aboutsummaryrefslogtreecommitdiff
path: root/src/backend/optimizer/path/orindxpath.c
blob: 51699a73d2154e02299fbf2b60a08f09d22bf4b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/*-------------------------------------------------------------------------
 *
 * orindxpath.c
 *	  Routines to find index paths that match a set of 'or' clauses
 *
 * Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $Header: /cvsroot/pgsql/src/backend/optimizer/path/orindxpath.c,v 1.32 1999/08/16 02:17:52 tgl Exp $
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"




#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/internal.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/restrictinfo.h"
#include "parser/parsetree.h"


static void best_or_subclause_indices(Query *root, RelOptInfo *rel,
									  List *subclauses, List *indices,
									  List **indexquals,
									  List **indexids,
									  Cost *cost, Cost *selec);
static void best_or_subclause_index(Query *root, RelOptInfo *rel,
									List *indexqual, List *indices,
									int *retIndexid,
									Cost *retCost, Cost *retSelec);


/*
 * create_or_index_paths
 *	  Creates index paths for indices that match 'or' clauses.
 *	  create_index_paths() must already have been called.
 *
 * 'rel' is the relation entry for which the paths are to be defined on
 * 'clauses' is the list of available restriction clause nodes
 *
 * Returns a list of index path nodes.
 *
 */
List *
create_or_index_paths(Query *root,
					  RelOptInfo *rel, List *clauses)
{
	List	   *path_list = NIL;
	List	   *clist;

	foreach(clist, clauses)
	{
		RestrictInfo *clausenode = (RestrictInfo *) lfirst(clist);

		/*
		 * Check to see if this clause is an 'or' clause, and, if so,
		 * whether or not each of the subclauses within the 'or' clause
		 * has been matched by an index.  The information used was
		 * saved by create_index_paths().
		 */
		if (restriction_is_or_clause(clausenode) &&
			clausenode->subclauseindices)
		{
			bool		all_indexable = true;
			List	   *temp;

			foreach(temp, clausenode->subclauseindices)
			{
				if (lfirst(temp) == NIL)
				{
					all_indexable = false;
					break;
				}
			}
			if (all_indexable)
			{
				/*
				 * OK, build an IndexPath for this OR clause, using the
				 * best available index for each subclause.
				 */
				IndexPath  *pathnode = makeNode(IndexPath);
				List	   *indexquals;
				List	   *indexids;
				Cost		cost;
				Cost		selec;

				best_or_subclause_indices(root,
										  rel,
										  clausenode->clause->args,
										  clausenode->subclauseindices,
										  &indexquals,
										  &indexids,
										  &cost,
										  &selec);

				pathnode->path.pathtype = T_IndexScan;
				pathnode->path.parent = rel;
				/*
				 * This is an IndexScan, but the overall result will consist
				 * of tuples extracted in multiple passes (one for each
				 * subclause of the OR), so the result cannot be claimed
				 * to have any particular ordering.
				 */
				pathnode->path.pathkeys = NIL;

				pathnode->indexid = indexids;
				pathnode->indexqual = indexquals;
				pathnode->joinrelids = NIL;	/* no join clauses here */
				pathnode->path.path_cost = cost;
				clausenode->selectivity = (Cost) selec;

				path_list = lappend(path_list, pathnode);
			}
		}
	}

	return path_list;
}

/*
 * best_or_subclause_indices
 *	  Determines the best index to be used in conjunction with each subclause
 *	  of an 'or' clause and the cost of scanning a relation using these
 *	  indices.	The cost is the sum of the individual index costs, since
 *	  the executor will perform a scan for each subclause of the 'or'.
 *
 * This routine also creates the indexquals and indexids lists that will
 * be needed by the executor.  The indexquals list has one entry for each
 * scan of the base rel, which is a sublist of indexqual conditions to
 * apply in that scan.  The implicit semantics are AND across each sublist
 * of quals, and OR across the toplevel list (note that the executor
 * takes care not to return any single tuple more than once).  The indexids
 * list gives the index to be used in each scan.
 *
 * 'rel' is the node of the relation on which the indexes are defined
 * 'subclauses' are the subclauses of the 'or' clause
 * 'indices' is a list of sublists of the index nodes that matched each
 *		subclause of the 'or' clause
 * '*indexquals' gets the constructed indexquals for the path (a list
 *		of sublists of clauses, one sublist per scan of the base rel)
 * '*indexids' gets a list of the index IDs for each scan of the rel
 * '*cost' gets the total cost of the path
 * '*selec' gets the total selectivity of the path.
 */
static void
best_or_subclause_indices(Query *root,
						  RelOptInfo *rel,
						  List *subclauses,
						  List *indices,
						  List **indexquals,	/* return value */
						  List **indexids,		/* return value */
						  Cost *cost,			/* return value */
						  Cost *selec)			/* return value */
{
	List	   *slist;

	*indexquals = NIL;
	*indexids = NIL;
	*cost = (Cost) 0.0;
	*selec = (Cost) 0.0;

	foreach(slist, subclauses)
	{
		Expr	   *subclause = lfirst(slist);
		List	   *indexqual;
		int			best_indexid;
		Cost		best_cost;
		Cost		best_selec;

		/* Convert this 'or' subclause to an indexqual list */
		indexqual = make_ands_implicit(subclause);
		/* expand special operators to indexquals the executor can handle */
		indexqual = expand_indexqual_conditions(indexqual);

		best_or_subclause_index(root, rel, indexqual, lfirst(indices),
								&best_indexid, &best_cost, &best_selec);

		*indexquals = lappend(*indexquals, indexqual);
		*indexids = lappendi(*indexids, best_indexid);
		*cost += best_cost;
		/* We approximate the selectivity as the sum of the clause
		 * selectivities (but not more than 1).
		 * XXX This is too pessimistic, isn't it?
		 */
		*selec += best_selec;
		if (*selec > (Cost) 1.0)
			*selec = (Cost) 1.0;

		indices = lnext(indices);
	}
}

/*
 * best_or_subclause_index
 *	  Determines which is the best index to be used with a subclause of
 *	  an 'or' clause by estimating the cost of using each index and selecting
 *	  the least expensive.
 *
 * 'rel' is the node of the relation on which the index is defined
 * 'indexqual' is the indexqual list derived from the subclause
 * 'indices' is a list of index nodes that match the subclause
 * '*retIndexid' gets the ID of the best index
 * '*retCost' gets the cost of a scan with that index
 * '*retSelec' gets the selectivity of that scan
 */
static void
best_or_subclause_index(Query *root,
						RelOptInfo *rel,
						List *indexqual,
						List *indices,
						int *retIndexid,		/* return value */
						Cost *retCost,	/* return value */
						Cost *retSelec) /* return value */
{
	bool		first_run = true;
	List	   *ilist;

	/* if we don't match anything, return zeros */
	*retIndexid = 0;
	*retCost = (Cost) 0.0;
	*retSelec = (Cost) 0.0;

	foreach(ilist, indices)
	{
		RelOptInfo *index = (RelOptInfo *) lfirst(ilist);
		Oid			indexid = (Oid) lfirsti(index->relids);
		Cost		subcost;
		float		npages;
		float		selec;

		index_selectivity(root,
						  lfirsti(rel->relids),
						  indexid,
						  indexqual,
						  &npages,
						  &selec);

		subcost = cost_index(indexid,
							 (int) npages,
							 (Cost) selec,
							 rel->pages,
							 rel->tuples,
							 index->pages,
							 index->tuples,
							 false);

		if (first_run || subcost < *retCost)
		{
			*retIndexid = indexid;
			*retCost = subcost;
			*retSelec = selec;
			first_run = false;
		}
	}

}