	  the tuples) that satisfies the given pathkeys and parameterization.
 *	  Return NULL if no such path.
 *
 * See compare_fractional_path_costs() for the interpretation of the fraction
 * parameter.
 *
 * 'paths' is a list of possible paths that all generate the same relation
 * 'pathkeys' represents a required ordering (in canonical form!)
 * 'required_outer' denotes allowable outer relations for parameterized paths
 * 'fraction' is the fraction of the total tuples expected to be retrieved
 */
Path *
get_cheapest_fractional_path_for_pathkeys(List *paths,
										  List *pathkeys,
										  Relids required_outer,
										  double fraction)
{
	Path	   *matched_path = NULL;
	ListCell   *l;

	foreach(l, paths)
	{
		Path	   *path = (Path *) lfirst(l);

		/*
		 * Since cost comparison is a lot cheaper than pathkey comparison, do
		 * that first.  (XXX is that still true?)
		 */
		if (matched_path != NULL &&
			compare_fractional_path_costs(matched_path, path, fraction) <= 0)
			continue;

		if (pathkeys_contained_in(pathkeys, path->pathkeys) &&
			bms_is_subset(PATH_REQ_OUTER(path), required_outer))
			matched_path = path;
	}
	return matched_path;
}


/*
 * get_cheapest_parallel_safe_total_inner
 *	  Find the unparameterized parallel-safe path with the least total cost.
 */
Path *
get_cheapest_parallel_safe_total_inner(List *paths)
{
	ListCell   *l;

	foreach(l, paths)
	{
		Path	   *innerpath = (Path *) lfirst(l);

		if (innerpath->parallel_safe &&
			bms_is_empty(PATH_REQ_OUTER(innerpath)))
			return innerpath;
	}

	return NULL;
}

/****************************************************************************
 *		NEW PATHKEY FORMATION
 ****************************************************************************/

/*
 * build_index_pathkeys
 *	  Build a pathkeys list that describes the ordering induced by an index
 *	  scan using the given index.  (Note that an unordered index doesn't
 *	  induce any ordering, so we return NIL.)
 *
 * If 'scandir' is BackwardScanDirection, build pathkeys representing a
 * backwards scan of the index.
 *
 * We iterate only key columns of covering indexes, since non-key columns
 * don't influence index ordering.  The result is canonical, meaning that
 * redundant pathkeys are removed; it may therefore have fewer entries than
 * there are key columns in the index.
 *
 * Another reason for stopping early is that we may be able to tell that
 * an index column's sort order is uninteresting for this query.  However,
 * that test is just based on the existence of an EquivalenceClass and not
 * on position in pathkey lists, so it's not complete.  Caller should call
 * truncate_useless_pathkeys() to possibly remove more pathkeys.
 */
List *
build_index_pathkeys(PlannerInfo *root,
					 IndexOptInfo *index,
					 ScanDirection scandir)
{
	List	   *retval = NIL;
	ListCell   *lc;
	int			i;

	if (index->sortopfamily == NULL)
		return NIL;				/* non-orderable index */

	i = 0;
	foreach(lc, index->indextlist)
	{
		TargetEntry *indextle = (TargetEntry *) lfirst(lc);
		Expr	   *indexkey;
		bool		reverse_sort;
		bool		nulls_first;
		PathKey    *cpathkey;

		/*
		 * INCLUDE columns are stored in index unordered, so they don't
		 * support ordered index scan.
		 */
		if (i >= index->nkeycolumns)
			break;

		/* We assume we don't need to make a copy of the tlist item */
		indexkey = indextle->expr;

		if (ScanDirectionIsBackward(scandir))
		{
			reverse_sort = !index->reverse_sort[i];
			nulls_first = !index->nulls_first[i];
		}
		else
		{
			reverse_sort = index->reverse_sort[i];
			nulls_first = index->nulls_first[i];
		}

		/*
		 * OK, try to make a canonical pathkey for this sort key.  Note we're
		 * underneath any outer joins, so nullable_relids should be NULL.
		 */
		cpathkey = make_pathkey_from_sortinfo(root,
											  indexkey,
											  NULL,
											  index->sortopfamily[i],
											  index->opcintype[i],
											  index->indexcollations[i],
											  reverse_sort,
											  nulls_first,
											  0,
											  index->rel->relids,
											  false);

		if (cpathkey)
		{
			/*
			 * We found the sort key in an EquivalenceClass, so it's relevant
			 * for this query.  Add it to list, unless it's redundant.
			 */
			if (!pathkey_is_redundant(cpathkey, retval))
				retval = lappend(retval, cpathkey);
		}
		else
		{
			/*
			 * Boolean index keys might be redundant even if they do not
			 * appear in an EquivalenceClass, because of our special treatment
			 * of boolean equality conditions --- see the comment for
			 * indexcol_is_bool_constant_for_query().  If that applies, we can
			 * continue to examine lower-order index columns.  Otherwise, the
			 * sort key is not an interesting sort order for this query, so we
			 * should stop considering index columns; any lower-order sort
			 * keys won't be useful either.
			 */
			if (!indexcol_is_bool_constant_for_query(root, index, i))
				break;
		}

		i++;
	}

	return retval;
}

/*
 * partkey_is_bool_constant_for_query
 *
 * If a partition key column is constrained to have a constant value by the
 * query's WHERE conditions, then it's irrelevant for sort-order
 * considerations.  Usually that means we have a restriction clause
 * WHERE partkeycol = constant, which gets turned into an EquivalenceClass
 * containing a constant, which is recognized as redundant by
 * build_partition_pathkeys().  But if the partition key column is a
 * boolean variable (or expression), then we are not going to see such a
 * WHERE clause, because expression preprocessing will have simplified it
 * to "WHERE partkeycol" or "WHERE NOT partkeycol".  So we are not going
 * to have a matching EquivalenceClass (unless the query also contains
 * "ORDER BY partkeycol").  To allow such cases to work the same as they would
 * for non-boolean values, this function is provided to detect whether the
 * specified partition key column matches a boolean restriction clause.
 */
static bool
partkey_is_bool_constant_for_query(RelOptInfo *partrel, int partkeycol)
{
	PartitionScheme partscheme = partrel->part_scheme;
	ListCell   *lc;

	/*
	 * If the partkey isn't boolean, we can't possibly get a match.
	 *
	 * Partitioning currently can only use built-in AMs, so checking for
	 * built-in boolean opfamilies is good enough.
	 */
	if (!IsBuiltinBooleanOpfamily(partscheme->partopfamily[partkeycol]))
		return false;

	/* Check each restriction clause for the partitioned rel */
	foreach(lc, partrel->baserestrictinfo)
	{
		RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);

		/* Ignore pseudoconstant quals, they won't match */
		if (rinfo->pseudoconstant)
			continue;

		/* See if we can match the clause's expression to the partkey column */
		if (matches_boolean_partition_clause(rinfo, partrel, partkeycol))
			return true;
	}

	return false;
}

/*
 * matches_boolean_partition_clause
 *		Determine if the boolean clause described by rinfo matches
 *		partrel's partkeycol-th partition key column.
 *
 * "Matches" can be either an exact match (equivalent to partkey = true),
 * or a NOT above an exact match (equivalent to partkey = false).
 */
static bool
matches_boolean_partition_clause(RestrictInfo *rinfo,
								 RelOptInfo *partrel, int partkeycol)
{
	Node	   *clause = (Node *) rinfo->clause;
	Node	   *partexpr = (Node *) linitial(partrel->partexprs[partkeycol]);

	/* Direct match? */
	if (equal(partexpr, clause))
		return true;
	/* NOT clause? */
	else if (is_notclause(clause))
	{
		Node	   *arg = (Node *) get_notclausearg((Expr *) clause);

		if (equal(partexpr, arg))
			return true;
	}

	return false;
}

/*
 * build_partition_pathkeys
 *	  Build a pathkeys list that describes the ordering induced by the
 *	  partitions of partrel, under either forward or backward scan
 *	  as per scandir.
 *
 * Caller must have checked that the partitions are properly ordered,
 * as detected by partitions_are_ordered().
 *
 * Sets *partialkeys to true if pathkeys were only built for a prefix of the
 * partition key, or false if the pathkeys include all columns of the
 * partition key.
 */
List *
build_partition_pathkeys(PlannerInfo *root, RelOptInfo *partrel,
						 ScanDirection scandir, bool *partialkeys)
{
	List	   *retval = NIL;
	PartitionScheme partscheme = partrel->part_scheme;
	int			i;

	Assert(partscheme != NULL);
	Assert(partitions_are_ordered(partrel->boundinfo, partrel->live_parts));
	/* For now, we can only cope with baserels */
	Assert(IS_SIMPLE_REL(partrel));

	for (i = 0; i < partscheme->partnatts; i++)
	{
		PathKey    *cpathkey;
		Expr	   *keyCol = (Expr *) linitial(partrel->partexprs[i]);

		/*
		 * Try to make a canonical pathkey for this partkey.
		 *
		 * We're considering a baserel scan, so nullable_relids should be
		 * NULL.  Also, we assume the PartitionDesc lists any NULL partition
		 * last, so we treat the scan like a NULLS LAST index: we have
		 * nulls_first for backwards scan only.
		 */
		cpathkey = make_pathkey_from_sortinfo(root,
											  keyCol,
											  NULL,
											  partscheme->partopfamily[i],
											  partscheme->partopcintype[i],
											  partscheme->partcollation[i],
											  ScanDirectionIsBackward(scandir),
											  ScanDirectionIsBackward(scandir),
											  0,
											  partrel->relids,
											  false);


		if (cpathkey)
		{
			/*
			 * We found the sort key in an EquivalenceClass, so it's relevant
			 * for this query.  Add it to list, unless it's redundant.
			 */
			if (!pathkey_is_redundant(cpathkey, retval))
				retval = lappend(retval, cpathkey);
		}
		else
		{
			/*
			 * Boolean partition keys might be redundant even if they do not
			 * appear in an EquivalenceClass, because of our special treatment
			 * of boolean equality conditions --- see the comment for
			 * partkey_is_bool_constant_for_query().  If that applies, we can
			 * continue to examine lower-order partition keys.  Otherwise, the
			 * sort key is not an interesting sort order for this query, so we
			 * should stop considering partition columns; any lower-order sort
			 * keys won't be useful either.
			 */
			if (!partkey_is_bool_constant_for_query(partrel, i))
			{
				*partialkeys = true;
				return retval;
			}
		}
	}

	*partialkeys = false;
	return retval;
}

/*
 * build_expression_pathkey
 *	  Build a pathkeys list that describes an ordering by a single expression
 *	  using the given sort operator.
 *
 * expr, nullable_relids, and rel are as for make_pathkey_from_sortinfo.
 * We induce the other arguments assuming default sort order for the operator.
 *
 * Similarly to make_pathkey_from_sortinfo, the result is NIL if create_it
 * is false and the expression isn't already in some EquivalenceClass.
 */
List *
build_expression_pathkey(PlannerInfo *root,
						 Expr *expr,
						 Relids nullable_relids,
						 Oid opno,
						 Relids rel,
						 bool create_it)
{
	List	   *pathkeys;
	Oid			opfamily,
				opcintype;
	int16		strategy;
	PathKey    *cpathkey;

	/* Find the operator in pg_amop --- failure shouldn't happen */
	if (!get_ordering_op_properties(opno,
									&opfamily, &opcintype, &strategy))
		elog(ERROR, "operator %u is not a valid ordering operator",
			 opno);

	cpathkey = make_pathkey_from_sortinfo(root,
										  expr,
										  nullable_relids,
										  opfamily,
										  opcintype,
										  exprCollation((Node *) expr),
										  (strategy == BTGreaterStrategyNumber),
										  (strategy == BTGreaterStrategyNumber),
										  0,
										  rel,
										  create_it);

	if (cpathkey)
		pathkeys = list_make1(cpathkey);
	else
		pathkeys = NIL;

	return pathkeys;
}

/*
 * convert_subquery_pathkeys
 *	  Build a pathkeys list that describes the ordering of a subquery's
 *	  result, in the terms of the outer query.  This is essentially a
 *	  task of conversion.
 *
 * 'rel': outer query's RelOptInfo for the subquery relation.
 * 'subquery_pathkeys': the subquery's output pathkeys, in its terms.
 * 'subquery_tlist': the subquery's output targetlist, in its terms.
 *
 * We intentionally don't do truncate_useless_pathkeys() here, because there
 * are situations where seeing the raw ordering of the subquery is helpful.
 * For example, if it returns ORDER BY x DESC, that may prompt us to
 * construct a mergejoin using DESC order rather than ASC order; but the
 * right_merge_direction heuristic would have us throw the knowledge away.
 */
List *
convert_subquery_pathkeys(PlannerInfo *root, RelOptInfo *rel,
						  List *subquery_pathkeys,
						  List *subquery_tlist)
{
	List	   *retval = NIL;
	int			retvallen = 0;
	int			outer_query_keys = list_length(root->query_pathkeys);
	ListCell   *i;

	foreach(i, subquery_pathkeys)
	{
		PathKey    *sub_pathkey = (PathKey *) lfirst(i);
		EquivalenceClass *sub_eclass = sub_pathkey->pk_eclass;
		PathKey    *best_pathkey = NULL;

		if (sub_eclass->ec_has_volatile)
		{
			/*
			 * If the sub_pathkey's EquivalenceClass is volatile, then it must
			 * have come from an ORDER BY clause, and we have to match it to
			 * that same targetlist entry.
			 */
			TargetEntry *tle;
			Var		   *outer_var;

			if (sub_eclass->ec_sortref == 0)	/* can't happen */
				elog(ERROR, "volatile EquivalenceClass has no sortref");
			tle = get_sortgroupref_tle(sub_eclass->ec_sortref, subquery_tlist);
			Assert(tle);
			/* Is TLE actually available to the outer query? */
			outer_var = find_var_for_subquery_tle(rel, tle);
			if (outer_var)
			{
				/* We can represent this sub_pathkey */
				EquivalenceMember *sub_member;
				EquivalenceClass *outer_ec;

				Assert(list_length(sub_eclass->ec_members) == 1);
				sub_member = (EquivalenceMember *) linitial(sub_eclass->ec_members);

				/*
				 * Note: it might look funny to be setting sortref = 0 for a
				 * reference to a volatile sub_eclass.  However, the
				 * expression is *not* volatile in the outer query: it's just
				 * a Var referencing whatever the subquery emitted. (IOW, the
				 * outer query isn't going to re-execute the volatile
				 * expression itself.)	So this is okay.  Likewise, it's
				 * correct to pass nullable_relids = NULL, because we're
				 * underneath any outer joins appearing in the outer query.
				 */
				outer_ec =
					get_eclass_for_sort_expr(root,
											 (Expr *) outer_var,
											 NULL,
											 sub_eclass->ec_opfamilies,
											 sub_member->em_datatype,
											 sub_eclass->ec_collation,
											 0,
											 rel->relids,
											 false);

				/*
				 * If we don't find a matching EC, sub-pathkey isn't
				 * interesting to the outer query
				 */
				if (outer_ec)
					best_pathkey =
						make_canonical_pathkey(root,
											   outer_ec,
											   sub_pathkey->pk_opfamily,
											   sub_pathkey->pk_strategy,
											   sub_pathkey->pk_nulls_first);
			}
		}
		else
		{
			/*
			 * Otherwise, the sub_pathkey's EquivalenceClass could contain
			 * multiple elements (representing knowledge that multiple items
			 * are effectively equal).  Each element might match none, one, or
			 * more of the output columns that are visible to the outer query.
			 * This means we may have multiple possible representations of the
			 * sub_pathkey in the context of the outer query.  Ideally we
			 * would generate them all and put them all into an EC of the
			 * outer query, thereby propagating equality knowledge up to the
			 * outer query.  Right now we cannot do so, because the outer
			 * query's EquivalenceClasses are already frozen when this is
			 * called. Instead we prefer the one that has the highest "score"
			 * (number of EC peers, plus one if it matches the outer
			 * query_pathkeys). This is the most likely to be useful in the
			 * outer query.
			 */
			int			best_score = -1;
			ListCell   *j;

			foreach(j, sub_eclass->ec_members)
			{
				EquivalenceMember *sub_member = (EquivalenceMember *) lfirst(j);
				Expr	   *sub_expr = sub_member->em_expr;
				Oid			sub_expr_type = sub_member->em_datatype;
				Oid			sub_expr_coll = sub_eclass->ec_collation;
				ListCell   *k;

				if (sub_member->em_is_child)
					continue;	/* ignore children here */

				foreach(k, subquery_tlist)
				{
					TargetEntry *tle = (TargetEntry *) lfirst(k);
					Var		   *outer_var;
					Expr	   *tle_expr;
					EquivalenceClass *outer_ec;
					PathKey    *outer_pk;
					int			score;

					/* Is TLE actually available to the outer query? */
					outer_var = find_var_for_subquery_tle(rel, tle);
					if (!outer_var)
						continue;

					/*
					 * The targetlist entry is considered to match if it
					 * matches after sort-key canonicalization.  That is
					 * needed since the sub_expr has been through the same
					 * process.
					 */
					tle_expr = canonicalize_ec_expression(tle->expr,
														  sub_expr_type,
														  sub_expr_coll);
					if (!equal(tle_expr, sub_expr))
						continue;

					/* See if we have a matching EC for the TLE */
					outer_ec = get_eclass_for_sort_expr(root,
														(Expr *) outer_var,
														NULL,
														sub_eclass->ec_opfamilies,
														sub_expr_type,
														sub_expr_coll,
														0,
														rel->relids,
														false);

					/*
					 * If we don't find a matching EC, this sub-pathkey isn't
					 * interesting to the outer query
					 */
					if (!outer_ec)
						continue;

					outer_pk = make_canonical_pathkey(root,
													  outer_ec,
													  sub_pathkey->pk_opfamily,
													  sub_pathkey->pk_strategy,
													  sub_pathkey->pk_nulls_first);
					/* score = # of equivalence peers */
					score = list_length(outer_ec->ec_members) - 1;
					/* +1 if it matches the proper query_pathkeys item */
					if (retvallen < outer_query_keys &&
						list_nth(root->query_pathkeys, retvallen) == outer_pk)
						score++;
					if (score > best_score)
					{
						best_pathkey = outer_pk;
						best_score = score;
					}
				}
			}
		}

		/*
		 * If we couldn't find a representation of this sub_pathkey, we're
		 * done (we can't use the ones to its right, either).
		 */
		if (!best_pathkey)
			break;

		/*
		 * Eliminate redundant ordering info; could happen if outer query
		 * equivalences subquery keys...
		 */
		if (!pathkey_is_redundant(best_pathkey, retval))
		{
			retval = lappend(retval, best_pathkey);
			retvallen++;
		}
	}

	return retval;
}

/*
 * find_var_for_subquery_tle
 *
 * If the given subquery tlist entry is due to be emitted by the subquery's
 * scan node, return a Var for it, else return NULL.
 *
 * We need this to ensure that we don't return pathkeys describing values
 * that are unavailable above the level of the subquery scan.
 */
static Var *
find_var_for_subquery_tle(RelOptInfo *rel, TargetEntry *tle)
{
	ListCell   *lc;

	/* If the TLE is resjunk, it's certainly not visible to the outer query */
	if (tle->resjunk)
		return NULL;

	/* Search the rel's targetlist to see what it will return */
	foreach(lc, rel->reltarget->exprs)
	{
		Var		   *var = (Var *) lfirst(lc);

		/* Ignore placeholders */
		if (!IsA(var, Var))
			continue;
		Assert(var->varno == rel->relid);

		/* If we find a Var referencing this TLE, we're good */
		if (var->varattno == tle->resno)
			return copyObject(var); /* Make a copy for safety */
	}
	return NULL;
}

/*
 * build_join_pathkeys
 *	  Build the path keys for a join relation constructed by mergejoin or
 *	  nestloop join.  This is normally the same as the outer path's keys.
 *
 *	  EXCEPTION: in a FULL or RIGHT join, we cannot treat the result as
 *	  having the outer path's path keys, because null lefthand rows may be
 *	  inserted at random points.  It must be treated as unsorted.
 *
 *	  We truncate away any pathkeys that are uninteresting for higher joins.
 *
 * 'joinrel' is the join relation that paths are being formed for
 * 'jointype' is the join type (inner, left, full, etc)
 * 'outer_pathkeys' is the list of the current outer path's path keys
 *
 * Returns the list of new path keys.
 */
List *
build_join_pathkeys(PlannerInfo *root,
					RelOptInfo *joinrel,
					JoinType jointype,
					List *outer_pathkeys)
{
	if (jointype == JOIN_FULL || jointype == JOIN_RIGHT)
		return NIL;

	/*
	 * This used to be quite a complex bit of code, but now that all pathkey
	 * sublists start out life canonicalized, we don't have to do a darn thing
	 * here!
	 *
	 * We do, however, need to truncate the pathkeys list, since it may
	 * contain pathkeys that were useful for forming this joinrel but are
	 * uninteresting to higher levels.
	 */
	return truncate_useless_pathkeys(root, joinrel, outer_pathkeys);
}

/****************************************************************************
 *		PATHKEYS AND SORT CLAUSES
 ****************************************************************************/

/*
 * make_pathkeys_for_sortclauses
 *		Generate a pathkeys list that represents the sort order specified
 *		by a list of SortGroupClauses
 *
 * The resulting PathKeys are always in canonical form.  (Actually, there
 * is no longer any code anywhere that creates non-canonical PathKeys.)
 *
 * We assume that root->nullable_baserels is the set of base relids that could
 * have gone to NULL below the SortGroupClause expressions.  This is okay if
 * the expressions came from the query's top level (ORDER BY, DISTINCT, etc)
 * and if this function is only invoked after deconstruct_jointree.  In the
 * future we might have to make callers pass in the appropriate
 * nullable-relids set, but for now it seems unnecessary.
 *
 * 'sortclauses' is a list of SortGroupClause nodes
 * 'tlist' is the targetlist to find the referenced tlist entries in
 */
List *
make_pathkeys_for_sortclauses(PlannerInfo *root,
							  List *sortclauses,
							  List *tlist)
{
	List	   *pathkeys = NIL;
	ListCell   *l;

	foreach(l, sortclauses)
	{
		SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
		Expr	   *sortkey;
		PathKey    *pathkey;

		sortkey = (Expr *) get_sortgroupclause_expr(sortcl, tlist);
		Assert(OidIsValid(sortcl->sortop));
		pathkey = make_pathkey_from_sortop(root,
										   sortkey,
										   root->nullable_baserels,
										   sortcl->sortop,
										   sortcl->nulls_first,
										   sortcl->tleSortGroupRef,
										   true);

		/* Canonical form eliminates redundant ordering keys */
		if (!pathkey_is_redundant(pathkey, pathkeys))
			pathkeys = lappend(pathkeys, pathkey);
	}
	return pathkeys;
}

/****************************************************************************
 *		PATHKEYS AND MERGECLAUSES
 ****************************************************************************/

/*
 * initialize_mergeclause_eclasses
 *		Set the EquivalenceClass links in a mergeclause restrictinfo.
 *
 * RestrictInfo contains fields in which we may cache pointers to
 * EquivalenceClasses for the left and right inputs of the mergeclause.
 * (If the mergeclause is a true equivalence clause these will be the
 * same EquivalenceClass, otherwise not.)  If the mergeclause is either
 * used to generate an EquivalenceClass, or derived from an EquivalenceClass,
 * then it's easy to set up the left_ec and right_ec members --- otherwise,
 * this function should be called to set them up.  We will generate new
 * EquivalenceClauses if necessary to represent the mergeclause's left and
 * right sides.
 *
 * Note this is called before EC merging is complete, so the links won't
 * necessarily point to canonical ECs.  Before they are actually used for
 * anything, update_mergeclause_eclasses must be called to ensure that
 * they've been updated to point to canonical ECs.
 */
void
initialize_mergeclause_eclasses(PlannerInfo *root, RestrictInfo *restrictinfo)
{
	Expr	   *clause = restrictinfo->clause;
	Oid			lefttype,
				righttype;

	/* Should be a mergeclause ... */
	Assert(restrictinfo->mergeopfamilies != NIL);
	/* ... with links not yet set */
	Assert(restrictinfo->left_ec == NULL);
	Assert(restrictinfo->right_ec == NULL);

	/* Need the declared input types of the operator */
	op_input_types(((OpExpr *) clause)->opno, &lefttype, &righttype);

	/* Find or create a matching EquivalenceClass for each side */
	restrictinfo->left_ec =
		get_eclass_for_sort_expr(root,
								 (Expr *) get_leftop(clause),
								 restrictinfo->nullable_relids,
								 restrictinfo->mergeopfamilies,
								 lefttype,
								 ((OpExpr *) clause)->inputcollid,
								 0,
								 NULL,
								 true);
	restrictinfo->right_ec =
		get_eclass_for_sort_expr(root,
								 (Expr *) get_rightop(clause),
								 restrictinfo->nullable_relids,
								 restrictinfo->mergeopfamilies,
								 righttype,
								 ((OpExpr *) clause)->inputcollid,
								 0,
								 NULL,
								 true);
}

/*
 * update_mergeclause_eclasses
 *		Make the cached EquivalenceClass links valid in a mergeclause
 *		restrictinfo.
 *
 * These pointers should have been set by process_equivalence or
 * initialize_mergeclause_eclasses, but they might have been set to
 * non-canonical ECs that got merged later.  Chase up to the canonical
 * merged parent if so.
 */
void
update_mergeclause_eclasses(PlannerInfo *root, RestrictInfo *restrictinfo)
{
	/* Should be a merge clause ... */
	Assert(restrictinfo->mergeopfamilies != NIL);
	/* ... with pointers already set */
	Assert(restrictinfo->left_ec != NULL);
	Assert(restrictinfo->right_ec != NULL);

	/* Chase up to the top as needed */
	while (restrictinfo->left_ec->ec_merged)
		restrictinfo->left_ec = restrictinfo->left_ec->ec_merged;
	while (restrictinfo->right_ec->ec_merged)
		restrictinfo->right_ec = restrictinfo->right_ec->ec_merged;
}

/*
 * find_mergeclauses_for_outer_pathkeys
 *	  This routine attempts to find a list of mergeclauses that can be
 *	  used with a specified ordering for the join's outer relation.
 *	  If successful, it returns a list of mergeclauses.
 *
 * 'pathkeys' is a pathkeys list showing the ordering of an outer-rel path.
 * 'restrictinfos' is a list of mergejoinable restriction clauses for the
 *			join relation being formed, in no particular order.
 *
 * The restrictinfos must be marked (via outer_is_left) to show which side
 * of each clause is associated with the current outer path.  (See
 * select_mergejoin_clauses())
 *
 * The result is NIL if no merge can be done, else a maximal list of
 * usable mergeclauses (represented as a list of their restrictinfo nodes).
 * The list is ordered to match the pathkeys, as required for execution.
 */
List *
find_mergeclauses_for_outer_pathkeys(PlannerInfo *root,
									 List *pathkeys,
									 List *restrictinfos)
{
	List	   *mergeclauses = NIL;
	ListCell   *i;

	/* make sure we have eclasses cached in the clauses */
	foreach(i, restrictinfos)
	{
		RestrictInfo *rinfo = (RestrictInfo *) lfirst(i);

		update_mergeclause_eclasses(root, rinfo);
	}

	foreach(i, pathkeys)
	{
		PathKey    *pathkey = (PathKey *) lfirst(i);
		EquivalenceClass *pathkey_ec = pathkey->pk_eclass;
		List	   *matched_restrictinfos = NIL;
		ListCell   *j;

		/*----------
		 * A mergejoin clause matches a pathkey if it has the same EC.
		 * If there are multiple matching clauses, take them all.  In plain
		 * inner-join scenarios we expect only one match, because
		 * equivalence-class processing will have removed any redundant
		 * mergeclauses.  However, in outer-join scenarios there might be
		 * multiple matches.  An example is
		 *
		 *	select * from a full join b
		 *		on a.v1 = b.v1 and a.v2 = b.v2 and a.v1 = b.v2;
		 *
		 * Given the pathkeys ({a.v1}, {a.v2}) it is okay to return all three
		 * clauses (in the order a.v1=b.v1, a.v1=b.v2, a.v2=b.v2) and indeed
		 * we *must* do so or we will be unable to form a valid plan.
		 *
		 * We expect that the given pathkeys list is canonical, which means
		 * no two members have the same EC, so it's not possible for this
		 * code to enter the same mergeclause into the result list twice.
		 *
		 * It's possible that multiple matching clauses might have different
		 * ECs on the other side, in which case the order we put them into our
		 * result makes a difference in the pathkeys required for the inner
		 * input rel.  However this routine hasn't got any info about which
		 * order would be best, so we don't worry about that.
		 *
		 * It's also possible that the selected mergejoin clauses produce
		 * a noncanonical ordering of pathkeys for the inner side, ie, we
		 * might select clauses that reference b.v1, b.v2, b.v1 in that
		 * order.  This is not harmful in itself, though it suggests that
		 * the clauses are partially redundant.  Since the alternative is
		 * to omit mergejoin clauses and thereby possibly fail to generate a
		 * plan altogether, we live with it.  make_inner_pathkeys_for_merge()
		 * has to delete duplicates when it constructs the inner pathkeys
		 * list, and we also have to deal with such cases specially in
		 * create_mergejoin_plan().
		 *----------
		 */
		foreach(j, restrictinfos)
		{
			RestrictInfo *rinfo = (RestrictInfo *) lfirst(j);
			EquivalenceClass *clause_ec;

			clause_ec = rinfo->outer_is_left ?
				rinfo->left_ec : rinfo->right_ec;
			if (clause_ec == pathkey_ec)
				matched_restrictinfos = lappend(matched_restrictinfos, rinfo);
		}

		/*
		 * If we didn't find a mergeclause, we're done --- any additional
		 * sort-key positions in the pathkeys are useless.  (But we can still
		 * mergejoin if we found at least one mergeclause.)
		 */
		if (matched_restrictinfos == NIL)
			break;

		/*
		 * If we did find usable mergeclause(s) for this sort-key position,
		 * add them to result list.
		 */
		mergeclauses = list_concat(mergeclauses, matched_restrictinfos);
	}

	return mergeclauses;
}

/*
 * select_outer_pathkeys_for_merge
 *	  Builds a pathkey list representing a possible sort ordering
 *	  that can be used with the given mergeclauses.
 *
 * 'mergeclauses' is a list of RestrictInfos for mergejoin clauses
 *			that will be used in a merge join.
 * 'joinrel' is the join relation we are trying to construct.
 *
 * The restrictinfos must be marked (via outer_is_left) to show which side
 * of each clause is associated with the current outer path.  (See
 * select_mergejoin_clauses())
 *
 * Returns a pathkeys list that can be applied to the outer relation.
 *
 * Since we assume here that a sort is required, there is no particular use
 * in matching any available ordering of the outerrel.  (joinpath.c has an
 * entirely separate code path for considering sort-free mergejoins.)  Rather,
 * it's interesting to try to match, or match a prefix of the requested
 * query_pathkeys so that a second output sort may be avoided or an
 * incremental sort may be done instead.  We can get away with just a prefix
 * of the query_pathkeys when that prefix covers the entire join condition.
 * Failing that, we try to list "more popular" keys  (those with the most
 * unmatched EquivalenceClass peers) earlier, in hopes of making the resulting
 * ordering useful for as many higher-level mergejoins as possible.
 */
List *
select_outer_pathkeys_for_merge(PlannerInfo *root,
								List *mergeclauses,
								RelOptInfo *joinrel)
{
	List	   *pathkeys = NIL;
	int			nClauses = list_length(mergeclauses);
	EquivalenceClass **ecs;
	int		   *scores;
	int			necs;
	ListCell   *lc;
	int			j;

	/* Might have no mergeclauses */
	if (nClauses == 0)
		return NIL;

	/*
	 * Make arrays of the ECs used by the mergeclauses (dropping any
	 * duplicates) and their "popularity" scores.
	 */
	ecs = (EquivalenceClass **) palloc(nClauses * sizeof(EquivalenceClass *));
	scores = (int *) palloc(nClauses * sizeof(int));
	necs = 0;

	foreach(lc, mergeclauses)
	{
		RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
		EquivalenceClass *oeclass;
		int			score;
		ListCell   *lc2;

		/* get the outer eclass */
		update_mergeclause_eclasses(root, rinfo);

		if (rinfo->outer_is_left)
			oeclass = rinfo->left_ec;
		else
			oeclass = rinfo->right_ec;

		/* reject duplicates */
		for (j = 0; j < necs; j++)
		{
			if (ecs[j] == oeclass)
				break;
		}
		if (j < necs)
			continue;

		/* compute score */
		score = 0;
		foreach(lc2, oeclass->ec_members)
		{
			EquivalenceMember *em = (EquivalenceMember *) lfirst(lc2);

			/* Potential future join partner? */
			if (!em->em_is_const && !em->em_is_child &&
				!bms_overlap(em->em_relids, joinrel->relids))
				score++;
		}

		ecs[necs] = oeclass;
		scores[necs] = score;
		necs++;
	}

	/*
	 * Find out if we have all the ECs mentioned in query_pathkeys; if so we
	 * can generate a sort order that's also useful for final output. If we
	 * only have a prefix of the query_pathkeys, and that prefix is the entire
	 * join condition, then it's useful to use the prefix as the pathkeys as
	 * this increases the chances that an incremental sort will be able to be
	 * used by the upper planner.
	 */
	if (root->query_pathkeys)
	{
		int			matches = 0;

		foreach(lc, root->query_pathkeys)
		{
			PathKey    *query_pathkey = (PathKey *) lfirst(lc);
			EquivalenceClass *query_ec = query_pathkey->pk_eclass;

			for (j = 0; j < necs; j++)
			{
				if (ecs[j] == query_ec)
					break;		/* found match */
			}
			if (j >= necs)
				break;			/* didn't find match */

			matches++;
		}
		/* if we got to the end of the list, we have them all */
		if (lc == NULL)
		{
			/* copy query_pathkeys as starting point for our output */
			pathkeys = list_copy(root->query_pathkeys);
			/* mark their ECs as already-emitted */
			foreach(lc, root->query_pathkeys)
			{
				PathKey    *query_pathkey = (PathKey *) lfirst(lc);
				EquivalenceClass *query_ec = query_pathkey->pk_eclass;

				for (j = 0; j < necs; j++)
				{
					if (ecs[j] == query_ec)
					{
						scores[j] = -1;
						break;
					}
				}
			}
		}

		/*
		 * If we didn't match to all of the query_pathkeys, but did match to
		 * all of the join clauses then we'll make use of these as partially
		 * sorted input is better than nothing for the upper planner as it may
		 * lead to incremental sorts instead of full sorts.
		 */
		else if (matches == nClauses)
		{
			pathkeys = list_copy_head(root->query_pathkeys, matches);

			/* we have all of the join pathkeys, so nothing more to do */
			pfree(ecs);
			pfree(scores);

			return pathkeys;
		}
	}

	/*
	 * Add remaining ECs to the list in popularity order, using a default sort
	 * ordering.  (We could use qsort() here, but the list length is usually
	 * so small it's not worth it.)
	 */
	for (;;)
	{
		int			best_j;
		int			best_score;
		EquivalenceClass *ec;
		PathKey    *pathkey;

		best_j = 0;
		best_score = scores[0];
		for (j = 1; j < necs; j++)
		{
			if (scores[j] > best_score)
			{
				best_j = j;
				best_score = scores[j];
			}
		}
		if (best_score < 0)
			break;				/* all done */
		ec = ecs[best_j];
		scores[best_j] = -1;
		pathkey = make_canonical_pathkey(root,
										 ec,
										 linitial_oid(ec->ec_opfamilies),
										 BTLessStrategyNumber,
										 false);
		/* can't be redundant because no duplicate ECs */
		Assert(!pathkey_is_redundant(pathkey, pathkeys));
		pathkeys = lappend(pathkeys, pathkey);
	}

	pfree(ecs);
	pfree(scores);

	return pathkeys;
}

/*
 * make_inner_pathkeys_for_merge
 *	  Builds a pathkey list representing the explicit sort order that
 *	  must be applied to an inner path to make it usable with the
 *	  given mergeclauses.
 *
 * 'mergeclauses' is a list of RestrictInfos for the mergejoin clauses
 *			that will be used in a merge join, in order.
 * 'outer_pathkeys' are the already-known canonical pathkeys for the outer
 *			side of the join.
 *
 * The restrictinfos must be marked (via outer_is_left) to show which side
 * of each clause is associated with the current outer path.  (See
 * select_mergejoin_clauses())
 *
 * Returns a pathkeys list that can be applied to the inner relation.
 *
 * Note that it is not this routine's job to decide whether sorting is
 * actually needed for a particular input path.  Assume a sort is necessary;
 * just make the keys, eh?
 */
List *
make_inner_pathkeys_for_merge(PlannerInfo *root,
							  List *mergeclauses,
							  List *outer_pathkeys)
{
	List	   *pathkeys = NIL;
	EquivalenceClass *lastoeclass;
	PathKey    *opathkey;
	ListCell   *lc;
	ListCell   *lop;

	lastoeclass = NULL;
	opathkey = NULL;
	lop = list_head(outer_pathkeys);

	foreach(lc, mergeclauses)
	{
		RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
		EquivalenceClass *oeclass;
		EquivalenceClass *ieclass;
		PathKey    *pathkey;

		update_mergeclause_eclasses(root, rinfo);

		if (rinfo->outer_is_left)
		{
			oeclass = rinfo->left_ec;
			ieclass = rinfo->right_ec;
		}
		else
		{
			oeclass = rinfo->right_ec;
			ieclass = rinfo->left_ec;
		}

		/* outer eclass should match current or next pathkeys */
		/* we check this carefully for debugging reasons */
		if (oeclass != lastoeclass)
		{
			if (!lop)
				elog(ERROR, "too few pathkeys for mergeclauses");
			opathkey = (PathKey *) lfirst(lop);
			lop = lnext(outer_pathkeys, lop);
			lastoeclass = opathkey->pk_eclass;
			if (oeclass != lastoeclass)
				elog(ERROR, "outer pathkeys do not match mergeclause");
		}

		/*
		 * Often, we'll have same EC on both sides, in which case the outer
		 * pathkey is also canonical for the inner side, and we can skip a
		 * useless search.
		 */
		if (ieclass == oeclass)
			pathkey = opathkey;
		else
			pathkey = make_canonical_pathkey(root,
											 ieclass,
											 opathkey->pk_opfamily,
											 opathkey->pk_strategy,
											 opathkey->pk_nulls_first);

		/*
		 * Don't generate redundant pathkeys (which can happen if multiple
		 * mergeclauses refer to the same EC).  Because we do this, the output
		 * pathkey list isn't necessarily ordered like the mergeclauses, which
		 * complicates life for create_mergejoin_plan().  But if we didn't,
		 * we'd have a noncanonical sort key list, which would be bad; for one
		 * reason, it certainly wouldn't match any available sort order for
		 * the input relation.
		 */
		if (!pathkey_is_redundant(pathkey, pathkeys))
			pathkeys = lappend(pathkeys, pathkey);
	}

	return pathkeys;
}

/*
 * trim_mergeclauses_for_inner_pathkeys
 *	  This routine trims a list of mergeclauses to include just those that
 *	  work with a specified ordering for the join's inner relation.
 *
 * 'mergeclauses' is a list of RestrictInfos for mergejoin clauses for the
 *			join relation being formed, in an order known to work for the
 *			currently-considered sort ordering of the join's outer rel.
 * 'pathkeys' is a pathkeys list showing the ordering of an inner-rel path;
 *			it should be equal to, or a truncation of, the result of
 *			make_inner_pathkeys_for_merge for these mergeclauses.
 *
 * What we return will be a prefix of the given mergeclauses list.
 *
 * We need this logic because make_inner_pathkeys_for_merge's result isn't
 * necessarily in the same order as the mergeclauses.  That means that if we
 * consider an inner-rel pathkey list that is a truncation of that result,
 * we might need to drop mergeclauses even though they match a surviving inner
 * pathkey.  This happens when they are to the right of a mergeclause that
 * matches a removed inner pathkey.
 *
 * The mergeclauses must be marked (via outer_is_left) to show which side
 * of each clause is associated with the current outer path.  (See
 * select_mergejoin_clauses())
 */
List *
trim_mergeclauses_for_inner_pathkeys(PlannerInfo *root,
									 List *mergeclauses,
									 List *pathkeys)
{
	List	   *new_mergeclauses = NIL;
	PathKey    *pathkey;
	EquivalenceClass *pathkey_ec;
	bool		matched_pathkey;
	ListCell   *lip;
	ListCell   *i;

	/* No pathkeys => no mergeclauses (though we don't expect this case) */
	if (pathkeys == NIL)
		return NIL;
	/* Initialize to consider first pathkey */
	lip = list_head(pathkeys);
	pathkey = (PathKey *) lfirst(lip);
	pathkey_ec = pathkey->pk_eclass;
	lip = lnext(pathkeys, lip);
	matched_pathkey = false;

	/* Scan mergeclauses to see how many we can use */
	foreach(i, mergeclauses)
	{
		RestrictInfo *rinfo = (RestrictInfo *) lfirst(i);
		EquivalenceClass *clause_ec;

		/* Assume we needn't do update_mergeclause_eclasses again here */

		/* Check clause's inner-rel EC against current pathkey */
		clause_ec = rinfo->outer_is_left ?
			rinfo->right_ec : rinfo->left_ec;

		/* If we don't have a match, attempt to advance to next pathkey */
		if (clause_ec != pathkey_ec)
		{
			/* If we had no clauses matching this inner pathkey, must stop */
			if (!matched_pathkey)
				break;

			/* Advance to next inner pathkey, if any */
			if (lip == NULL)
				break;
			pathkey = (PathKey *) lfirst(lip);
			pathkey_ec = pathkey->pk_eclass;
			lip = lnext(pathkeys, lip);
			matched_pathkey = false;
		}

		/* If mergeclause matches current inner pathkey, we can use it */
		if (clause_ec == pathkey_ec)
		{
			new_mergeclauses = lappend(new_mergeclauses, rinfo);
			matched_pathkey = true;
		}
		else
		{
			/* Else, no hope of adding any more mergeclauses */
			break;
		}
	}

	return new_mergeclauses;
}


/****************************************************************************
 *		PATHKEY USEFULNESS CHECKS
 *
 * We only want to remember as many of the pathkeys of a path as have some
 * potential use, either for subsequent mergejoins or for meeting the query's
 * requested output ordering.  This ensures that add_path() won't consider
 * a path to have a usefully different ordering unless it really is useful.
 * These routines check for usefulness of given pathkeys.
 ****************************************************************************/

/*
 * pathkeys_useful_for_merging
 *		Count the number of pathkeys that may be useful for mergejoins
 *		above the given relation.
 *
 * We consider a pathkey potentially useful if it corresponds to the merge
 * ordering of either side of any joinclause for the rel.  This might be
 * overoptimistic, since joinclauses that require different other relations
 * might never be usable at the same time, but trying to be exact is likely
 * to be more trouble than it's worth.
 *
 * To avoid doubling the number of mergejoin paths considered, we would like
 * to consider only one of the two scan directions (ASC or DESC) as useful
 * for merging for any given target column.  The choice is arbitrary unless
 * one of the directions happens to match an ORDER BY key, in which case
 * that direction should be preferred, in hopes of avoiding a final sort step.
 * right_merge_direction() implements this heuristic.
 */
static int
pathkeys_useful_for_merging(PlannerInfo *root, RelOptInfo *rel, List *pathkeys)
{
	int			useful = 0;
	ListCell   *i;

	foreach(i, pathkeys)
	{
		PathKey    *pathkey = (PathKey *) lfirst(i);
		bool		matched = false;
		ListCell   *j;

		/* If "wrong" direction, not useful for merging */
		if (!right_merge_direction(root, pathkey))
			break;

		/*
		 * First look into the EquivalenceClass of the pathkey, to see if
		 * there are any members not yet joined to the rel.  If so, it's
		 * surely possible to generate a mergejoin clause using them.
		 */
		if (rel->has_eclass_joins &&
			eclass_useful_for_merging(root, pathkey->pk_eclass, rel))
			matched = true;
		else
		{
			/*
			 * Otherwise search the rel's joininfo list, which contains
			 * non-EquivalenceClass-derivable join clauses that might
			 * nonetheless be mergejoinable.
			 */
			foreach(j, rel->joininfo)
			{
				RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(j);

				if (restrictinfo->mergeopfamilies == NIL)
					continue;
				update_mergeclause_eclasses(root, restrictinfo);

				if (pathkey->pk_eclass == restrictinfo->left_ec ||
					pathkey->pk_eclass == restrictinfo->right_ec)
				{
					matched = true;
					break;
				}
			}
		}

		/*
		 * If we didn't find a mergeclause, we're done --- any additional
		 * sort-key positions in the pathkeys are useless.  (But we can still
		 * mergejoin if we found at least one mergeclause.)
		 */
		if (matched)
			useful++;
		else
			break;
	}

	return useful;
}

/*
 * right_merge_direction
 *		Check whether the pathkey embodies the preferred sort direction
 *		for merging its target column.
 */
static bool
right_merge_direction(PlannerInfo *root, PathKey *pathkey)
{
	ListCell   *l;

	foreach(l, root->query_pathkeys)
	{
		PathKey    *query_pathkey = (PathKey *) lfirst(l);

		if (pathkey->pk_eclass == query_pathkey->pk_eclass &&
			pathkey->pk_opfamily == query_pathkey->pk_opfamily)
		{
			/*
			 * Found a matching query sort column.  Prefer this pathkey's
			 * direction iff it matches.  Note that we ignore pk_nulls_first,
			 * which means that a sort might be needed anyway ... but we still
			 * want to prefer only one of the two possible directions, and we
			 * might as well use this one.
			 */
			return (pathkey->pk_strategy == query_pathkey->pk_strategy);
		}
	}

	/* If no matching ORDER BY request, prefer the ASC direction */
	return (pathkey->pk_strategy == BTLessStrategyNumber);
}

/*
 * pathkeys_useful_for_ordering
 *		Count the number of pathkeys that are useful for meeting the
 *		query's requested output ordering.
 *
 * Because we the have the possibility of incremental sort, a prefix list of
 * keys is potentially useful for improving the performance of the requested
 * ordering. Thus we return 0, if no valuable keys are found, or the number
 * of leading keys shared by the list and the requested ordering..
 */
static int
pathkeys_useful_for_ordering(PlannerInfo *root, List *pathkeys)
{
	int			n_common_pathkeys;

	if (root->query_pathkeys == NIL)
		return 0;				/* no special ordering requested */

	if (pathkeys == NIL)
		return 0;				/* unordered path */

	(void) pathkeys_count_contained_in(root->query_pathkeys, pathkeys,
									   &n_common_pathkeys);

	return n_common_pathkeys;
}

/*
 * pathkeys_useful_for_grouping
 *		Count the number of pathkeys that are useful for grouping (instead of
 *		explicit sort)
 *
 * Group pathkeys could be reordered to benefit from the ordering. The
 * ordering may not be "complete" and may require incremental sort, but that's
 * fine. So we simply count prefix pathkeys with a matching group key, and
 * stop once we find the first pathkey without a match.
 *
 * So e.g. with pathkeys (a,b,c) and group keys (a,b,e) this determines (a,b)
 * pathkeys are useful for grouping, and we might do incremental sort to get
 * path ordered by (a,b,e).
 *
 * This logic is necessary to retain paths with ordering not matching grouping
 * keys directly, without the reordering.
 *
 * Returns the length of pathkey prefix with matching group keys.
 */
static int
pathkeys_useful_for_grouping(PlannerInfo *root, List *pathkeys)
{
	ListCell   *key;
	int			n = 0;

	/* no special ordering requested for grouping */
	if (root->group_pathkeys == NIL)
		return 0;

	/* unordered path */
	if (pathkeys == NIL)
		return 0;

	/* walk the pathkeys and search for matching group key */
	foreach(key, pathkeys)
	{
		PathKey    *pathkey = (PathKey *) lfirst(key);

		/* no matching group key, we're done */
		if (!list_member_ptr(root->group_pathkeys, pathkey))
			break;

		n++;
	}

	return n;
}

/*
 * truncate_useless_pathkeys
 *		Shorten the given pathkey list to just the useful pathkeys.
 */
List *
truncate_useless_pathkeys(PlannerInfo *root,
						  RelOptInfo *rel,
						  List *pathkeys)
{
	int			nuseful;
	int			nuseful2;

	nuseful = pathkeys_useful_for_merging(root, rel, pathkeys);
	nuseful2 = pathkeys_useful_for_ordering(root, pathkeys);
	if (nuseful2 > nuseful)
		nuseful = nuseful2;
	nuseful2 = pathkeys_useful_for_grouping(root, pathkeys);
	if (nuseful2 > nuseful)
		nuseful = nuseful2;

	/*
	 * Note: not safe to modify input list destructively, but we can avoid
	 * copying the list if we're not actually going to change it
	 */
	if (nuseful == 0)
		return NIL;
	else if (nuseful == list_length(pathkeys))
		return pathkeys;
	else
		return list_copy_head(pathkeys, nuseful);
}

/*
 * has_useful_pathkeys
 *		Detect whether the specified rel could have any pathkeys that are
 *		useful according to truncate_useless_pathkeys().
 *
 * This is a cheap test that lets us skip building pathkeys at all in very
 * simple queries.  It's OK to err in the direction of returning "true" when
 * there really aren't any usable pathkeys, but erring in the other direction
 * is bad --- so keep this in sync with the routines above!
 *
 * We could make the test more complex, for example checking to see if any of
 * the joinclauses are really mergejoinable, but that likely wouldn't win
 * often enough to repay the extra cycles.  Queries with neither a join nor
 * a sort are reasonably common, though, so this much work seems worthwhile.
 */
bool
has_useful_pathkeys(PlannerInfo *root, RelOptInfo *rel)
{
	if (rel->joininfo != NIL || rel->has_eclass_joins)
		return true;			/* might be able to use pathkeys for merging */
	if (root->group_pathkeys != NIL)
		return true;			/* might be able to use pathkeys for grouping */
	if (root->query_pathkeys != NIL)
		return true;			/* might be able to use them for ordering */
	return false;				/* definitely useless */
}