aboutsummaryrefslogtreecommitdiff
path: root/src/backend/access/nbtree/nbtutils.c
blob: 1a15dfcb7d357f6e73990a40cf8f0470c68bb08f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
/*-------------------------------------------------------------------------
 *
 * nbtutils.c
 *	  Utility code for Postgres btree implementation.
 *
 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/access/nbtree/nbtutils.c
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include <time.h>

#include "access/nbtree.h"
#include "access/reloptions.h"
#include "commands/progress.h"
#include "miscadmin.h"
#include "utils/datum.h"
#include "utils/lsyscache.h"

#define LOOK_AHEAD_REQUIRED_RECHECKS 	3
#define LOOK_AHEAD_DEFAULT_DISTANCE 	5
#define NSKIPADVANCES_THRESHOLD			3

static inline int32 _bt_compare_array_skey(FmgrInfo *orderproc,
										   Datum tupdatum, bool tupnull,
										   Datum arrdatum, ScanKey cur);
static void _bt_binsrch_skiparray_skey(bool cur_elem_trig, ScanDirection dir,
									   Datum tupdatum, bool tupnull,
									   BTArrayKeyInfo *array, ScanKey cur,
									   int32 *set_elem_result);
static void _bt_skiparray_set_element(Relation rel, ScanKey skey, BTArrayKeyInfo *array,
									  int32 set_elem_result, Datum tupdatum, bool tupnull);
static void _bt_skiparray_set_isnull(Relation rel, ScanKey skey, BTArrayKeyInfo *array);
static void _bt_array_set_low_or_high(Relation rel, ScanKey skey,
									  BTArrayKeyInfo *array, bool low_not_high);
static bool _bt_array_decrement(Relation rel, ScanKey skey, BTArrayKeyInfo *array);
static bool _bt_array_increment(Relation rel, ScanKey skey, BTArrayKeyInfo *array);
static bool _bt_advance_array_keys_increment(IndexScanDesc scan, ScanDirection dir,
											 bool *skip_array_set);
static void _bt_rewind_nonrequired_arrays(IndexScanDesc scan, ScanDirection dir);
static bool _bt_tuple_before_array_skeys(IndexScanDesc scan, ScanDirection dir,
										 IndexTuple tuple, TupleDesc tupdesc, int tupnatts,
										 bool readpagetup, int sktrig, bool *scanBehind);
static bool _bt_advance_array_keys(IndexScanDesc scan, BTReadPageState *pstate,
								   IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
								   int sktrig, bool sktrig_required);
#ifdef USE_ASSERT_CHECKING
static bool _bt_verify_arrays_bt_first(IndexScanDesc scan, ScanDirection dir);
static bool _bt_verify_keys_with_arraykeys(IndexScanDesc scan);
#endif
static bool _bt_oppodir_checkkeys(IndexScanDesc scan, ScanDirection dir,
								  IndexTuple finaltup);
static bool _bt_check_compare(IndexScanDesc scan, ScanDirection dir,
							  IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
							  bool advancenonrequired, bool forcenonrequired,
							  bool *continuescan, int *ikey);
static bool _bt_check_rowcompare(ScanKey skey,
								 IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
								 ScanDirection dir, bool forcenonrequired, bool *continuescan);
static void _bt_checkkeys_look_ahead(IndexScanDesc scan, BTReadPageState *pstate,
									 int tupnatts, TupleDesc tupdesc);
static int	_bt_keep_natts(Relation rel, IndexTuple lastleft,
						   IndexTuple firstright, BTScanInsert itup_key);


/*
 * _bt_mkscankey
 *		Build an insertion scan key that contains comparison data from itup
 *		as well as comparator routines appropriate to the key datatypes.
 *
 *		The result is intended for use with _bt_compare() and _bt_truncate().
 *		Callers that don't need to fill out the insertion scankey arguments
 *		(e.g. they use an ad-hoc comparison routine, or only need a scankey
 *		for _bt_truncate()) can pass a NULL index tuple.  The scankey will
 *		be initialized as if an "all truncated" pivot tuple was passed
 *		instead.
 *
 *		Note that we may occasionally have to share lock the metapage to
 *		determine whether or not the keys in the index are expected to be
 *		unique (i.e. if this is a "heapkeyspace" index).  We assume a
 *		heapkeyspace index when caller passes a NULL tuple, allowing index
 *		build callers to avoid accessing the non-existent metapage.  We
 *		also assume that the index is _not_ allequalimage when a NULL tuple
 *		is passed; CREATE INDEX callers call _bt_allequalimage() to set the
 *		field themselves.
 */
BTScanInsert
_bt_mkscankey(Relation rel, IndexTuple itup)
{
	BTScanInsert key;
	ScanKey		skey;
	TupleDesc	itupdesc;
	int			indnkeyatts;
	int16	   *indoption;
	int			tupnatts;
	int			i;

	itupdesc = RelationGetDescr(rel);
	indnkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
	indoption = rel->rd_indoption;
	tupnatts = itup ? BTreeTupleGetNAtts(itup, rel) : 0;

	Assert(tupnatts <= IndexRelationGetNumberOfAttributes(rel));

	/*
	 * We'll execute search using scan key constructed on key columns.
	 * Truncated attributes and non-key attributes are omitted from the final
	 * scan key.
	 */
	key = palloc(offsetof(BTScanInsertData, scankeys) +
				 sizeof(ScanKeyData) * indnkeyatts);
	if (itup)
		_bt_metaversion(rel, &key->heapkeyspace, &key->allequalimage);
	else
	{
		/* Utility statement callers can set these fields themselves */
		key->heapkeyspace = true;
		key->allequalimage = false;
	}
	key->anynullkeys = false;	/* initial assumption */
	key->nextkey = false;		/* usual case, required by btinsert */
	key->backward = false;		/* usual case, required by btinsert */
	key->keysz = Min(indnkeyatts, tupnatts);
	key->scantid = key->heapkeyspace && itup ?
		BTreeTupleGetHeapTID(itup) : NULL;
	skey = key->scankeys;
	for (i = 0; i < indnkeyatts; i++)
	{
		FmgrInfo   *procinfo;
		Datum		arg;
		bool		null;
		int			flags;

		/*
		 * We can use the cached (default) support procs since no cross-type
		 * comparison can be needed.
		 */
		procinfo = index_getprocinfo(rel, i + 1, BTORDER_PROC);

		/*
		 * Key arguments built from truncated attributes (or when caller
		 * provides no tuple) are defensively represented as NULL values. They
		 * should never be used.
		 */
		if (i < tupnatts)
			arg = index_getattr(itup, i + 1, itupdesc, &null);
		else
		{
			arg = (Datum) 0;
			null = true;
		}
		flags = (null ? SK_ISNULL : 0) | (indoption[i] << SK_BT_INDOPTION_SHIFT);
		ScanKeyEntryInitializeWithInfo(&skey[i],
									   flags,
									   (AttrNumber) (i + 1),
									   InvalidStrategy,
									   InvalidOid,
									   rel->rd_indcollation[i],
									   procinfo,
									   arg);
		/* Record if any key attribute is NULL (or truncated) */
		if (null)
			key->anynullkeys = true;
	}

	/*
	 * In NULLS NOT DISTINCT mode, we pretend that there are no null keys, so
	 * that full uniqueness check is done.
	 */
	if (rel->rd_index->indnullsnotdistinct)
		key->anynullkeys = false;

	return key;
}

/*
 * free a retracement stack made by _bt_search.
 */
void
_bt_freestack(BTStack stack)
{
	BTStack		ostack;

	while (stack != NULL)
	{
		ostack = stack;
		stack = stack->bts_parent;
		pfree(ostack);
	}
}

/*
 * _bt_compare_array_skey() -- apply array comparison function
 *
 * Compares caller's tuple attribute value to a scan key/array element.
 * Helper function used during binary searches of SK_SEARCHARRAY arrays.
 *
 *		This routine returns:
 *			<0 if tupdatum < arrdatum;
 *			 0 if tupdatum == arrdatum;
 *			>0 if tupdatum > arrdatum.
 *
 * This is essentially the same interface as _bt_compare: both functions
 * compare the value that they're searching for to a binary search pivot.
 * However, unlike _bt_compare, this function's "tuple argument" comes first,
 * while its "array/scankey argument" comes second.
*/
static inline int32
_bt_compare_array_skey(FmgrInfo *orderproc,
					   Datum tupdatum, bool tupnull,
					   Datum arrdatum, ScanKey cur)
{
	int32		result = 0;

	Assert(cur->sk_strategy == BTEqualStrategyNumber);
	Assert(!(cur->sk_flags & (SK_BT_MINVAL | SK_BT_MAXVAL)));

	if (tupnull)				/* NULL tupdatum */
	{
		if (cur->sk_flags & SK_ISNULL)
			result = 0;			/* NULL "=" NULL */
		else if (cur->sk_flags & SK_BT_NULLS_FIRST)
			result = -1;		/* NULL "<" NOT_NULL */
		else
			result = 1;			/* NULL ">" NOT_NULL */
	}
	else if (cur->sk_flags & SK_ISNULL) /* NOT_NULL tupdatum, NULL arrdatum */
	{
		if (cur->sk_flags & SK_BT_NULLS_FIRST)
			result = 1;			/* NOT_NULL ">" NULL */
		else
			result = -1;		/* NOT_NULL "<" NULL */
	}
	else
	{
		/*
		 * Like _bt_compare, we need to be careful of cross-type comparisons,
		 * so the left value has to be the value that came from an index tuple
		 */
		result = DatumGetInt32(FunctionCall2Coll(orderproc, cur->sk_collation,
												 tupdatum, arrdatum));

		/*
		 * We flip the sign by following the obvious rule: flip whenever the
		 * column is a DESC column.
		 *
		 * _bt_compare does it the wrong way around (flip when *ASC*) in order
		 * to compensate for passing its orderproc arguments backwards.  We
		 * don't need to play these games because we find it natural to pass
		 * tupdatum as the left value (and arrdatum as the right value).
		 */
		if (cur->sk_flags & SK_BT_DESC)
			INVERT_COMPARE_RESULT(result);
	}

	return result;
}

/*
 * _bt_binsrch_array_skey() -- Binary search for next matching array key
 *
 * Returns an index to the first array element >= caller's tupdatum argument.
 * This convention is more natural for forwards scan callers, but that can't
 * really matter to backwards scan callers.  Both callers require handling for
 * the case where the match we return is < tupdatum, and symmetric handling
 * for the case where our best match is > tupdatum.
 *
 * Also sets *set_elem_result to the result _bt_compare_array_skey returned
 * when we used it to compare the matching array element to tupdatum/tupnull.
 *
 * cur_elem_trig indicates if array advancement was triggered by this array's
 * scan key, and that the array is for a required scan key.  We can apply this
 * information to find the next matching array element in the current scan
 * direction using far fewer comparisons (fewer on average, compared to naive
 * binary search).  This scheme takes advantage of an important property of
 * required arrays: required arrays always advance in lockstep with the index
 * scan's progress through the index's key space.
 */
int
_bt_binsrch_array_skey(FmgrInfo *orderproc,
					   bool cur_elem_trig, ScanDirection dir,
					   Datum tupdatum, bool tupnull,
					   BTArrayKeyInfo *array, ScanKey cur,
					   int32 *set_elem_result)
{
	int			low_elem = 0,
				mid_elem = -1,
				high_elem = array->num_elems - 1,
				result = 0;
	Datum		arrdatum;

	Assert(cur->sk_flags & SK_SEARCHARRAY);
	Assert(!(cur->sk_flags & SK_BT_SKIP));
	Assert(!(cur->sk_flags & SK_ISNULL));	/* SAOP arrays never have NULLs */
	Assert(cur->sk_strategy == BTEqualStrategyNumber);

	if (cur_elem_trig)
	{
		Assert(!ScanDirectionIsNoMovement(dir));
		Assert(cur->sk_flags & SK_BT_REQFWD);

		/*
		 * When the scan key that triggered array advancement is a required
		 * array scan key, it is now certain that the current array element
		 * (plus all prior elements relative to the current scan direction)
		 * cannot possibly be at or ahead of the corresponding tuple value.
		 * (_bt_checkkeys must have called _bt_tuple_before_array_skeys, which
		 * makes sure this is true as a condition of advancing the arrays.)
		 *
		 * This makes it safe to exclude array elements up to and including
		 * the former-current array element from our search.
		 *
		 * Separately, when array advancement was triggered by a required scan
		 * key, the array element immediately after the former-current element
		 * is often either an exact tupdatum match, or a "close by" near-match
		 * (a near-match tupdatum is one whose key space falls _between_ the
		 * former-current and new-current array elements).  We'll detect both
		 * cases via an optimistic comparison of the new search lower bound
		 * (or new search upper bound in the case of backwards scans).
		 */
		if (ScanDirectionIsForward(dir))
		{
			low_elem = array->cur_elem + 1; /* old cur_elem exhausted */

			/* Compare prospective new cur_elem (also the new lower bound) */
			if (high_elem >= low_elem)
			{
				arrdatum = array->elem_values[low_elem];
				result = _bt_compare_array_skey(orderproc, tupdatum, tupnull,
												arrdatum, cur);

				if (result <= 0)
				{
					/* Optimistic comparison optimization worked out */
					*set_elem_result = result;
					return low_elem;
				}
				mid_elem = low_elem;
				low_elem++;		/* this cur_elem exhausted, too */
			}

			if (high_elem < low_elem)
			{
				/* Caller needs to perform "beyond end" array advancement */
				*set_elem_result = 1;
				return high_elem;
			}
		}
		else
		{
			high_elem = array->cur_elem - 1;	/* old cur_elem exhausted */

			/* Compare prospective new cur_elem (also the new upper bound) */
			if (high_elem >= low_elem)
			{
				arrdatum = array->elem_values[high_elem];
				result = _bt_compare_array_skey(orderproc, tupdatum, tupnull,
												arrdatum, cur);

				if (result >= 0)
				{
					/* Optimistic comparison optimization worked out */
					*set_elem_result = result;
					return high_elem;
				}
				mid_elem = high_elem;
				high_elem--;	/* this cur_elem exhausted, too */
			}

			if (high_elem < low_elem)
			{
				/* Caller needs to perform "beyond end" array advancement */
				*set_elem_result = -1;
				return low_elem;
			}
		}
	}

	while (high_elem > low_elem)
	{
		mid_elem = low_elem + ((high_elem - low_elem) / 2);
		arrdatum = array->elem_values[mid_elem];

		result = _bt_compare_array_skey(orderproc, tupdatum, tupnull,
										arrdatum, cur);

		if (result == 0)
		{
			/*
			 * It's safe to quit as soon as we see an equal array element.
			 * This often saves an extra comparison or two...
			 */
			low_elem = mid_elem;
			break;
		}

		if (result > 0)
			low_elem = mid_elem + 1;
		else
			high_elem = mid_elem;
	}

	/*
	 * ...but our caller also cares about how its searched-for tuple datum
	 * compares to the low_elem datum.  Must always set *set_elem_result with
	 * the result of that comparison specifically.
	 */
	if (low_elem != mid_elem)
		result = _bt_compare_array_skey(orderproc, tupdatum, tupnull,
										array->elem_values[low_elem], cur);

	*set_elem_result = result;

	return low_elem;
}

/*
 * _bt_binsrch_skiparray_skey() -- "Binary search" within a skip array
 *
 * Does not return an index into the array, since skip arrays don't really
 * contain elements (they generate their array elements procedurally instead).
 * Our interface matches that of _bt_binsrch_array_skey in every other way.
 *
 * Sets *set_elem_result just like _bt_binsrch_array_skey would with a true
 * array.  The value 0 indicates that tupdatum/tupnull is within the range of
 * the skip array.  We return -1 when tupdatum/tupnull is lower that any value
 * within the range of the array, and 1 when it is higher than every value.
 * Caller should pass *set_elem_result to _bt_skiparray_set_element to advance
 * the array.
 *
 * cur_elem_trig indicates if array advancement was triggered by this array's
 * scan key.  We use this to optimize-away comparisons that are known by our
 * caller to be unnecessary from context, just like _bt_binsrch_array_skey.
 */
static void
_bt_binsrch_skiparray_skey(bool cur_elem_trig, ScanDirection dir,
						   Datum tupdatum, bool tupnull,
						   BTArrayKeyInfo *array, ScanKey cur,
						   int32 *set_elem_result)
{
	Assert(cur->sk_flags & SK_BT_SKIP);
	Assert(cur->sk_flags & SK_SEARCHARRAY);
	Assert(cur->sk_flags & SK_BT_REQFWD);
	Assert(array->num_elems == -1);
	Assert(!ScanDirectionIsNoMovement(dir));

	if (array->null_elem)
	{
		Assert(!array->low_compare && !array->high_compare);

		*set_elem_result = 0;
		return;
	}

	if (tupnull)				/* NULL tupdatum */
	{
		if (cur->sk_flags & SK_BT_NULLS_FIRST)
			*set_elem_result = -1;	/* NULL "<" NOT_NULL */
		else
			*set_elem_result = 1;	/* NULL ">" NOT_NULL */
		return;
	}

	/*
	 * Array inequalities determine whether tupdatum is within the range of
	 * caller's skip array
	 */
	*set_elem_result = 0;
	if (ScanDirectionIsForward(dir))
	{
		/*
		 * Evaluate low_compare first (unless cur_elem_trig tells us that it
		 * cannot possibly fail to be satisfied), then evaluate high_compare
		 */
		if (!cur_elem_trig && array->low_compare &&
			!DatumGetBool(FunctionCall2Coll(&array->low_compare->sk_func,
											array->low_compare->sk_collation,
											tupdatum,
											array->low_compare->sk_argument)))
			*set_elem_result = -1;
		else if (array->high_compare &&
				 !DatumGetBool(FunctionCall2Coll(&array->high_compare->sk_func,
												 array->high_compare->sk_collation,
												 tupdatum,
												 array->high_compare->sk_argument)))
			*set_elem_result = 1;
	}
	else
	{
		/*
		 * Evaluate high_compare first (unless cur_elem_trig tells us that it
		 * cannot possibly fail to be satisfied), then evaluate low_compare
		 */
		if (!cur_elem_trig && array->high_compare &&
			!DatumGetBool(FunctionCall2Coll(&array->high_compare->sk_func,
											array->high_compare->sk_collation,
											tupdatum,
											array->high_compare->sk_argument)))
			*set_elem_result = 1;
		else if (array->low_compare &&
				 !DatumGetBool(FunctionCall2Coll(&array->low_compare->sk_func,
												 array->low_compare->sk_collation,
												 tupdatum,
												 array->low_compare->sk_argument)))
			*set_elem_result = -1;
	}

	/*
	 * Assert that any keys that were assumed to be satisfied already (due to
	 * caller passing cur_elem_trig=true) really are satisfied as expected
	 */
#ifdef USE_ASSERT_CHECKING
	if (cur_elem_trig)
	{
		if (ScanDirectionIsForward(dir) && array->low_compare)
			Assert(DatumGetBool(FunctionCall2Coll(&array->low_compare->sk_func,
												  array->low_compare->sk_collation,
												  tupdatum,
												  array->low_compare->sk_argument)));

		if (ScanDirectionIsBackward(dir) && array->high_compare)
			Assert(DatumGetBool(FunctionCall2Coll(&array->high_compare->sk_func,
												  array->high_compare->sk_collation,
												  tupdatum,
												  array->high_compare->sk_argument)));
	}
#endif
}

/*
 * _bt_skiparray_set_element() -- Set skip array scan key's sk_argument
 *
 * Caller passes set_elem_result returned by _bt_binsrch_skiparray_skey for
 * caller's tupdatum/tupnull.
 *
 * We copy tupdatum/tupnull into skey's sk_argument iff set_elem_result == 0.
 * Otherwise, we set skey to either the lowest or highest value that's within
 * the range of caller's skip array (whichever is the best available match to
 * tupdatum/tupnull that is still within the range of the skip array according
 * to _bt_binsrch_skiparray_skey/set_elem_result).
 */
static void
_bt_skiparray_set_element(Relation rel, ScanKey skey, BTArrayKeyInfo *array,
						  int32 set_elem_result, Datum tupdatum, bool tupnull)
{
	Assert(skey->sk_flags & SK_BT_SKIP);
	Assert(skey->sk_flags & SK_SEARCHARRAY);

	if (set_elem_result)
	{
		/* tupdatum/tupnull is out of the range of the skip array */
		Assert(!array->null_elem);

		_bt_array_set_low_or_high(rel, skey, array, set_elem_result < 0);
		return;
	}

	/* Advance skip array to tupdatum (or tupnull) value */
	if (unlikely(tupnull))
	{
		_bt_skiparray_set_isnull(rel, skey, array);
		return;
	}

	/* Free memory previously allocated for sk_argument if needed */
	if (!array->attbyval && skey->sk_argument)
		pfree(DatumGetPointer(skey->sk_argument));

	/* tupdatum becomes new sk_argument/new current element */
	skey->sk_flags &= ~(SK_SEARCHNULL | SK_ISNULL |
						SK_BT_MINVAL | SK_BT_MAXVAL |
						SK_BT_NEXT | SK_BT_PRIOR);
	skey->sk_argument = datumCopy(tupdatum, array->attbyval, array->attlen);
}

/*
 * _bt_skiparray_set_isnull() -- set skip array scan key to NULL
 */
static void
_bt_skiparray_set_isnull(Relation rel, ScanKey skey, BTArrayKeyInfo *array)
{
	Assert(skey->sk_flags & SK_BT_SKIP);
	Assert(skey->sk_flags & SK_SEARCHARRAY);
	Assert(array->null_elem && !array->low_compare && !array->high_compare);

	/* Free memory previously allocated for sk_argument if needed */
	if (!array->attbyval && skey->sk_argument)
		pfree(DatumGetPointer(skey->sk_argument));

	/* NULL becomes new sk_argument/new current element */
	skey->sk_argument = (Datum) 0;
	skey->sk_flags &= ~(SK_BT_MINVAL | SK_BT_MAXVAL |
						SK_BT_NEXT | SK_BT_PRIOR);
	skey->sk_flags |= (SK_SEARCHNULL | SK_ISNULL);
}

/*
 * _bt_start_array_keys() -- Initialize array keys at start of a scan
 *
 * Set up the cur_elem counters and fill in the first sk_argument value for
 * each array scankey.
 */
void
_bt_start_array_keys(IndexScanDesc scan, ScanDirection dir)
{
	Relation	rel = scan->indexRelation;
	BTScanOpaque so = (BTScanOpaque) scan->opaque;

	Assert(so->numArrayKeys);
	Assert(so->qual_ok);

	for (int i = 0; i < so->numArrayKeys; i++)
	{
		BTArrayKeyInfo *array = &so->arrayKeys[i];
		ScanKey		skey = &so->keyData[array->scan_key];

		Assert(skey->sk_flags & SK_SEARCHARRAY);

		_bt_array_set_low_or_high(rel, skey, array,
								  ScanDirectionIsForward(dir));
	}
	so->scanBehind = so->oppositeDirCheck = false;	/* reset */
}

/*
 * _bt_array_set_low_or_high() -- Set array scan key to lowest/highest element
 *
 * Caller also passes associated scan key, which will have its argument set to
 * the lowest/highest array value in passing.
 */
static void
_bt_array_set_low_or_high(Relation rel, ScanKey skey, BTArrayKeyInfo *array,
						  bool low_not_high)
{
	Assert(skey->sk_flags & SK_SEARCHARRAY);

	if (array->num_elems != -1)
	{
		/* set low or high element for SAOP array */
		int			set_elem = 0;

		Assert(!(skey->sk_flags & SK_BT_SKIP));

		if (!low_not_high)
			set_elem = array->num_elems - 1;

		/*
		 * Just copy over array datum (only skip arrays require freeing and
		 * allocating memory for sk_argument)
		 */
		array->cur_elem = set_elem;
		skey->sk_argument = array->elem_values[set_elem];

		return;
	}

	/* set low or high element for skip array */
	Assert(skey->sk_flags & SK_BT_SKIP);
	Assert(array->num_elems == -1);

	/* Free memory previously allocated for sk_argument if needed */
	if (!array->attbyval && skey->sk_argument)
		pfree(DatumGetPointer(skey->sk_argument));

	/* Reset flags */
	skey->sk_argument = (Datum) 0;
	skey->sk_flags &= ~(SK_SEARCHNULL | SK_ISNULL |
						SK_BT_MINVAL | SK_BT_MAXVAL |
						SK_BT_NEXT | SK_BT_PRIOR);

	if (array->null_elem &&
		(low_not_high == ((skey->sk_flags & SK_BT_NULLS_FIRST) != 0)))
	{
		/* Requested element (either lowest or highest) has the value NULL */
		skey->sk_flags |= (SK_SEARCHNULL | SK_ISNULL);
	}
	else if (low_not_high)
	{
		/* Setting array to lowest element (according to low_compare) */
		skey->sk_flags |= SK_BT_MINVAL;
	}
	else
	{
		/* Setting array to highest element (according to high_compare) */
		skey->sk_flags |= SK_BT_MAXVAL;
	}
}

/*
 * _bt_array_decrement() -- decrement array scan key's sk_argument
 *
 * Return value indicates whether caller's array was successfully decremented.
 * Cannot decrement an array whose current element is already the first one.
 */
static bool
_bt_array_decrement(Relation rel, ScanKey skey, BTArrayKeyInfo *array)
{
	bool		uflow = false;
	Datum		dec_sk_argument;

	Assert(skey->sk_flags & SK_SEARCHARRAY);
	Assert(!(skey->sk_flags & (SK_BT_MAXVAL | SK_BT_NEXT | SK_BT_PRIOR)));

	/* SAOP array? */
	if (array->num_elems != -1)
	{
		Assert(!(skey->sk_flags & (SK_BT_SKIP | SK_BT_MINVAL | SK_BT_MAXVAL)));
		if (array->cur_elem > 0)
		{
			/*
			 * Just decrement current element, and assign its datum to skey
			 * (only skip arrays need us to free existing sk_argument memory)
			 */
			array->cur_elem--;
			skey->sk_argument = array->elem_values[array->cur_elem];

			/* Successfully decremented array */
			return true;
		}

		/* Cannot decrement to before first array element */
		return false;
	}

	/* Nope, this is a skip array */
	Assert(skey->sk_flags & SK_BT_SKIP);

	/*
	 * The sentinel value that represents the minimum value within the range
	 * of a skip array (often just -inf) is never decrementable
	 */
	if (skey->sk_flags & SK_BT_MINVAL)
		return false;

	/*
	 * When the current array element is NULL, and the lowest sorting value in
	 * the index is also NULL, we cannot decrement before first array element
	 */
	if ((skey->sk_flags & SK_ISNULL) && (skey->sk_flags & SK_BT_NULLS_FIRST))
		return false;

	/*
	 * Opclasses without skip support "decrement" the scan key's current
	 * element by setting the PRIOR flag.  The true prior value is determined
	 * by repositioning to the last index tuple < existing sk_argument/current
	 * array element.  Note that this works in the usual way when the scan key
	 * is already marked ISNULL (i.e. when the current element is NULL).
	 */
	if (!array->sksup)
	{
		/* Successfully "decremented" array */
		skey->sk_flags |= SK_BT_PRIOR;
		return true;
	}

	/*
	 * Opclasses with skip support directly decrement sk_argument
	 */
	if (skey->sk_flags & SK_ISNULL)
	{
		Assert(!(skey->sk_flags & SK_BT_NULLS_FIRST));

		/*
		 * Existing sk_argument/array element is NULL (for an IS NULL qual).
		 *
		 * "Decrement" from NULL to the high_elem value provided by opclass
		 * skip support routine.
		 */
		skey->sk_flags &= ~(SK_SEARCHNULL | SK_ISNULL);
		skey->sk_argument = datumCopy(array->sksup->high_elem,
									  array->attbyval, array->attlen);
		return true;
	}

	/*
	 * Ask opclass support routine to provide decremented copy of existing
	 * non-NULL sk_argument
	 */
	dec_sk_argument = array->sksup->decrement(rel, skey->sk_argument, &uflow);
	if (unlikely(uflow))
	{
		/* dec_sk_argument has undefined value (so no pfree) */
		if (array->null_elem && (skey->sk_flags & SK_BT_NULLS_FIRST))
		{
			_bt_skiparray_set_isnull(rel, skey, array);

			/* Successfully "decremented" array to NULL */
			return true;
		}

		/* Cannot decrement to before first array element */
		return false;
	}

	/*
	 * Successfully decremented sk_argument to a non-NULL value.  Make sure
	 * that the decremented value is still within the range of the array.
	 */
	if (array->low_compare &&
		!DatumGetBool(FunctionCall2Coll(&array->low_compare->sk_func,
										array->low_compare->sk_collation,
										dec_sk_argument,
										array->low_compare->sk_argument)))
	{
		/* Keep existing sk_argument after all */
		if (!array->attbyval)
			pfree(DatumGetPointer(dec_sk_argument));

		/* Cannot decrement to before first array element */
		return false;
	}

	/* Accept value returned by opclass decrement callback */
	if (!array->attbyval && skey->sk_argument)
		pfree(DatumGetPointer(skey->sk_argument));
	skey->sk_argument = dec_sk_argument;

	/* Successfully decremented array */
	return true;
}

/*
 * _bt_array_increment() -- increment array scan key's sk_argument
 *
 * Return value indicates whether caller's array was successfully incremented.
 * Cannot increment an array whose current element is already the final one.
 */
static bool
_bt_array_increment(Relation rel, ScanKey skey, BTArrayKeyInfo *array)
{
	bool		oflow = false;
	Datum		inc_sk_argument;

	Assert(skey->sk_flags & SK_SEARCHARRAY);
	Assert(!(skey->sk_flags & (SK_BT_MINVAL | SK_BT_NEXT | SK_BT_PRIOR)));

	/* SAOP array? */
	if (array->num_elems != -1)
	{
		Assert(!(skey->sk_flags & (SK_BT_SKIP | SK_BT_MINVAL | SK_BT_MAXVAL)));
		if (array->cur_elem < array->num_elems - 1)
		{
			/*
			 * Just increment current element, and assign its datum to skey
			 * (only skip arrays need us to free existing sk_argument memory)
			 */
			array->cur_elem++;
			skey->sk_argument = array->elem_values[array->cur_elem];

			/* Successfully incremented array */
			return true;
		}

		/* Cannot increment past final array element */
		return false;
	}

	/* Nope, this is a skip array */
	Assert(skey->sk_flags & SK_BT_SKIP);

	/*
	 * The sentinel value that represents the maximum value within the range
	 * of a skip array (often just +inf) is never incrementable
	 */
	if (skey->sk_flags & SK_BT_MAXVAL)
		return false;

	/*
	 * When the current array element is NULL, and the highest sorting value
	 * in the index is also NULL, we cannot increment past the final element
	 */
	if ((skey->sk_flags & SK_ISNULL) && !(skey->sk_flags & SK_BT_NULLS_FIRST))
		return false;

	/*
	 * Opclasses without skip support "increment" the scan key's current
	 * element by setting the NEXT flag.  The true next value is determined by
	 * repositioning to the first index tuple > existing sk_argument/current
	 * array element.  Note that this works in the usual way when the scan key
	 * is already marked ISNULL (i.e. when the current element is NULL).
	 */
	if (!array->sksup)
	{
		/* Successfully "incremented" array */
		skey->sk_flags |= SK_BT_NEXT;
		return true;
	}

	/*
	 * Opclasses with skip support directly increment sk_argument
	 */
	if (skey->sk_flags & SK_ISNULL)
	{
		Assert(skey->sk_flags & SK_BT_NULLS_FIRST);

		/*
		 * Existing sk_argument/array element is NULL (for an IS NULL qual).
		 *
		 * "Increment" from NULL to the low_elem value provided by opclass
		 * skip support routine.
		 */
		skey->sk_flags &= ~(SK_SEARCHNULL | SK_ISNULL);
		skey->sk_argument = datumCopy(array->sksup->low_elem,
									  array->attbyval, array->attlen);
		return true;
	}

	/*
	 * Ask opclass support routine to provide incremented copy of existing
	 * non-NULL sk_argument
	 */
	inc_sk_argument = array->sksup->increment(rel, skey->sk_argument, &oflow);
	if (unlikely(oflow))
	{
		/* inc_sk_argument has undefined value (so no pfree) */
		if (array->null_elem && !(skey->sk_flags & SK_BT_NULLS_FIRST))
		{
			_bt_skiparray_set_isnull(rel, skey, array);

			/* Successfully "incremented" array to NULL */
			return true;
		}

		/* Cannot increment past final array element */
		return false;
	}

	/*
	 * Successfully incremented sk_argument to a non-NULL value.  Make sure
	 * that the incremented value is still within the range of the array.
	 */
	if (array->high_compare &&
		!DatumGetBool(FunctionCall2Coll(&array->high_compare->sk_func,
										array->high_compare->sk_collation,
										inc_sk_argument,
										array->high_compare->sk_argument)))
	{
		/* Keep existing sk_argument after all */
		if (!array->attbyval)
			pfree(DatumGetPointer(inc_sk_argument));

		/* Cannot increment past final array element */
		return false;
	}

	/* Accept value returned by opclass increment callback */
	if (!array->attbyval && skey->sk_argument)
		pfree(DatumGetPointer(skey->sk_argument));
	skey->sk_argument = inc_sk_argument;

	/* Successfully incremented array */
	return true;
}

/*
 * _bt_advance_array_keys_increment() -- Advance to next set of array elements
 *
 * Advances the array keys by a single increment in the current scan
 * direction.  When there are multiple array keys this can roll over from the
 * lowest order array to higher order arrays.
 *
 * Returns true if there is another set of values to consider, false if not.
 * On true result, the scankeys are initialized with the next set of values.
 * On false result, the scankeys stay the same, and the array keys are not
 * advanced (every array remains at its final element for scan direction).
 */
static bool
_bt_advance_array_keys_increment(IndexScanDesc scan, ScanDirection dir,
								 bool *skip_array_set)
{
	Relation	rel = scan->indexRelation;
	BTScanOpaque so = (BTScanOpaque) scan->opaque;

	/*
	 * We must advance the last array key most quickly, since it will
	 * correspond to the lowest-order index column among the available
	 * qualifications
	 */
	for (int i = so->numArrayKeys - 1; i >= 0; i--)
	{
		BTArrayKeyInfo *array = &so->arrayKeys[i];
		ScanKey		skey = &so->keyData[array->scan_key];

		if (array->num_elems == -1)
			*skip_array_set = true;

		if (ScanDirectionIsForward(dir))
		{
			if (_bt_array_increment(rel, skey, array))
				return true;
		}
		else
		{
			if (_bt_array_decrement(rel, skey, array))
				return true;
		}

		/*
		 * Couldn't increment (or decrement) array.  Handle array roll over.
		 *
		 * Start over at the array's lowest sorting value (or its highest
		 * value, for backward scans)...
		 */
		_bt_array_set_low_or_high(rel, skey, array,
								  ScanDirectionIsForward(dir));

		/* ...then increment (or decrement) next most significant array */
	}

	/*
	 * The array keys are now exhausted.
	 *
	 * Restore the array keys to the state they were in immediately before we
	 * were called.  This ensures that the arrays only ever ratchet in the
	 * current scan direction.
	 *
	 * Without this, scans could overlook matching tuples when the scan
	 * direction gets reversed just before btgettuple runs out of items to
	 * return, but just after _bt_readpage prepares all the items from the
	 * scan's final page in so->currPos.  When we're on the final page it is
	 * typical for so->currPos to get invalidated once btgettuple finally
	 * returns false, which'll effectively invalidate the scan's array keys.
	 * That hasn't happened yet, though -- and in general it may never happen.
	 */
	_bt_start_array_keys(scan, -dir);

	return false;
}

/*
 * _bt_rewind_nonrequired_arrays() -- Rewind SAOP arrays not marked required
 *
 * Called when _bt_advance_array_keys decides to start a new primitive index
 * scan on the basis of the current scan position being before the position
 * that _bt_first is capable of repositioning the scan to by applying an
 * inequality operator required in the opposite-to-scan direction only.
 *
 * Although equality strategy scan keys (for both arrays and non-arrays alike)
 * are either marked required in both directions or in neither direction,
 * there is a sense in which non-required arrays behave like required arrays.
 * With a qual such as "WHERE a IN (100, 200) AND b >= 3 AND c IN (5, 6, 7)",
 * the scan key on "c" is non-required, but nevertheless enables positioning
 * the scan at the first tuple >= "(100, 3, 5)" on the leaf level during the
 * first descent of the tree by _bt_first.  Later on, there could also be a
 * second descent, that places the scan right before tuples >= "(200, 3, 5)".
 * _bt_first must never be allowed to build an insertion scan key whose "c"
 * entry is set to a value other than 5, the "c" array's first element/value.
 * (Actually, it's the first in the current scan direction.  This example uses
 * a forward scan.)
 *
 * Calling here resets the array scan key elements for the scan's non-required
 * arrays.  This is strictly necessary for correctness in a subset of cases
 * involving "required in opposite direction"-triggered primitive index scans.
 * Not all callers are at risk of _bt_first using a non-required array like
 * this, but advancement always resets the arrays when another primitive scan
 * is scheduled, just to keep things simple.  Array advancement even makes
 * sure to reset non-required arrays during scans that have no inequalities.
 * (Advancement still won't call here when there are no inequalities, though
 * that's just because it's all handled indirectly instead.)
 *
 * Note: _bt_verify_arrays_bt_first is called by an assertion to enforce that
 * everybody got this right.
 *
 * Note: In practice almost all SAOP arrays are marked required during
 * preprocessing (if necessary by generating skip arrays).  It is hardly ever
 * truly necessary to call here, but consistently doing so is simpler.
 */
static void
_bt_rewind_nonrequired_arrays(IndexScanDesc scan, ScanDirection dir)
{
	Relation	rel = scan->indexRelation;
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	int			arrayidx = 0;

	for (int ikey = 0; ikey < so->numberOfKeys; ikey++)
	{
		ScanKey		cur = so->keyData + ikey;
		BTArrayKeyInfo *array = NULL;

		if (!(cur->sk_flags & SK_SEARCHARRAY) ||
			cur->sk_strategy != BTEqualStrategyNumber)
			continue;

		array = &so->arrayKeys[arrayidx++];
		Assert(array->scan_key == ikey);

		if ((cur->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)))
			continue;

		Assert(array->num_elems != -1); /* No non-required skip arrays */

		_bt_array_set_low_or_high(rel, cur, array,
								  ScanDirectionIsForward(dir));
	}
}

/*
 * _bt_tuple_before_array_skeys() -- too early to advance required arrays?
 *
 * We always compare the tuple using the current array keys (which we assume
 * are already set in so->keyData[]).  readpagetup indicates if tuple is the
 * scan's current _bt_readpage-wise tuple.
 *
 * readpagetup callers must only call here when _bt_check_compare already set
 * continuescan=false.  We help these callers deal with _bt_check_compare's
 * inability to distinguish between the < and > cases (it uses equality
 * operator scan keys, whereas we use 3-way ORDER procs).  These callers pass
 * a _bt_check_compare-set sktrig value that indicates which scan key
 * triggered the call (!readpagetup callers just pass us sktrig=0 instead).
 * This information allows us to avoid wastefully checking earlier scan keys
 * that were already deemed to have been satisfied inside _bt_check_compare.
 *
 * Returns false when caller's tuple is >= the current required equality scan
 * keys (or <=, in the case of backwards scans).  This happens to readpagetup
 * callers when the scan has reached the point of needing its array keys
 * advanced; caller will need to advance required and non-required arrays at
 * scan key offsets >= sktrig, plus scan keys < sktrig iff sktrig rolls over.
 * (When we return false to readpagetup callers, tuple can only be == current
 * required equality scan keys when caller's sktrig indicates that the arrays
 * need to be advanced due to an unsatisfied required inequality key trigger.)
 *
 * Returns true when caller passes a tuple that is < the current set of
 * equality keys for the most significant non-equal required scan key/column
 * (or > the keys, during backwards scans).  This happens to readpagetup
 * callers when tuple is still before the start of matches for the scan's
 * required equality strategy scan keys.  (sktrig can't have indicated that an
 * inequality strategy scan key wasn't satisfied in _bt_check_compare when we
 * return true.  In fact, we automatically return false when passed such an
 * inequality sktrig by readpagetup callers -- _bt_check_compare's initial
 * continuescan=false doesn't really need to be confirmed here by us.)
 *
 * !readpagetup callers optionally pass us *scanBehind, which tracks whether
 * any missing truncated attributes might have affected array advancement
 * (compared to what would happen if it was shown the first non-pivot tuple on
 * the page to the right of caller's finaltup/high key tuple instead).  It's
 * only possible that we'll set *scanBehind to true when caller passes us a
 * pivot tuple (with truncated -inf attributes) that we return false for.
 */
static bool
_bt_tuple_before_array_skeys(IndexScanDesc scan, ScanDirection dir,
							 IndexTuple tuple, TupleDesc tupdesc, int tupnatts,
							 bool readpagetup, int sktrig, bool *scanBehind)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;

	Assert(so->numArrayKeys);
	Assert(so->numberOfKeys);
	Assert(sktrig == 0 || readpagetup);
	Assert(!readpagetup || scanBehind == NULL);

	if (scanBehind)
		*scanBehind = false;

	for (int ikey = sktrig; ikey < so->numberOfKeys; ikey++)
	{
		ScanKey		cur = so->keyData + ikey;
		Datum		tupdatum;
		bool		tupnull;
		int32		result;

		/* readpagetup calls require one ORDER proc comparison (at most) */
		Assert(!readpagetup || ikey == sktrig);

		/*
		 * Once we reach a non-required scan key, we're completely done.
		 *
		 * Note: we deliberately don't consider the scan direction here.
		 * _bt_advance_array_keys caller requires that we track *scanBehind
		 * without concern for scan direction.
		 */
		if ((cur->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) == 0)
		{
			Assert(!readpagetup);
			Assert(ikey > sktrig || ikey == 0);
			return false;
		}

		if (cur->sk_attno > tupnatts)
		{
			Assert(!readpagetup);

			/*
			 * When we reach a high key's truncated attribute, assume that the
			 * tuple attribute's value is >= the scan's equality constraint
			 * scan keys (but set *scanBehind to let interested callers know
			 * that a truncated attribute might have affected our answer).
			 */
			if (scanBehind)
				*scanBehind = true;

			return false;
		}

		/*
		 * Deal with inequality strategy scan keys that _bt_check_compare set
		 * continuescan=false for
		 */
		if (cur->sk_strategy != BTEqualStrategyNumber)
		{
			/*
			 * When _bt_check_compare indicated that a required inequality
			 * scan key wasn't satisfied, there's no need to verify anything;
			 * caller always calls _bt_advance_array_keys with this sktrig.
			 */
			if (readpagetup)
				return false;

			/*
			 * Otherwise we can't give up, since we must check all required
			 * scan keys (required in either direction) in order to correctly
			 * track *scanBehind for caller
			 */
			continue;
		}

		tupdatum = index_getattr(tuple, cur->sk_attno, tupdesc, &tupnull);

		if (likely(!(cur->sk_flags & (SK_BT_MINVAL | SK_BT_MAXVAL))))
		{
			/* Scankey has a valid/comparable sk_argument value */
			result = _bt_compare_array_skey(&so->orderProcs[ikey],
											tupdatum, tupnull,
											cur->sk_argument, cur);

			if (result == 0)
			{
				/*
				 * Interpret result in a way that takes NEXT/PRIOR into
				 * account
				 */
				if (cur->sk_flags & SK_BT_NEXT)
					result = -1;
				else if (cur->sk_flags & SK_BT_PRIOR)
					result = 1;

				Assert(result == 0 || (cur->sk_flags & SK_BT_SKIP));
			}
		}
		else
		{
			BTArrayKeyInfo *array = NULL;

			/*
			 * Current array element/array = scan key value is a sentinel
			 * value that represents the lowest (or highest) possible value
			 * that's still within the range of the array.
			 *
			 * Like _bt_first, we only see MINVAL keys during forwards scans
			 * (and similarly only see MAXVAL keys during backwards scans).
			 * Even if the scan's direction changes, we'll stop at some higher
			 * order key before we can ever reach any MAXVAL (or MINVAL) keys.
			 * (However, unlike _bt_first we _can_ get to keys marked either
			 * NEXT or PRIOR, regardless of the scan's current direction.)
			 */
			Assert(ScanDirectionIsForward(dir) ?
				   !(cur->sk_flags & SK_BT_MAXVAL) :
				   !(cur->sk_flags & SK_BT_MINVAL));

			/*
			 * There are no valid sk_argument values in MINVAL/MAXVAL keys.
			 * Check if tupdatum is within the range of skip array instead.
			 */
			for (int arrayidx = 0; arrayidx < so->numArrayKeys; arrayidx++)
			{
				array = &so->arrayKeys[arrayidx];
				if (array->scan_key == ikey)
					break;
			}

			_bt_binsrch_skiparray_skey(false, dir, tupdatum, tupnull,
									   array, cur, &result);

			if (result == 0)
			{
				/*
				 * tupdatum satisfies both low_compare and high_compare, so
				 * it's time to advance the array keys.
				 *
				 * Note: It's possible that the skip array will "advance" from
				 * its MINVAL (or MAXVAL) representation to an alternative,
				 * logically equivalent representation of the same value: a
				 * representation where the = key gets a valid datum in its
				 * sk_argument.  This is only possible when low_compare uses
				 * the >= strategy (or high_compare uses the <= strategy).
				 */
				return false;
			}
		}

		/*
		 * Does this comparison indicate that caller must _not_ advance the
		 * scan's arrays just yet?
		 */
		if ((ScanDirectionIsForward(dir) && result < 0) ||
			(ScanDirectionIsBackward(dir) && result > 0))
			return true;

		/*
		 * Does this comparison indicate that caller should now advance the
		 * scan's arrays?  (Must be if we get here during a readpagetup call.)
		 */
		if (readpagetup || result != 0)
		{
			Assert(result != 0);
			return false;
		}

		/*
		 * Inconclusive -- need to check later scan keys, too.
		 *
		 * This must be a finaltup precheck, or a call made from an assertion.
		 */
		Assert(result == 0);
	}

	Assert(!readpagetup);

	return false;
}

/*
 * _bt_start_prim_scan() -- start scheduled primitive index scan?
 *
 * Returns true if _bt_checkkeys scheduled another primitive index scan, just
 * as the last one ended.  Otherwise returns false, indicating that the array
 * keys are now fully exhausted.
 *
 * Only call here during scans with one or more equality type array scan keys,
 * after _bt_first or _bt_next return false.
 */
bool
_bt_start_prim_scan(IndexScanDesc scan, ScanDirection dir)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;

	Assert(so->numArrayKeys);

	so->scanBehind = so->oppositeDirCheck = false;	/* reset */

	/*
	 * Array keys are advanced within _bt_checkkeys when the scan reaches the
	 * leaf level (more precisely, they're advanced when the scan reaches the
	 * end of each distinct set of array elements).  This process avoids
	 * repeat access to leaf pages (across multiple primitive index scans) by
	 * advancing the scan's array keys when it allows the primitive index scan
	 * to find nearby matching tuples (or when it eliminates ranges of array
	 * key space that can't possibly be satisfied by any index tuple).
	 *
	 * _bt_checkkeys sets a simple flag variable to schedule another primitive
	 * index scan.  The flag tells us what to do.
	 *
	 * We cannot rely on _bt_first always reaching _bt_checkkeys.  There are
	 * various cases where that won't happen.  For example, if the index is
	 * completely empty, then _bt_first won't call _bt_readpage/_bt_checkkeys.
	 * We also don't expect a call to _bt_checkkeys during searches for a
	 * non-existent value that happens to be lower/higher than any existing
	 * value in the index.
	 *
	 * We don't require special handling for these cases -- we don't need to
	 * be explicitly instructed to _not_ perform another primitive index scan.
	 * It's up to code under the control of _bt_first to always set the flag
	 * when another primitive index scan will be required.
	 *
	 * This works correctly, even with the tricky cases listed above, which
	 * all involve access to leaf pages "near the boundaries of the key space"
	 * (whether it's from a leftmost/rightmost page, or an imaginary empty
	 * leaf root page).  If _bt_checkkeys cannot be reached by a primitive
	 * index scan for one set of array keys, then it also won't be reached for
	 * any later set ("later" in terms of the direction that we scan the index
	 * and advance the arrays).  The array keys won't have advanced in these
	 * cases, but that's the correct behavior (even _bt_advance_array_keys
	 * won't always advance the arrays at the point they become "exhausted").
	 */
	if (so->needPrimScan)
	{
		Assert(_bt_verify_arrays_bt_first(scan, dir));

		/*
		 * Flag was set -- must call _bt_first again, which will reset the
		 * scan's needPrimScan flag
		 */
		return true;
	}

	/* The top-level index scan ran out of tuples in this scan direction */
	if (scan->parallel_scan != NULL)
		_bt_parallel_done(scan);

	return false;
}

/*
 * _bt_advance_array_keys() -- Advance array elements using a tuple
 *
 * The scan always gets a new qual as a consequence of calling here (except
 * when we determine that the top-level scan has run out of matching tuples).
 * All later _bt_check_compare calls also use the same new qual that was first
 * used here (at least until the next call here advances the keys once again).
 * It's convenient to structure _bt_check_compare rechecks of caller's tuple
 * (using the new qual) as one the steps of advancing the scan's array keys,
 * so this function works as a wrapper around _bt_check_compare.
 *
 * Like _bt_check_compare, we'll set pstate.continuescan on behalf of the
 * caller, and return a boolean indicating if caller's tuple satisfies the
 * scan's new qual.  But unlike _bt_check_compare, we set so->needPrimScan
 * when we set continuescan=false, indicating if a new primitive index scan
 * has been scheduled (otherwise, the top-level scan has run out of tuples in
 * the current scan direction).
 *
 * Caller must use _bt_tuple_before_array_skeys to determine if the current
 * place in the scan is >= the current array keys _before_ calling here.
 * We're responsible for ensuring that caller's tuple is <= the newly advanced
 * required array keys once we return.  We try to find an exact match, but
 * failing that we'll advance the array keys to whatever set of array elements
 * comes next in the key space for the current scan direction.  Required array
 * keys "ratchet forwards" (or backwards).  They can only advance as the scan
 * itself advances through the index/key space.
 *
 * (The rules are the same for backwards scans, except that the operators are
 * flipped: just replace the precondition's >= operator with a <=, and the
 * postcondition's <= operator with a >=.  In other words, just swap the
 * precondition with the postcondition.)
 *
 * We also deal with "advancing" non-required arrays here (or arrays that are
 * treated as non-required for the duration of a _bt_readpage call).  Callers
 * whose sktrig scan key is non-required specify sktrig_required=false.  These
 * calls are the only exception to the general rule about always advancing the
 * required array keys (the scan may not even have a required array).  These
 * callers should just pass a NULL pstate (since there is never any question
 * of stopping the scan).  No call to _bt_tuple_before_array_skeys is required
 * ahead of these calls (it's already clear that any required scan keys must
 * be satisfied by caller's tuple).
 *
 * Note that we deal with non-array required equality strategy scan keys as
 * degenerate single element arrays here.  Obviously, they can never really
 * advance in the way that real arrays can, but they must still affect how we
 * advance real array scan keys (exactly like true array equality scan keys).
 * We have to keep around a 3-way ORDER proc for these (using the "=" operator
 * won't do), since in general whether the tuple is < or > _any_ unsatisfied
 * required equality key influences how the scan's real arrays must advance.
 *
 * Note also that we may sometimes need to advance the array keys when the
 * existing required array keys (and other required equality keys) are already
 * an exact match for every corresponding value from caller's tuple.  We must
 * do this for inequalities that _bt_check_compare set continuescan=false for.
 * They'll advance the array keys here, just like any other scan key that
 * _bt_check_compare stops on.  (This can even happen _after_ we advance the
 * array keys, in which case we'll advance the array keys a second time.  That
 * way _bt_checkkeys caller always has its required arrays advance to the
 * maximum possible extent that its tuple will allow.)
 */
static bool
_bt_advance_array_keys(IndexScanDesc scan, BTReadPageState *pstate,
					   IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
					   int sktrig, bool sktrig_required)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	Relation	rel = scan->indexRelation;
	ScanDirection dir = so->currPos.dir;
	int			arrayidx = 0;
	bool		beyond_end_advance = false,
				skip_array_advanced = false,
				has_required_opposite_direction_only = false,
				all_required_satisfied = true,
				all_satisfied = true;

	Assert(!so->needPrimScan && !so->scanBehind && !so->oppositeDirCheck);
	Assert(_bt_verify_keys_with_arraykeys(scan));

	if (sktrig_required)
	{
		/*
		 * Precondition array state assertion
		 */
		Assert(!_bt_tuple_before_array_skeys(scan, dir, tuple, tupdesc,
											 tupnatts, false, 0, NULL));

		/*
		 * Once we return we'll have a new set of required array keys, so
		 * reset state used by "look ahead" optimization
		 */
		pstate->rechecks = 0;
		pstate->targetdistance = 0;
	}
	else if (sktrig < so->numberOfKeys - 1 &&
			 !(so->keyData[so->numberOfKeys - 1].sk_flags & SK_SEARCHARRAY))
	{
		int			least_sign_ikey = so->numberOfKeys - 1;
		bool		continuescan;

		/*
		 * Optimization: perform a precheck of the least significant key
		 * during !sktrig_required calls when it isn't already our sktrig
		 * (provided the precheck key is not itself an array).
		 *
		 * When the precheck works out we'll avoid an expensive binary search
		 * of sktrig's array (plus any other arrays before least_sign_ikey).
		 */
		Assert(so->keyData[sktrig].sk_flags & SK_SEARCHARRAY);
		if (!_bt_check_compare(scan, dir, tuple, tupnatts, tupdesc, false,
							   false, &continuescan,
							   &least_sign_ikey))
			return false;
	}

	for (int ikey = 0; ikey < so->numberOfKeys; ikey++)
	{
		ScanKey		cur = so->keyData + ikey;
		BTArrayKeyInfo *array = NULL;
		Datum		tupdatum;
		bool		required = false,
					required_opposite_direction_only = false,
					tupnull;
		int32		result;
		int			set_elem = 0;

		if (cur->sk_strategy == BTEqualStrategyNumber)
		{
			/* Manage array state */
			if (cur->sk_flags & SK_SEARCHARRAY)
			{
				array = &so->arrayKeys[arrayidx++];
				Assert(array->scan_key == ikey);
			}
		}
		else
		{
			/*
			 * Are any inequalities required in the opposite direction only
			 * present here?
			 */
			if (((ScanDirectionIsForward(dir) &&
				  (cur->sk_flags & (SK_BT_REQBKWD))) ||
				 (ScanDirectionIsBackward(dir) &&
				  (cur->sk_flags & (SK_BT_REQFWD)))))
				has_required_opposite_direction_only =
					required_opposite_direction_only = true;
		}

		/* Optimization: skip over known-satisfied scan keys */
		if (ikey < sktrig)
			continue;

		if (cur->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD))
		{
			required = true;

			if (cur->sk_attno > tupnatts)
			{
				/* Set this just like _bt_tuple_before_array_skeys */
				Assert(sktrig < ikey);
				so->scanBehind = true;
			}
		}

		/*
		 * Handle a required non-array scan key that the initial call to
		 * _bt_check_compare indicated triggered array advancement, if any.
		 *
		 * The non-array scan key's strategy will be <, <=, or = during a
		 * forwards scan (or any one of =, >=, or > during a backwards scan).
		 * It follows that the corresponding tuple attribute's value must now
		 * be either > or >= the scan key value (for backwards scans it must
		 * be either < or <= that value).
		 *
		 * If this is a required equality strategy scan key, this is just an
		 * optimization; _bt_tuple_before_array_skeys already confirmed that
		 * this scan key places us ahead of caller's tuple.  There's no need
		 * to repeat that work now.  (The same underlying principle also gets
		 * applied by the cur_elem_trig optimization used to speed up searches
		 * for the next array element.)
		 *
		 * If this is a required inequality strategy scan key, we _must_ rely
		 * on _bt_check_compare like this; we aren't capable of directly
		 * evaluating required inequality strategy scan keys here, on our own.
		 */
		if (ikey == sktrig && !array)
		{
			Assert(sktrig_required && required && all_required_satisfied);

			/* Use "beyond end" advancement.  See below for an explanation. */
			beyond_end_advance = true;
			all_satisfied = all_required_satisfied = false;

			continue;
		}

		/*
		 * Nothing more for us to do with an inequality strategy scan key that
		 * wasn't the one that _bt_check_compare stopped on, though.
		 *
		 * Note: if our later call to _bt_check_compare (to recheck caller's
		 * tuple) sets continuescan=false due to finding this same inequality
		 * unsatisfied (possible when it's required in the scan direction),
		 * we'll deal with it via a recursive "second pass" call.
		 */
		else if (cur->sk_strategy != BTEqualStrategyNumber)
			continue;

		/*
		 * Nothing for us to do with an equality strategy scan key that isn't
		 * marked required, either -- unless it's a non-required array
		 */
		else if (!required && !array)
			continue;

		/*
		 * Here we perform steps for all array scan keys after a required
		 * array scan key whose binary search triggered "beyond end of array
		 * element" array advancement due to encountering a tuple attribute
		 * value > the closest matching array key (or < for backwards scans).
		 */
		if (beyond_end_advance)
		{
			if (array)
				_bt_array_set_low_or_high(rel, cur, array,
										  ScanDirectionIsBackward(dir));

			continue;
		}

		/*
		 * Here we perform steps for all array scan keys after a required
		 * array scan key whose tuple attribute was < the closest matching
		 * array key when we dealt with it (or > for backwards scans).
		 *
		 * This earlier required array key already puts us ahead of caller's
		 * tuple in the key space (for the current scan direction).  We must
		 * make sure that subsequent lower-order array keys do not put us too
		 * far ahead (ahead of tuples that have yet to be seen by our caller).
		 * For example, when a tuple "(a, b) = (42, 5)" advances the array
		 * keys on "a" from 40 to 45, we must also set "b" to whatever the
		 * first array element for "b" is.  It would be wrong to allow "b" to
		 * be set based on the tuple value.
		 *
		 * Perform the same steps with truncated high key attributes.  You can
		 * think of this as a "binary search" for the element closest to the
		 * value -inf.  Again, the arrays must never get ahead of the scan.
		 */
		if (!all_required_satisfied || cur->sk_attno > tupnatts)
		{
			if (array)
				_bt_array_set_low_or_high(rel, cur, array,
										  ScanDirectionIsForward(dir));

			continue;
		}

		/*
		 * Search in scankey's array for the corresponding tuple attribute
		 * value from caller's tuple
		 */
		tupdatum = index_getattr(tuple, cur->sk_attno, tupdesc, &tupnull);

		if (array)
		{
			bool		cur_elem_trig = (sktrig_required && ikey == sktrig);

			/*
			 * "Binary search" by checking if tupdatum/tupnull are within the
			 * range of the skip array
			 */
			if (array->num_elems == -1)
				_bt_binsrch_skiparray_skey(cur_elem_trig, dir,
										   tupdatum, tupnull, array, cur,
										   &result);

			/*
			 * Binary search for the closest match from the SAOP array
			 */
			else
				set_elem = _bt_binsrch_array_skey(&so->orderProcs[ikey],
												  cur_elem_trig, dir,
												  tupdatum, tupnull, array, cur,
												  &result);
		}
		else
		{
			Assert(required);

			/*
			 * This is a required non-array equality strategy scan key, which
			 * we'll treat as a degenerate single element array.
			 *
			 * This scan key's imaginary "array" can't really advance, but it
			 * can still roll over like any other array.  (Actually, this is
			 * no different to real single value arrays, which never advance
			 * without rolling over -- they can never truly advance, either.)
			 */
			result = _bt_compare_array_skey(&so->orderProcs[ikey],
											tupdatum, tupnull,
											cur->sk_argument, cur);
		}

		/*
		 * Consider "beyond end of array element" array advancement.
		 *
		 * When the tuple attribute value is > the closest matching array key
		 * (or < in the backwards scan case), we need to ratchet this array
		 * forward (backward) by one increment, so that caller's tuple ends up
		 * being < final array value instead (or > final array value instead).
		 * This process has to work for all of the arrays, not just this one:
		 * it must "carry" to higher-order arrays when the set_elem that we
		 * just found happens to be the final one for the scan's direction.
		 * Incrementing (decrementing) set_elem itself isn't good enough.
		 *
		 * Our approach is to provisionally use set_elem as if it was an exact
		 * match now, then set each later/less significant array to whatever
		 * its final element is.  Once outside the loop we'll then "increment
		 * this array's set_elem" by calling _bt_advance_array_keys_increment.
		 * That way the process rolls over to higher order arrays as needed.
		 *
		 * Under this scheme any required arrays only ever ratchet forwards
		 * (or backwards), and always do so to the maximum possible extent
		 * that we can know will be safe without seeing the scan's next tuple.
		 * We don't need any special handling for required scan keys that lack
		 * a real array to advance, nor for redundant scan keys that couldn't
		 * be eliminated by _bt_preprocess_keys.  It won't matter if some of
		 * our "true" array scan keys (or even all of them) are non-required.
		 */
		if (sktrig_required && required &&
			((ScanDirectionIsForward(dir) && result > 0) ||
			 (ScanDirectionIsBackward(dir) && result < 0)))
			beyond_end_advance = true;

		Assert(all_required_satisfied && all_satisfied);
		if (result != 0)
		{
			/*
			 * Track whether caller's tuple satisfies our new post-advancement
			 * qual, for required scan keys, as well as for the entire set of
			 * interesting scan keys (all required scan keys plus non-required
			 * array scan keys are considered interesting.)
			 */
			all_satisfied = false;
			if (sktrig_required && required)
				all_required_satisfied = false;
			else
			{
				/*
				 * There's no need to advance the arrays using the best
				 * available match for a non-required array.  Give up now.
				 * (Though note that sktrig_required calls still have to do
				 * all the usual post-advancement steps, including the recheck
				 * call to _bt_check_compare.)
				 */
				break;
			}
		}

		/* Advance array keys, even when we don't have an exact match */
		if (array)
		{
			if (array->num_elems == -1)
			{
				/* Skip array's new element is tupdatum (or MINVAL/MAXVAL) */
				_bt_skiparray_set_element(rel, cur, array, result,
										  tupdatum, tupnull);
				skip_array_advanced = true;
			}
			else if (array->cur_elem != set_elem)
			{
				/* SAOP array's new element is set_elem datum */
				array->cur_elem = set_elem;
				cur->sk_argument = array->elem_values[set_elem];
			}
		}
	}

	/*
	 * Advance the array keys incrementally whenever "beyond end of array
	 * element" array advancement happens, so that advancement will carry to
	 * higher-order arrays (might exhaust all the scan's arrays instead, which
	 * ends the top-level scan).
	 */
	if (beyond_end_advance &&
		!_bt_advance_array_keys_increment(scan, dir, &skip_array_advanced))
		goto end_toplevel_scan;

	Assert(_bt_verify_keys_with_arraykeys(scan));

	/*
	 * Maintain a page-level count of the number of times the scan's array
	 * keys advanced in a way that affected at least one skip array
	 */
	if (sktrig_required && skip_array_advanced)
		pstate->nskipadvances++;

	/*
	 * Does tuple now satisfy our new qual?  Recheck with _bt_check_compare.
	 *
	 * Calls triggered by an unsatisfied required scan key, whose tuple now
	 * satisfies all required scan keys, but not all nonrequired array keys,
	 * will still require a recheck call to _bt_check_compare.  They'll still
	 * need its "second pass" handling of required inequality scan keys.
	 * (Might have missed a still-unsatisfied required inequality scan key
	 * that caller didn't detect as the sktrig scan key during its initial
	 * _bt_check_compare call that used the old/original qual.)
	 *
	 * Calls triggered by an unsatisfied nonrequired array scan key never need
	 * "second pass" handling of required inequalities (nor any other handling
	 * of any required scan key).  All that matters is whether caller's tuple
	 * satisfies the new qual, so it's safe to just skip the _bt_check_compare
	 * recheck when we've already determined that it can only return 'false'.
	 *
	 * Note: In practice most scan keys are marked required by preprocessing,
	 * if necessary by generating a preceding skip array.  We nevertheless
	 * often handle array keys marked required as if they were nonrequired.
	 * This behavior is requested by our _bt_check_compare caller, though only
	 * when it is passed "forcenonrequired=true" by _bt_checkkeys.
	 */
	if ((sktrig_required && all_required_satisfied) ||
		(!sktrig_required && all_satisfied))
	{
		int			nsktrig = sktrig + 1;
		bool		continuescan;

		Assert(all_required_satisfied);

		/* Recheck _bt_check_compare on behalf of caller */
		if (_bt_check_compare(scan, dir, tuple, tupnatts, tupdesc, false,
							  !sktrig_required, &continuescan,
							  &nsktrig) &&
			!so->scanBehind)
		{
			/* This tuple satisfies the new qual */
			Assert(all_satisfied && continuescan);

			if (pstate)
				pstate->continuescan = true;

			return true;
		}

		/*
		 * Consider "second pass" handling of required inequalities.
		 *
		 * It's possible that our _bt_check_compare call indicated that the
		 * scan should end due to some unsatisfied inequality that wasn't
		 * initially recognized as such by us.  Handle this by calling
		 * ourselves recursively, this time indicating that the trigger is the
		 * inequality that we missed first time around (and using a set of
		 * required array/equality keys that are now exact matches for tuple).
		 *
		 * We make a strong, general guarantee that every _bt_checkkeys call
		 * here will advance the array keys to the maximum possible extent
		 * that we can know to be safe based on caller's tuple alone.  If we
		 * didn't perform this step, then that guarantee wouldn't quite hold.
		 */
		if (unlikely(!continuescan))
		{
			bool		satisfied PG_USED_FOR_ASSERTS_ONLY;

			Assert(sktrig_required);
			Assert(so->keyData[nsktrig].sk_strategy != BTEqualStrategyNumber);

			/*
			 * The tuple must use "beyond end" advancement during the
			 * recursive call, so we cannot possibly end up back here when
			 * recursing.  We'll consume a small, fixed amount of stack space.
			 */
			Assert(!beyond_end_advance);

			/* Advance the array keys a second time using same tuple */
			satisfied = _bt_advance_array_keys(scan, pstate, tuple, tupnatts,
											   tupdesc, nsktrig, true);

			/* This tuple doesn't satisfy the inequality */
			Assert(!satisfied);
			return false;
		}

		/*
		 * Some non-required scan key (from new qual) still not satisfied.
		 *
		 * All scan keys required in the current scan direction must still be
		 * satisfied, though, so we can trust all_required_satisfied below.
		 */
	}

	/*
	 * When we were called just to deal with "advancing" non-required arrays,
	 * this is as far as we can go (cannot stop the scan for these callers)
	 */
	if (!sktrig_required)
	{
		/* Caller's tuple doesn't match any qual */
		return false;
	}

	/*
	 * Postcondition array state assertion (for still-unsatisfied tuples).
	 *
	 * By here we have established that the scan's required arrays (scan must
	 * have at least one required array) advanced, without becoming exhausted.
	 *
	 * Caller's tuple is now < the newly advanced array keys (or > when this
	 * is a backwards scan), except in the case where we only got this far due
	 * to an unsatisfied non-required scan key.  Verify that with an assert.
	 *
	 * Note: we don't just quit at this point when all required scan keys were
	 * found to be satisfied because we need to consider edge-cases involving
	 * scan keys required in the opposite direction only; those aren't tracked
	 * by all_required_satisfied.
	 */
	Assert(_bt_tuple_before_array_skeys(scan, dir, tuple, tupdesc, tupnatts,
										false, 0, NULL) ==
		   !all_required_satisfied);

	/*
	 * We generally permit primitive index scans to continue onto the next
	 * sibling page when the page's finaltup satisfies all required scan keys
	 * at the point where we're between pages.
	 *
	 * If caller's tuple is also the page's finaltup, and we see that required
	 * scan keys still aren't satisfied, start a new primitive index scan.
	 */
	if (!all_required_satisfied && pstate->finaltup == tuple)
		goto new_prim_scan;

	/*
	 * Proactively check finaltup (don't wait until finaltup is reached by the
	 * scan) when it might well turn out to not be satisfied later on.
	 *
	 * Note: if so->scanBehind hasn't already been set for finaltup by us,
	 * it'll be set during this call to _bt_tuple_before_array_skeys.  Either
	 * way, it'll be set correctly (for the whole page) after this point.
	 */
	if (!all_required_satisfied && pstate->finaltup &&
		_bt_tuple_before_array_skeys(scan, dir, pstate->finaltup, tupdesc,
									 BTreeTupleGetNAtts(pstate->finaltup, rel),
									 false, 0, &so->scanBehind))
		goto new_prim_scan;

	/*
	 * When we encounter a truncated finaltup high key attribute, we're
	 * optimistic about the chances of its corresponding required scan key
	 * being satisfied when we go on to recheck it against tuples from this
	 * page's right sibling leaf page.  We consider truncated attributes to be
	 * satisfied by required scan keys, which allows the primitive index scan
	 * to continue to the next leaf page.  We must set so->scanBehind to true
	 * to remember that the last page's finaltup had "satisfied" required scan
	 * keys for one or more truncated attribute values (scan keys required in
	 * _either_ scan direction).
	 *
	 * There is a chance that _bt_readpage (which checks so->scanBehind) will
	 * find that even the sibling leaf page's finaltup is < the new array
	 * keys.  When that happens, our optimistic policy will have incurred a
	 * single extra leaf page access that could have been avoided.
	 *
	 * A pessimistic policy would give backward scans a gratuitous advantage
	 * over forward scans.  We'd punish forward scans for applying more
	 * accurate information from the high key, rather than just using the
	 * final non-pivot tuple as finaltup, in the style of backward scans.
	 * Being pessimistic would also give some scans with non-required arrays a
	 * perverse advantage over similar scans that use required arrays instead.
	 *
	 * This is similar to our scan-level heuristics, below.  They also set
	 * scanBehind to speculatively continue the primscan onto the next page.
	 */
	if (so->scanBehind)
	{
		/* Truncated high key -- _bt_scanbehind_checkkeys recheck scheduled */
	}

	/*
	 * Handle inequalities marked required in the opposite scan direction.
	 * They can also signal that we should start a new primitive index scan.
	 *
	 * It's possible that the scan is now positioned where "matching" tuples
	 * begin, and that caller's tuple satisfies all scan keys required in the
	 * current scan direction.  But if caller's tuple still doesn't satisfy
	 * other scan keys that are required in the opposite scan direction only
	 * (e.g., a required >= strategy scan key when scan direction is forward),
	 * it's still possible that there are many leaf pages before the page that
	 * _bt_first could skip straight to.  Groveling through all those pages
	 * will always give correct answers, but it can be very inefficient.  We
	 * must avoid needlessly scanning extra pages.
	 *
	 * Separately, it's possible that _bt_check_compare set continuescan=false
	 * for a scan key that's required in the opposite direction only.  This is
	 * a special case, that happens only when _bt_check_compare sees that the
	 * inequality encountered a NULL value.  This signals the end of non-NULL
	 * values in the current scan direction, which is reason enough to end the
	 * (primitive) scan.  If this happens at the start of a large group of
	 * NULL values, then we shouldn't expect to be called again until after
	 * the scan has already read indefinitely-many leaf pages full of tuples
	 * with NULL suffix values.  (_bt_first is expected to skip over the group
	 * of NULLs by applying a similar "deduce NOT NULL" rule of its own, which
	 * involves consing up an explicit SK_SEARCHNOTNULL key.)
	 *
	 * Apply a test against finaltup to detect and recover from the problem:
	 * if even finaltup doesn't satisfy such an inequality, we just skip by
	 * starting a new primitive index scan.  When we skip, we know for sure
	 * that all of the tuples on the current page following caller's tuple are
	 * also before the _bt_first-wise start of tuples for our new qual.  That
	 * at least suggests many more skippable pages beyond the current page.
	 * (when so->scanBehind and so->oppositeDirCheck are set, this'll happen
	 * when we test the next page's finaltup/high key instead.)
	 */
	else if (has_required_opposite_direction_only && pstate->finaltup &&
			 unlikely(!_bt_oppodir_checkkeys(scan, dir, pstate->finaltup)))
	{
		/*
		 * Make sure that any SAOP arrays that were not marked required by
		 * preprocessing are reset to their first element for this direction
		 */
		_bt_rewind_nonrequired_arrays(scan, dir);
		goto new_prim_scan;
	}

continue_scan:

	/*
	 * Stick with the ongoing primitive index scan for now.
	 *
	 * It's possible that later tuples will also turn out to have values that
	 * are still < the now-current array keys (or > the current array keys).
	 * Our caller will handle this by performing what amounts to a linear
	 * search of the page, implemented by calling _bt_check_compare and then
	 * _bt_tuple_before_array_skeys for each tuple.
	 *
	 * This approach has various advantages over a binary search of the page.
	 * Repeated binary searches of the page (one binary search for every array
	 * advancement) won't outperform a continuous linear search.  While there
	 * are workloads that a naive linear search won't handle well, our caller
	 * has a "look ahead" fallback mechanism to deal with that problem.
	 */
	pstate->continuescan = true;	/* Override _bt_check_compare */
	so->needPrimScan = false;	/* _bt_readpage has more tuples to check */

	if (so->scanBehind)
	{
		/*
		 * Remember if recheck needs to call _bt_oppodir_checkkeys for next
		 * page's finaltup (see above comments about "Handle inequalities
		 * marked required in the opposite scan direction" for why).
		 */
		so->oppositeDirCheck = has_required_opposite_direction_only;

		_bt_rewind_nonrequired_arrays(scan, dir);

		/*
		 * skip by setting "look ahead" mechanism's offnum for forwards scans
		 * (backwards scans check scanBehind flag directly instead)
		 */
		if (ScanDirectionIsForward(dir))
			pstate->skip = pstate->maxoff + 1;
	}

	/* Caller's tuple doesn't match the new qual */
	return false;

new_prim_scan:

	Assert(pstate->finaltup);	/* not on rightmost/leftmost page */

	/*
	 * Looks like another primitive index scan is required.  But consider
	 * continuing the current primscan based on scan-level heuristics.
	 *
	 * Continue the ongoing primitive scan (and schedule a recheck for when
	 * the scan arrives on the next sibling leaf page) when it has already
	 * read at least one leaf page before the one we're reading now.  This
	 * makes primscan scheduling more efficient when scanning subsets of an
	 * index with many distinct attribute values matching many array elements.
	 * It encourages fewer, larger primitive scans where that makes sense.
	 * This will in turn encourage _bt_readpage to apply the pstate.startikey
	 * optimization more often.
	 *
	 * Also continue the ongoing primitive index scan when it is still on the
	 * first page if there have been more than NSKIPADVANCES_THRESHOLD calls
	 * here that each advanced at least one of the scan's skip arrays
	 * (deliberately ignore advancements that only affected SAOP arrays here).
	 * A page that cycles through this many skip array elements is quite
	 * likely to neighbor similar pages, that we'll also need to read.
	 *
	 * Note: These heuristics aren't as aggressive as you might think.  We're
	 * conservative about allowing a primitive scan to step from the first
	 * leaf page it reads to the page's sibling page (we only allow it on
	 * first pages whose finaltup strongly suggests that it'll work out, as
	 * well as first pages that have a large number of skip array advances).
	 * Clearing this first page finaltup hurdle is a strong signal in itself.
	 *
	 * Note: The NSKIPADVANCES_THRESHOLD heuristic exists only to avoid
	 * pathological cases.  Specifically, cases where a skip scan should just
	 * behave like a traditional full index scan, but ends up "skipping" again
	 * and again, descending to the prior leaf page's direct sibling leaf page
	 * each time.  This misbehavior would otherwise be possible during scans
	 * that never quite manage to "clear the first page finaltup hurdle".
	 */
	if (!pstate->firstpage || pstate->nskipadvances > NSKIPADVANCES_THRESHOLD)
	{
		/* Schedule a recheck once on the next (or previous) page */
		so->scanBehind = true;

		/* Continue the current primitive scan after all */
		goto continue_scan;
	}

	/*
	 * End this primitive index scan, but schedule another.
	 *
	 * Note: We make a soft assumption that the current scan direction will
	 * also be used within _bt_next, when it is asked to step off this page.
	 * It is up to _bt_next to cancel this scheduled primitive index scan
	 * whenever it steps to a page in the direction opposite currPos.dir.
	 */
	pstate->continuescan = false;	/* Tell _bt_readpage we're done... */
	so->needPrimScan = true;	/* ...but call _bt_first again */

	if (scan->parallel_scan)
		_bt_parallel_primscan_schedule(scan, so->currPos.currPage);

	/* Caller's tuple doesn't match the new qual */
	return false;

end_toplevel_scan:

	/*
	 * End the current primitive index scan, but don't schedule another.
	 *
	 * This ends the entire top-level scan in the current scan direction.
	 *
	 * Note: The scan's arrays (including any non-required arrays) are now in
	 * their final positions for the current scan direction.  If the scan
	 * direction happens to change, then the arrays will already be in their
	 * first positions for what will then be the current scan direction.
	 */
	pstate->continuescan = false;	/* Tell _bt_readpage we're done... */
	so->needPrimScan = false;	/* ...and don't call _bt_first again */

	/* Caller's tuple doesn't match any qual */
	return false;
}

#ifdef USE_ASSERT_CHECKING
/*
 * Verify that the scan's qual state matches what we expect at the point that
 * _bt_start_prim_scan is about to start a just-scheduled new primitive scan.
 *
 * We enforce a rule against non-required array scan keys: they must start out
 * with whatever element is the first for the scan's current scan direction.
 * See _bt_rewind_nonrequired_arrays comments for an explanation.
 */
static bool
_bt_verify_arrays_bt_first(IndexScanDesc scan, ScanDirection dir)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	int			arrayidx = 0;

	for (int ikey = 0; ikey < so->numberOfKeys; ikey++)
	{
		ScanKey		cur = so->keyData + ikey;
		BTArrayKeyInfo *array = NULL;
		int			first_elem_dir;

		if (!(cur->sk_flags & SK_SEARCHARRAY) ||
			cur->sk_strategy != BTEqualStrategyNumber)
			continue;

		array = &so->arrayKeys[arrayidx++];

		if (((cur->sk_flags & SK_BT_REQFWD) && ScanDirectionIsForward(dir)) ||
			((cur->sk_flags & SK_BT_REQBKWD) && ScanDirectionIsBackward(dir)))
			continue;

		if (ScanDirectionIsForward(dir))
			first_elem_dir = 0;
		else
			first_elem_dir = array->num_elems - 1;

		if (array->cur_elem != first_elem_dir)
			return false;
	}

	return _bt_verify_keys_with_arraykeys(scan);
}

/*
 * Verify that the scan's "so->keyData[]" scan keys are in agreement with
 * its array key state
 */
static bool
_bt_verify_keys_with_arraykeys(IndexScanDesc scan)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	int			last_sk_attno = InvalidAttrNumber,
				arrayidx = 0;

	if (!so->qual_ok)
		return false;

	for (int ikey = 0; ikey < so->numberOfKeys; ikey++)
	{
		ScanKey		cur = so->keyData + ikey;
		BTArrayKeyInfo *array;

		if (cur->sk_strategy != BTEqualStrategyNumber ||
			!(cur->sk_flags & SK_SEARCHARRAY))
			continue;

		array = &so->arrayKeys[arrayidx++];
		if (array->scan_key != ikey)
			return false;

		if (array->num_elems == 0 || array->num_elems < -1)
			return false;

		if (array->num_elems != -1 &&
			cur->sk_argument != array->elem_values[array->cur_elem])
			return false;
		if (last_sk_attno > cur->sk_attno)
			return false;
		last_sk_attno = cur->sk_attno;
	}

	if (arrayidx != so->numArrayKeys)
		return false;

	return true;
}
#endif

/*
 * Test whether an indextuple satisfies all the scankey conditions.
 *
 * Return true if so, false if not.  If the tuple fails to pass the qual,
 * we also determine whether there's any need to continue the scan beyond
 * this tuple, and set pstate.continuescan accordingly.  See comments for
 * _bt_preprocess_keys() about how this is done.
 *
 * Forward scan callers can pass a high key tuple in the hopes of having
 * us set *continuescan to false, and avoiding an unnecessary visit to
 * the page to the right.
 *
 * Advances the scan's array keys when necessary for arrayKeys=true callers.
 * Scans without any array keys must always pass arrayKeys=false.
 *
 * Also stops and starts primitive index scans for arrayKeys=true callers.
 * Scans with array keys are required to set up page state that helps us with
 * this.  The page's finaltup tuple (the page high key for a forward scan, or
 * the page's first non-pivot tuple for a backward scan) must be set in
 * pstate.finaltup ahead of the first call here for the page.  Set this to
 * NULL for rightmost page (or the leftmost page for backwards scans).
 *
 * scan: index scan descriptor (containing a search-type scankey)
 * pstate: page level input and output parameters
 * arrayKeys: should we advance the scan's array keys if necessary?
 * tuple: index tuple to test
 * tupnatts: number of attributes in tupnatts (high key may be truncated)
 */
bool
_bt_checkkeys(IndexScanDesc scan, BTReadPageState *pstate, bool arrayKeys,
			  IndexTuple tuple, int tupnatts)
{
	TupleDesc	tupdesc = RelationGetDescr(scan->indexRelation);
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	ScanDirection dir = so->currPos.dir;
	int			ikey = pstate->startikey;
	bool		res;

	Assert(BTreeTupleGetNAtts(tuple, scan->indexRelation) == tupnatts);
	Assert(!so->needPrimScan && !so->scanBehind && !so->oppositeDirCheck);
	Assert(arrayKeys || so->numArrayKeys == 0);

	res = _bt_check_compare(scan, dir, tuple, tupnatts, tupdesc, arrayKeys,
							pstate->forcenonrequired, &pstate->continuescan,
							&ikey);

	/*
	 * If _bt_check_compare relied on the pstate.startikey optimization, call
	 * again (in assert-enabled builds) to verify it didn't affect our answer.
	 *
	 * Note: we can't do this when !pstate.forcenonrequired, since any arrays
	 * before pstate.startikey won't have advanced on this page at all.
	 */
	Assert(!pstate->forcenonrequired || arrayKeys);
#ifdef USE_ASSERT_CHECKING
	if (pstate->startikey > 0 && !pstate->forcenonrequired)
	{
		bool		dres,
					dcontinuescan;
		int			dikey = 0;

		/* Pass arrayKeys=false to avoid array side-effects */
		dres = _bt_check_compare(scan, dir, tuple, tupnatts, tupdesc, false,
								 pstate->forcenonrequired, &dcontinuescan,
								 &dikey);
		Assert(res == dres);
		Assert(pstate->continuescan == dcontinuescan);

		/*
		 * Should also get the same ikey result.  We need a slightly weaker
		 * assertion during arrayKeys calls, since they might be using an
		 * array that couldn't be marked required during preprocessing.
		 */
		Assert(arrayKeys || ikey == dikey);
		Assert(ikey <= dikey);
	}
#endif

	/*
	 * Only one _bt_check_compare call is required in the common case where
	 * there are no equality strategy array scan keys.  Otherwise we can only
	 * accept _bt_check_compare's answer unreservedly when it didn't set
	 * pstate.continuescan=false.
	 */
	if (!arrayKeys || pstate->continuescan)
		return res;

	/*
	 * _bt_check_compare call set continuescan=false in the presence of
	 * equality type array keys.  This could mean that the tuple is just past
	 * the end of matches for the current array keys.
	 *
	 * It's also possible that the scan is still _before_ the _start_ of
	 * tuples matching the current set of array keys.  Check for that first.
	 */
	Assert(!pstate->forcenonrequired);
	if (_bt_tuple_before_array_skeys(scan, dir, tuple, tupdesc, tupnatts, true,
									 ikey, NULL))
	{
		/* Override _bt_check_compare, continue primitive scan */
		pstate->continuescan = true;

		/*
		 * We will end up here repeatedly given a group of tuples > the
		 * previous array keys and < the now-current keys (for a backwards
		 * scan it's just the same, though the operators swap positions).
		 *
		 * We must avoid allowing this linear search process to scan very many
		 * tuples from well before the start of tuples matching the current
		 * array keys (or from well before the point where we'll once again
		 * have to advance the scan's array keys).
		 *
		 * We keep the overhead under control by speculatively "looking ahead"
		 * to later still-unscanned items from this same leaf page.  We'll
		 * only attempt this once the number of tuples that the linear search
		 * process has examined starts to get out of hand.
		 */
		pstate->rechecks++;
		if (pstate->rechecks >= LOOK_AHEAD_REQUIRED_RECHECKS)
		{
			/* See if we should skip ahead within the current leaf page */
			_bt_checkkeys_look_ahead(scan, pstate, tupnatts, tupdesc);

			/*
			 * Might have set pstate.skip to a later page offset.  When that
			 * happens then _bt_readpage caller will inexpensively skip ahead
			 * to a later tuple from the same page (the one just after the
			 * tuple we successfully "looked ahead" to).
			 */
		}

		/* This indextuple doesn't match the current qual, in any case */
		return false;
	}

	/*
	 * Caller's tuple is >= the current set of array keys and other equality
	 * constraint scan keys (or <= if this is a backwards scan).  It's now
	 * clear that we _must_ advance any required array keys in lockstep with
	 * the scan.
	 */
	return _bt_advance_array_keys(scan, pstate, tuple, tupnatts, tupdesc,
								  ikey, true);
}

/*
 * Test whether caller's finaltup tuple is still before the start of matches
 * for the current array keys.
 *
 * Called at the start of reading a page during a scan with array keys, though
 * only when the so->scanBehind flag was set on the scan's prior page.
 *
 * Returns false if the tuple is still before the start of matches.  When that
 * happens, caller should cut its losses and start a new primitive index scan.
 * Otherwise returns true.
 */
bool
_bt_scanbehind_checkkeys(IndexScanDesc scan, ScanDirection dir,
						 IndexTuple finaltup)
{
	Relation	rel = scan->indexRelation;
	TupleDesc	tupdesc = RelationGetDescr(rel);
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	int			nfinaltupatts = BTreeTupleGetNAtts(finaltup, rel);
	bool		scanBehind;

	Assert(so->numArrayKeys);

	if (_bt_tuple_before_array_skeys(scan, dir, finaltup, tupdesc,
									 nfinaltupatts, false, 0, &scanBehind))
		return false;

	/*
	 * If scanBehind was set, all of the untruncated attribute values from
	 * finaltup that correspond to an array match the array's current element,
	 * but there are other keys associated with truncated suffix attributes.
	 * Array advancement must have incremented the scan's arrays on the
	 * previous page, resulting in a set of array keys that happen to be an
	 * exact match for the current page high key's untruncated prefix values.
	 *
	 * This page definitely doesn't contain tuples that the scan will need to
	 * return.  The next page may or may not contain relevant tuples.  Handle
	 * this by cutting our losses and starting a new primscan.
	 */
	if (scanBehind)
		return false;

	if (!so->oppositeDirCheck)
		return true;

	return _bt_oppodir_checkkeys(scan, dir, finaltup);
}

/*
 * Test whether an indextuple fails to satisfy an inequality required in the
 * opposite direction only.
 *
 * Caller's finaltup tuple is the page high key (for forwards scans), or the
 * first non-pivot tuple (for backwards scans).  Called during scans with
 * required array keys and required opposite-direction inequalities.
 *
 * Returns false if an inequality scan key required in the opposite direction
 * only isn't satisfied (and any earlier required scan keys are satisfied).
 * Otherwise returns true.
 *
 * An unsatisfied inequality required in the opposite direction only might
 * well enable skipping over many leaf pages, provided another _bt_first call
 * takes place.  This type of unsatisfied inequality won't usually cause
 * _bt_checkkeys to stop the scan to consider array advancement/starting a new
 * primitive index scan.
 */
static bool
_bt_oppodir_checkkeys(IndexScanDesc scan, ScanDirection dir,
					  IndexTuple finaltup)
{
	Relation	rel = scan->indexRelation;
	TupleDesc	tupdesc = RelationGetDescr(rel);
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	int			nfinaltupatts = BTreeTupleGetNAtts(finaltup, rel);
	bool		continuescan;
	ScanDirection flipped = -dir;
	int			ikey = 0;

	Assert(so->numArrayKeys);

	_bt_check_compare(scan, flipped, finaltup, nfinaltupatts, tupdesc, false,
					  false, &continuescan,
					  &ikey);

	if (!continuescan && so->keyData[ikey].sk_strategy != BTEqualStrategyNumber)
		return false;

	return true;
}

/*
 * Determines an offset to the first scan key (an so->keyData[]-wise offset)
 * that is _not_ guaranteed to be satisfied by every tuple from pstate.page,
 * which is set in pstate.startikey for _bt_checkkeys calls for the page.
 * This allows caller to save cycles on comparisons of a prefix of keys while
 * reading pstate.page.
 *
 * Also determines if later calls to _bt_checkkeys (for pstate.page) should be
 * forced to treat all required scan keys >= pstate.startikey as nonrequired
 * (that is, if they're to be treated as if any SK_BT_REQFWD/SK_BT_REQBKWD
 * markings that were set by preprocessing were not set at all, for the
 * duration of _bt_checkkeys calls prior to the call for pstate.finaltup).
 * This is indicated to caller by setting pstate.forcenonrequired.
 *
 * Call here at the start of reading a leaf page beyond the first one for the
 * primitive index scan.  We consider all non-pivot tuples, so it doesn't make
 * sense to call here when only a subset of those tuples can ever be read.
 * This is also a good idea on performance grounds; not calling here when on
 * the first page (first for the current primitive scan) avoids wasting cycles
 * during selective point queries.  They typically don't stand to gain as much
 * when we can set pstate.startikey, and are likely to notice the overhead of
 * calling here.  (Also, allowing pstate.forcenonrequired to be set on a
 * primscan's first page would mislead _bt_advance_array_keys, which expects
 * pstate.nskipadvances to be representative of every first page's key space.)
 *
 * Caller must call _bt_start_array_keys and reset startikey/forcenonrequired
 * ahead of the finaltup _bt_checkkeys call when we set forcenonrequired=true.
 * This will give _bt_checkkeys the opportunity to call _bt_advance_array_keys
 * with sktrig_required=true, restoring the invariant that the scan's required
 * arrays always track the scan's progress through the index's key space.
 * Caller won't need to do this on the rightmost/leftmost page in the index
 * (where pstate.finaltup isn't ever set), since forcenonrequired will never
 * be set here in the first place.
 */
void
_bt_set_startikey(IndexScanDesc scan, BTReadPageState *pstate)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	Relation	rel = scan->indexRelation;
	TupleDesc	tupdesc = RelationGetDescr(rel);
	ItemId		iid;
	IndexTuple	firsttup,
				lasttup;
	int			startikey = 0,
				arrayidx = 0,
				firstchangingattnum;
	bool		start_past_saop_eq = false;

	Assert(!so->scanBehind);
	Assert(pstate->minoff < pstate->maxoff);
	Assert(!pstate->firstpage);
	Assert(pstate->startikey == 0);
	Assert(!so->numArrayKeys || pstate->finaltup ||
		   P_RIGHTMOST(BTPageGetOpaque(pstate->page)) ||
		   P_LEFTMOST(BTPageGetOpaque(pstate->page)));

	if (so->numberOfKeys == 0)
		return;

	/* minoff is an offset to the lowest non-pivot tuple on the page */
	iid = PageGetItemId(pstate->page, pstate->minoff);
	firsttup = (IndexTuple) PageGetItem(pstate->page, iid);

	/* maxoff is an offset to the highest non-pivot tuple on the page */
	iid = PageGetItemId(pstate->page, pstate->maxoff);
	lasttup = (IndexTuple) PageGetItem(pstate->page, iid);

	/* Determine the first attribute whose values change on caller's page */
	firstchangingattnum = _bt_keep_natts_fast(rel, firsttup, lasttup);

	for (; startikey < so->numberOfKeys; startikey++)
	{
		ScanKey		key = so->keyData + startikey;
		BTArrayKeyInfo *array;
		Datum		firstdatum,
					lastdatum;
		bool		firstnull,
					lastnull;
		int32		result;

		/*
		 * Determine if it's safe to set pstate.startikey to an offset to a
		 * key that comes after this key, by examining this key
		 */
		if (!(key->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)))
		{
			/* Scan key isn't marked required (corner case) */
			Assert(!(key->sk_flags & SK_ROW_HEADER));
			break;				/* unsafe */
		}
		if (key->sk_flags & SK_ROW_HEADER)
		{
			/*
			 * RowCompare inequality.
			 *
			 * Only the first subkey from a RowCompare can ever be marked
			 * required (that happens when the row header is marked required).
			 * There is no simple, general way for us to transitively deduce
			 * whether or not every tuple on the page satisfies a RowCompare
			 * key based only on firsttup and lasttup -- so we just give up.
			 */
			if (!start_past_saop_eq && !so->skipScan)
				break;			/* unsafe to go further */

			/*
			 * We have to be even more careful with RowCompares that come
			 * after an array: we assume it's unsafe to even bypass the array.
			 * Calling _bt_start_array_keys to recover the scan's arrays
			 * following use of forcenonrequired mode isn't compatible with
			 * _bt_check_rowcompare's continuescan=false behavior with NULL
			 * row compare members.  _bt_advance_array_keys must not make a
			 * decision on the basis of a key not being satisfied in the
			 * opposite-to-scan direction until the scan reaches a leaf page
			 * where the same key begins to be satisfied in scan direction.
			 * The _bt_first !used_all_subkeys behavior makes this limitation
			 * hard to work around some other way.
			 */
			return;				/* completely unsafe to set pstate.startikey */
		}
		if (key->sk_strategy != BTEqualStrategyNumber)
		{
			/*
			 * Scalar inequality key.
			 *
			 * It's definitely safe for _bt_checkkeys to avoid assessing this
			 * inequality when the page's first and last non-pivot tuples both
			 * satisfy the inequality (since the same must also be true of all
			 * the tuples in between these two).
			 *
			 * Unlike the "=" case, it doesn't matter if this attribute has
			 * more than one distinct value (though it _is_ necessary for any
			 * and all _prior_ attributes to contain no more than one distinct
			 * value amongst all of the tuples from pstate.page).
			 */
			if (key->sk_attno > firstchangingattnum)	/* >, not >= */
				break;			/* unsafe, preceding attr has multiple
								 * distinct values */

			firstdatum = index_getattr(firsttup, key->sk_attno, tupdesc, &firstnull);
			lastdatum = index_getattr(lasttup, key->sk_attno, tupdesc, &lastnull);

			if (key->sk_flags & SK_ISNULL)
			{
				/* IS NOT NULL key */
				Assert(key->sk_flags & SK_SEARCHNOTNULL);

				if (firstnull || lastnull)
					break;		/* unsafe */

				/* Safe, IS NOT NULL key satisfied by every tuple */
				continue;
			}

			/* Test firsttup */
			if (firstnull ||
				!DatumGetBool(FunctionCall2Coll(&key->sk_func,
												key->sk_collation, firstdatum,
												key->sk_argument)))
				break;			/* unsafe */

			/* Test lasttup */
			if (lastnull ||
				!DatumGetBool(FunctionCall2Coll(&key->sk_func,
												key->sk_collation, lastdatum,
												key->sk_argument)))
				break;			/* unsafe */

			/* Safe, scalar inequality satisfied by every tuple */
			continue;
		}

		/* Some = key (could be a scalar = key, could be an array = key) */
		Assert(key->sk_strategy == BTEqualStrategyNumber);

		if (!(key->sk_flags & SK_SEARCHARRAY))
		{
			/*
			 * Scalar = key (possibly an IS NULL key).
			 *
			 * It is unsafe to set pstate.startikey to an ikey beyond this
			 * key, unless the = key is satisfied by every possible tuple on
			 * the page (possible only when attribute has just one distinct
			 * value among all tuples on the page).
			 */
			if (key->sk_attno >= firstchangingattnum)
				break;			/* unsafe, multiple distinct attr values */

			firstdatum = index_getattr(firsttup, key->sk_attno, tupdesc,
									   &firstnull);
			if (key->sk_flags & SK_ISNULL)
			{
				/* IS NULL key */
				Assert(key->sk_flags & SK_SEARCHNULL);

				if (!firstnull)
					break;		/* unsafe */

				/* Safe, IS NULL key satisfied by every tuple */
				continue;
			}
			if (firstnull ||
				!DatumGetBool(FunctionCall2Coll(&key->sk_func,
												key->sk_collation, firstdatum,
												key->sk_argument)))
				break;			/* unsafe */

			/* Safe, scalar = key satisfied by every tuple */
			continue;
		}

		/* = array key (could be a SAOP array, could be a skip array) */
		array = &so->arrayKeys[arrayidx++];
		Assert(array->scan_key == startikey);
		if (array->num_elems != -1)
		{
			/*
			 * SAOP array = key.
			 *
			 * Handle this like we handle scalar = keys (though binary search
			 * for a matching element, to avoid relying on key's sk_argument).
			 */
			if (key->sk_attno >= firstchangingattnum)
				break;			/* unsafe, multiple distinct attr values */

			firstdatum = index_getattr(firsttup, key->sk_attno, tupdesc,
									   &firstnull);
			_bt_binsrch_array_skey(&so->orderProcs[startikey],
								   false, NoMovementScanDirection,
								   firstdatum, firstnull, array, key,
								   &result);
			if (result != 0)
				break;			/* unsafe */

			/* Safe, SAOP = key satisfied by every tuple */
			start_past_saop_eq = true;
			continue;
		}

		/*
		 * Skip array = key
		 */
		Assert(key->sk_flags & SK_BT_SKIP);
		if (array->null_elem)
		{
			/*
			 * Non-range skip array = key.
			 *
			 * Safe, non-range skip array "satisfied" by every tuple on page
			 * (safe even when "key->sk_attno > firstchangingattnum").
			 */
			continue;
		}

		/*
		 * Range skip array = key.
		 *
		 * Handle this like we handle scalar inequality keys (but avoid using
		 * key's sk_argument directly, as in the SAOP array case).
		 */
		if (key->sk_attno > firstchangingattnum)	/* >, not >= */
			break;				/* unsafe, preceding attr has multiple
								 * distinct values */

		firstdatum = index_getattr(firsttup, key->sk_attno, tupdesc, &firstnull);
		lastdatum = index_getattr(lasttup, key->sk_attno, tupdesc, &lastnull);

		/* Test firsttup */
		_bt_binsrch_skiparray_skey(false, ForwardScanDirection,
								   firstdatum, firstnull, array, key,
								   &result);
		if (result != 0)
			break;				/* unsafe */

		/* Test lasttup */
		_bt_binsrch_skiparray_skey(false, ForwardScanDirection,
								   lastdatum, lastnull, array, key,
								   &result);
		if (result != 0)
			break;				/* unsafe */

		/* Safe, range skip array satisfied by every tuple on page */
	}

	/*
	 * Use of forcenonrequired is typically undesirable, since it'll force
	 * _bt_readpage caller to read every tuple on the page -- even though, in
	 * general, it might well be possible to end the scan on an earlier tuple.
	 * However, caller must use forcenonrequired when start_past_saop_eq=true,
	 * since the usual required array behavior might fail to roll over to the
	 * SAOP array.
	 *
	 * We always prefer forcenonrequired=true during scans with skip arrays
	 * (except on the first page of each primitive index scan), though -- even
	 * when "startikey == 0".  That way, _bt_advance_array_keys's low-order
	 * key precheck optimization can always be used (unless on the first page
	 * of the scan).  It seems slightly preferable to check more tuples when
	 * that allows us to do significantly less skip array maintenance.
	 */
	pstate->forcenonrequired = (start_past_saop_eq || so->skipScan);
	pstate->startikey = startikey;

	/*
	 * _bt_readpage caller is required to call _bt_checkkeys against page's
	 * finaltup with forcenonrequired=false whenever we initially set
	 * forcenonrequired=true.  That way the scan's arrays will reliably track
	 * its progress through the index's key space.
	 *
	 * We don't expect this when _bt_readpage caller has no finaltup due to
	 * its page being the rightmost (or the leftmost, during backwards scans).
	 * When we see that _bt_readpage has no finaltup, back out of everything.
	 */
	Assert(!pstate->forcenonrequired || so->numArrayKeys);
	if (pstate->forcenonrequired && !pstate->finaltup)
	{
		pstate->forcenonrequired = false;
		pstate->startikey = 0;
	}
}

/*
 * Test whether an indextuple satisfies current scan condition.
 *
 * Return true if so, false if not.  If not, also sets *continuescan to false
 * when it's also not possible for any later tuples to pass the current qual
 * (with the scan's current set of array keys, in the current scan direction),
 * in addition to setting *ikey to the so->keyData[] subscript/offset for the
 * unsatisfied scan key (needed when caller must consider advancing the scan's
 * array keys).
 *
 * This is a subroutine for _bt_checkkeys.  We provisionally assume that
 * reaching the end of the current set of required keys (in particular the
 * current required array keys) ends the ongoing (primitive) index scan.
 * Callers without array keys should just end the scan right away when they
 * find that continuescan has been set to false here by us.  Things are more
 * complicated for callers with array keys.
 *
 * Callers with array keys must first consider advancing the arrays when
 * continuescan has been set to false here by us.  They must then consider if
 * it really does make sense to end the current (primitive) index scan, in
 * light of everything that is known at that point.  (In general when we set
 * continuescan=false for these callers it must be treated as provisional.)
 *
 * We deal with advancing unsatisfied non-required arrays directly, though.
 * This is safe, since by definition non-required keys can't end the scan.
 * This is just how we determine if non-required arrays are just unsatisfied
 * by the current array key, or if they're truly unsatisfied (that is, if
 * they're unsatisfied by every possible array key).
 *
 * Pass advancenonrequired=false to avoid all array related side effects.
 * This allows _bt_advance_array_keys caller to avoid infinite recursion.
 *
 * Pass forcenonrequired=true to instruct us to treat all keys as nonrequired.
 * This is used to make it safe to temporarily stop properly maintaining the
 * scan's required arrays.  _bt_checkkeys caller (_bt_readpage, actually)
 * determines a prefix of keys that must satisfy every possible corresponding
 * index attribute value from its page, which is passed to us via *ikey arg
 * (this is the first key that might be unsatisfied by tuples on the page).
 * Obviously, we won't maintain any array keys from before *ikey, so it's
 * quite possible for such arrays to "fall behind" the index's keyspace.
 * Caller will need to "catch up" by passing forcenonrequired=true (alongside
 * an *ikey=0) once the page's finaltup is reached.
 *
 * Note: it's safe to pass an *ikey > 0 with forcenonrequired=false, but only
 * when caller determines that it won't affect array maintenance.
 */
static bool
_bt_check_compare(IndexScanDesc scan, ScanDirection dir,
				  IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
				  bool advancenonrequired, bool forcenonrequired,
				  bool *continuescan, int *ikey)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;

	*continuescan = true;		/* default assumption */

	for (; *ikey < so->numberOfKeys; (*ikey)++)
	{
		ScanKey		key = so->keyData + *ikey;
		Datum		datum;
		bool		isNull;
		bool		requiredSameDir = false,
					requiredOppositeDirOnly = false;

		/*
		 * Check if the key is required in the current scan direction, in the
		 * opposite scan direction _only_, or in neither direction (except
		 * when we're forced to treat all scan keys as nonrequired)
		 */
		if (forcenonrequired)
		{
			/* treating scan's keys as non-required */
		}
		else if (((key->sk_flags & SK_BT_REQFWD) && ScanDirectionIsForward(dir)) ||
				 ((key->sk_flags & SK_BT_REQBKWD) && ScanDirectionIsBackward(dir)))
			requiredSameDir = true;
		else if (((key->sk_flags & SK_BT_REQFWD) && ScanDirectionIsBackward(dir)) ||
				 ((key->sk_flags & SK_BT_REQBKWD) && ScanDirectionIsForward(dir)))
			requiredOppositeDirOnly = true;

		if (key->sk_attno > tupnatts)
		{
			/*
			 * This attribute is truncated (must be high key).  The value for
			 * this attribute in the first non-pivot tuple on the page to the
			 * right could be any possible value.  Assume that truncated
			 * attribute passes the qual.
			 */
			Assert(BTreeTupleIsPivot(tuple));
			continue;
		}

		/*
		 * A skip array scan key uses one of several sentinel values.  We just
		 * fall back on _bt_tuple_before_array_skeys when we see such a value.
		 */
		if (key->sk_flags & (SK_BT_MINVAL | SK_BT_MAXVAL |
							 SK_BT_NEXT | SK_BT_PRIOR))
		{
			Assert(key->sk_flags & SK_SEARCHARRAY);
			Assert(key->sk_flags & SK_BT_SKIP);
			Assert(requiredSameDir || forcenonrequired);

			/*
			 * Cannot fall back on _bt_tuple_before_array_skeys when we're
			 * treating the scan's keys as nonrequired, though.  Just handle
			 * this like any other non-required equality-type array key.
			 */
			if (forcenonrequired)
				return _bt_advance_array_keys(scan, NULL, tuple, tupnatts,
											  tupdesc, *ikey, false);

			*continuescan = false;
			return false;
		}

		/* row-comparison keys need special processing */
		if (key->sk_flags & SK_ROW_HEADER)
		{
			if (_bt_check_rowcompare(key, tuple, tupnatts, tupdesc, dir,
									 forcenonrequired, continuescan))
				continue;
			return false;
		}

		datum = index_getattr(tuple,
							  key->sk_attno,
							  tupdesc,
							  &isNull);

		if (key->sk_flags & SK_ISNULL)
		{
			/* Handle IS NULL/NOT NULL tests */
			if (key->sk_flags & SK_SEARCHNULL)
			{
				if (isNull)
					continue;	/* tuple satisfies this qual */
			}
			else
			{
				Assert(key->sk_flags & SK_SEARCHNOTNULL);
				Assert(!(key->sk_flags & SK_BT_SKIP));
				if (!isNull)
					continue;	/* tuple satisfies this qual */
			}

			/*
			 * Tuple fails this qual.  If it's a required qual for the current
			 * scan direction, then we can conclude no further tuples will
			 * pass, either.
			 */
			if (requiredSameDir)
				*continuescan = false;
			else if (unlikely(key->sk_flags & SK_BT_SKIP))
			{
				/*
				 * If we're treating scan keys as nonrequired, and encounter a
				 * skip array scan key whose current element is NULL, then it
				 * must be a non-range skip array.  It must be satisfied, so
				 * there's no need to call _bt_advance_array_keys to check.
				 */
				Assert(forcenonrequired && *ikey > 0);
				continue;
			}

			/*
			 * This indextuple doesn't match the qual.
			 */
			return false;
		}

		if (isNull)
		{
			/*
			 * Scalar scan key isn't satisfied by NULL tuple value.
			 *
			 * If we're treating scan keys as nonrequired, and key is for a
			 * skip array, then we must attempt to advance the array to NULL
			 * (if we're successful then the tuple might match the qual).
			 */
			if (unlikely(forcenonrequired && key->sk_flags & SK_BT_SKIP))
				return _bt_advance_array_keys(scan, NULL, tuple, tupnatts,
											  tupdesc, *ikey, false);

			if (key->sk_flags & SK_BT_NULLS_FIRST)
			{
				/*
				 * Since NULLs are sorted before non-NULLs, we know we have
				 * reached the lower limit of the range of values for this
				 * index attr.  On a backward scan, we can stop if this qual
				 * is one of the "must match" subset.  We can stop regardless
				 * of whether the qual is > or <, so long as it's required,
				 * because it's not possible for any future tuples to pass. On
				 * a forward scan, however, we must keep going, because we may
				 * have initially positioned to the start of the index.
				 * (_bt_advance_array_keys also relies on this behavior during
				 * forward scans.)
				 */
				if ((requiredSameDir || requiredOppositeDirOnly) &&
					ScanDirectionIsBackward(dir))
					*continuescan = false;
			}
			else
			{
				/*
				 * Since NULLs are sorted after non-NULLs, we know we have
				 * reached the upper limit of the range of values for this
				 * index attr.  On a forward scan, we can stop if this qual is
				 * one of the "must match" subset.  We can stop regardless of
				 * whether the qual is > or <, so long as it's required,
				 * because it's not possible for any future tuples to pass. On
				 * a backward scan, however, we must keep going, because we
				 * may have initially positioned to the end of the index.
				 * (_bt_advance_array_keys also relies on this behavior during
				 * backward scans.)
				 */
				if ((requiredSameDir || requiredOppositeDirOnly) &&
					ScanDirectionIsForward(dir))
					*continuescan = false;
			}

			/*
			 * This indextuple doesn't match the qual.
			 */
			return false;
		}

		if (!DatumGetBool(FunctionCall2Coll(&key->sk_func, key->sk_collation,
											datum, key->sk_argument)))
		{
			/*
			 * Tuple fails this qual.  If it's a required qual for the current
			 * scan direction, then we can conclude no further tuples will
			 * pass, either.
			 *
			 * Note: because we stop the scan as soon as any required equality
			 * qual fails, it is critical that equality quals be used for the
			 * initial positioning in _bt_first() when they are available. See
			 * comments in _bt_first().
			 */
			if (requiredSameDir)
				*continuescan = false;

			/*
			 * If this is a non-required equality-type array key, the tuple
			 * needs to be checked against every possible array key.  Handle
			 * this by "advancing" the scan key's array to a matching value
			 * (if we're successful then the tuple might match the qual).
			 */
			else if (advancenonrequired &&
					 key->sk_strategy == BTEqualStrategyNumber &&
					 (key->sk_flags & SK_SEARCHARRAY))
				return _bt_advance_array_keys(scan, NULL, tuple, tupnatts,
											  tupdesc, *ikey, false);

			/*
			 * This indextuple doesn't match the qual.
			 */
			return false;
		}
	}

	/* If we get here, the tuple passes all index quals. */
	return true;
}

/*
 * Test whether an indextuple satisfies a row-comparison scan condition.
 *
 * Return true if so, false if not.  If not, also clear *continuescan if
 * it's not possible for any future tuples in the current scan direction
 * to pass the qual.
 *
 * This is a subroutine for _bt_checkkeys/_bt_check_compare.
 */
static bool
_bt_check_rowcompare(ScanKey skey, IndexTuple tuple, int tupnatts,
					 TupleDesc tupdesc, ScanDirection dir,
					 bool forcenonrequired, bool *continuescan)
{
	ScanKey		subkey = (ScanKey) DatumGetPointer(skey->sk_argument);
	int32		cmpresult = 0;
	bool		result;

	/* First subkey should be same as the header says */
	Assert(subkey->sk_attno == skey->sk_attno);

	/* Loop over columns of the row condition */
	for (;;)
	{
		Datum		datum;
		bool		isNull;

		Assert(subkey->sk_flags & SK_ROW_MEMBER);

		if (subkey->sk_attno > tupnatts)
		{
			/*
			 * This attribute is truncated (must be high key).  The value for
			 * this attribute in the first non-pivot tuple on the page to the
			 * right could be any possible value.  Assume that truncated
			 * attribute passes the qual.
			 */
			Assert(BTreeTupleIsPivot(tuple));
			cmpresult = 0;
			if (subkey->sk_flags & SK_ROW_END)
				break;
			subkey++;
			continue;
		}

		datum = index_getattr(tuple,
							  subkey->sk_attno,
							  tupdesc,
							  &isNull);

		if (isNull)
		{
			if (forcenonrequired)
			{
				/* treating scan's keys as non-required */
			}
			else if (subkey->sk_flags & SK_BT_NULLS_FIRST)
			{
				/*
				 * Since NULLs are sorted before non-NULLs, we know we have
				 * reached the lower limit of the range of values for this
				 * index attr.  On a backward scan, we can stop if this qual
				 * is one of the "must match" subset.  We can stop regardless
				 * of whether the qual is > or <, so long as it's required,
				 * because it's not possible for any future tuples to pass. On
				 * a forward scan, however, we must keep going, because we may
				 * have initially positioned to the start of the index.
				 * (_bt_advance_array_keys also relies on this behavior during
				 * forward scans.)
				 */
				if ((subkey->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
					ScanDirectionIsBackward(dir))
					*continuescan = false;
			}
			else
			{
				/*
				 * Since NULLs are sorted after non-NULLs, we know we have
				 * reached the upper limit of the range of values for this
				 * index attr.  On a forward scan, we can stop if this qual is
				 * one of the "must match" subset.  We can stop regardless of
				 * whether the qual is > or <, so long as it's required,
				 * because it's not possible for any future tuples to pass. On
				 * a backward scan, however, we must keep going, because we
				 * may have initially positioned to the end of the index.
				 * (_bt_advance_array_keys also relies on this behavior during
				 * backward scans.)
				 */
				if ((subkey->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
					ScanDirectionIsForward(dir))
					*continuescan = false;
			}

			/*
			 * In any case, this indextuple doesn't match the qual.
			 */
			return false;
		}

		if (subkey->sk_flags & SK_ISNULL)
		{
			/*
			 * Unlike the simple-scankey case, this isn't a disallowed case
			 * (except when it's the first row element that has the NULL arg).
			 * But it can never match.  If all the earlier row comparison
			 * columns are required for the scan direction, we can stop the
			 * scan, because there can't be another tuple that will succeed.
			 */
			Assert(subkey != (ScanKey) DatumGetPointer(skey->sk_argument));
			subkey--;
			if (forcenonrequired)
			{
				/* treating scan's keys as non-required */
			}
			else if ((subkey->sk_flags & SK_BT_REQFWD) &&
					 ScanDirectionIsForward(dir))
				*continuescan = false;
			else if ((subkey->sk_flags & SK_BT_REQBKWD) &&
					 ScanDirectionIsBackward(dir))
				*continuescan = false;
			return false;
		}

		/* Perform the test --- three-way comparison not bool operator */
		cmpresult = DatumGetInt32(FunctionCall2Coll(&subkey->sk_func,
													subkey->sk_collation,
													datum,
													subkey->sk_argument));

		if (subkey->sk_flags & SK_BT_DESC)
			INVERT_COMPARE_RESULT(cmpresult);

		/* Done comparing if unequal, else advance to next column */
		if (cmpresult != 0)
			break;

		if (subkey->sk_flags & SK_ROW_END)
			break;
		subkey++;
	}

	/*
	 * At this point cmpresult indicates the overall result of the row
	 * comparison, and subkey points to the deciding column (or the last
	 * column if the result is "=").
	 */
	switch (subkey->sk_strategy)
	{
			/* EQ and NE cases aren't allowed here */
		case BTLessStrategyNumber:
			result = (cmpresult < 0);
			break;
		case BTLessEqualStrategyNumber:
			result = (cmpresult <= 0);
			break;
		case BTGreaterEqualStrategyNumber:
			result = (cmpresult >= 0);
			break;
		case BTGreaterStrategyNumber:
			result = (cmpresult > 0);
			break;
		default:
			elog(ERROR, "unexpected strategy number %d", subkey->sk_strategy);
			result = 0;			/* keep compiler quiet */
			break;
	}

	if (!result && !forcenonrequired)
	{
		/*
		 * Tuple fails this qual.  If it's a required qual for the current
		 * scan direction, then we can conclude no further tuples will pass,
		 * either.  Note we have to look at the deciding column, not
		 * necessarily the first or last column of the row condition.
		 */
		if ((subkey->sk_flags & SK_BT_REQFWD) &&
			ScanDirectionIsForward(dir))
			*continuescan = false;
		else if ((subkey->sk_flags & SK_BT_REQBKWD) &&
				 ScanDirectionIsBackward(dir))
			*continuescan = false;
	}

	return result;
}

/*
 * Determine if a scan with array keys should skip over uninteresting tuples.
 *
 * This is a subroutine for _bt_checkkeys.  Called when _bt_readpage's linear
 * search process (started after it finishes reading an initial group of
 * matching tuples, used to locate the start of the next group of tuples
 * matching the next set of required array keys) has already scanned an
 * excessive number of tuples whose key space is "between arrays".
 *
 * When we perform look ahead successfully, we'll sets pstate.skip, which
 * instructs _bt_readpage to skip ahead to that tuple next (could be past the
 * end of the scan's leaf page).  Pages where the optimization is effective
 * will generally still need to skip several times.  Each call here performs
 * only a single "look ahead" comparison of a later tuple, whose distance from
 * the current tuple's offset number is determined by applying heuristics.
 */
static void
_bt_checkkeys_look_ahead(IndexScanDesc scan, BTReadPageState *pstate,
						 int tupnatts, TupleDesc tupdesc)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	ScanDirection dir = so->currPos.dir;
	OffsetNumber aheadoffnum;
	IndexTuple	ahead;

	Assert(!pstate->forcenonrequired);

	/* Avoid looking ahead when comparing the page high key */
	if (pstate->offnum < pstate->minoff)
		return;

	/*
	 * Don't look ahead when there aren't enough tuples remaining on the page
	 * (in the current scan direction) for it to be worth our while
	 */
	if (ScanDirectionIsForward(dir) &&
		pstate->offnum >= pstate->maxoff - LOOK_AHEAD_DEFAULT_DISTANCE)
		return;
	else if (ScanDirectionIsBackward(dir) &&
			 pstate->offnum <= pstate->minoff + LOOK_AHEAD_DEFAULT_DISTANCE)
		return;

	/*
	 * The look ahead distance starts small, and ramps up as each call here
	 * allows _bt_readpage to skip over more tuples
	 */
	if (!pstate->targetdistance)
		pstate->targetdistance = LOOK_AHEAD_DEFAULT_DISTANCE;
	else if (pstate->targetdistance < MaxIndexTuplesPerPage / 2)
		pstate->targetdistance *= 2;

	/* Don't read past the end (or before the start) of the page, though */
	if (ScanDirectionIsForward(dir))
		aheadoffnum = Min((int) pstate->maxoff,
						  (int) pstate->offnum + pstate->targetdistance);
	else
		aheadoffnum = Max((int) pstate->minoff,
						  (int) pstate->offnum - pstate->targetdistance);

	ahead = (IndexTuple) PageGetItem(pstate->page,
									 PageGetItemId(pstate->page, aheadoffnum));
	if (_bt_tuple_before_array_skeys(scan, dir, ahead, tupdesc, tupnatts,
									 false, 0, NULL))
	{
		/*
		 * Success -- instruct _bt_readpage to skip ahead to very next tuple
		 * after the one we determined was still before the current array keys
		 */
		if (ScanDirectionIsForward(dir))
			pstate->skip = aheadoffnum + 1;
		else
			pstate->skip = aheadoffnum - 1;
	}
	else
	{
		/*
		 * Failure -- "ahead" tuple is too far ahead (we were too aggressive).
		 *
		 * Reset the number of rechecks, and aggressively reduce the target
		 * distance (we're much more aggressive here than we were when the
		 * distance was initially ramped up).
		 */
		pstate->rechecks = 0;
		pstate->targetdistance = Max(pstate->targetdistance / 8, 1);
	}
}

/*
 * _bt_killitems - set LP_DEAD state for items an indexscan caller has
 * told us were killed
 *
 * scan->opaque, referenced locally through so, contains information about the
 * current page and killed tuples thereon (generally, this should only be
 * called if so->numKilled > 0).
 *
 * The caller does not have a lock on the page and may or may not have the
 * page pinned in a buffer.  Note that read-lock is sufficient for setting
 * LP_DEAD status (which is only a hint).
 *
 * We match items by heap TID before assuming they are the right ones to
 * delete.  We cope with cases where items have moved right due to insertions.
 * If an item has moved off the current page due to a split, we'll fail to
 * find it and do nothing (this is not an error case --- we assume the item
 * will eventually get marked in a future indexscan).
 *
 * Note that if we hold a pin on the target page continuously from initially
 * reading the items until applying this function, VACUUM cannot have deleted
 * any items from the page, and so there is no need to search left from the
 * recorded offset.  (This observation also guarantees that the item is still
 * the right one to delete, which might otherwise be questionable since heap
 * TIDs can get recycled.)	This holds true even if the page has been modified
 * by inserts and page splits, so there is no need to consult the LSN.
 *
 * If the pin was released after reading the page, then we re-read it.  If it
 * has been modified since we read it (as determined by the LSN), we dare not
 * flag any entries because it is possible that the old entry was vacuumed
 * away and the TID was re-used by a completely different heap tuple.
 */
void
_bt_killitems(IndexScanDesc scan)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber minoff;
	OffsetNumber maxoff;
	int			i;
	int			numKilled = so->numKilled;
	bool		killedsomething = false;
	bool		droppedpin PG_USED_FOR_ASSERTS_ONLY;

	Assert(BTScanPosIsValid(so->currPos));

	/*
	 * Always reset the scan state, so we don't look for same items on other
	 * pages.
	 */
	so->numKilled = 0;

	if (BTScanPosIsPinned(so->currPos))
	{
		/*
		 * We have held the pin on this page since we read the index tuples,
		 * so all we need to do is lock it.  The pin will have prevented
		 * re-use of any TID on the page, so there is no need to check the
		 * LSN.
		 */
		droppedpin = false;
		_bt_lockbuf(scan->indexRelation, so->currPos.buf, BT_READ);

		page = BufferGetPage(so->currPos.buf);
	}
	else
	{
		Buffer		buf;

		droppedpin = true;
		/* Attempt to re-read the buffer, getting pin and lock. */
		buf = _bt_getbuf(scan->indexRelation, so->currPos.currPage, BT_READ);

		page = BufferGetPage(buf);
		if (BufferGetLSNAtomic(buf) == so->currPos.lsn)
			so->currPos.buf = buf;
		else
		{
			/* Modified while not pinned means hinting is not safe. */
			_bt_relbuf(scan->indexRelation, buf);
			return;
		}
	}

	opaque = BTPageGetOpaque(page);
	minoff = P_FIRSTDATAKEY(opaque);
	maxoff = PageGetMaxOffsetNumber(page);

	for (i = 0; i < numKilled; i++)
	{
		int			itemIndex = so->killedItems[i];
		BTScanPosItem *kitem = &so->currPos.items[itemIndex];
		OffsetNumber offnum = kitem->indexOffset;

		Assert(itemIndex >= so->currPos.firstItem &&
			   itemIndex <= so->currPos.lastItem);
		if (offnum < minoff)
			continue;			/* pure paranoia */
		while (offnum <= maxoff)
		{
			ItemId		iid = PageGetItemId(page, offnum);
			IndexTuple	ituple = (IndexTuple) PageGetItem(page, iid);
			bool		killtuple = false;

			if (BTreeTupleIsPosting(ituple))
			{
				int			pi = i + 1;
				int			nposting = BTreeTupleGetNPosting(ituple);
				int			j;

				/*
				 * We rely on the convention that heap TIDs in the scanpos
				 * items array are stored in ascending heap TID order for a
				 * group of TIDs that originally came from a posting list
				 * tuple.  This convention even applies during backwards
				 * scans, where returning the TIDs in descending order might
				 * seem more natural.  This is about effectiveness, not
				 * correctness.
				 *
				 * Note that the page may have been modified in almost any way
				 * since we first read it (in the !droppedpin case), so it's
				 * possible that this posting list tuple wasn't a posting list
				 * tuple when we first encountered its heap TIDs.
				 */
				for (j = 0; j < nposting; j++)
				{
					ItemPointer item = BTreeTupleGetPostingN(ituple, j);

					if (!ItemPointerEquals(item, &kitem->heapTid))
						break;	/* out of posting list loop */

					/*
					 * kitem must have matching offnum when heap TIDs match,
					 * though only in the common case where the page can't
					 * have been concurrently modified
					 */
					Assert(kitem->indexOffset == offnum || !droppedpin);

					/*
					 * Read-ahead to later kitems here.
					 *
					 * We rely on the assumption that not advancing kitem here
					 * will prevent us from considering the posting list tuple
					 * fully dead by not matching its next heap TID in next
					 * loop iteration.
					 *
					 * If, on the other hand, this is the final heap TID in
					 * the posting list tuple, then tuple gets killed
					 * regardless (i.e. we handle the case where the last
					 * kitem is also the last heap TID in the last index tuple
					 * correctly -- posting tuple still gets killed).
					 */
					if (pi < numKilled)
						kitem = &so->currPos.items[so->killedItems[pi++]];
				}

				/*
				 * Don't bother advancing the outermost loop's int iterator to
				 * avoid processing killed items that relate to the same
				 * offnum/posting list tuple.  This micro-optimization hardly
				 * seems worth it.  (Further iterations of the outermost loop
				 * will fail to match on this same posting list's first heap
				 * TID instead, so we'll advance to the next offnum/index
				 * tuple pretty quickly.)
				 */
				if (j == nposting)
					killtuple = true;
			}
			else if (ItemPointerEquals(&ituple->t_tid, &kitem->heapTid))
				killtuple = true;

			/*
			 * Mark index item as dead, if it isn't already.  Since this
			 * happens while holding a buffer lock possibly in shared mode,
			 * it's possible that multiple processes attempt to do this
			 * simultaneously, leading to multiple full-page images being sent
			 * to WAL (if wal_log_hints or data checksums are enabled), which
			 * is undesirable.
			 */
			if (killtuple && !ItemIdIsDead(iid))
			{
				/* found the item/all posting list items */
				ItemIdMarkDead(iid);
				killedsomething = true;
				break;			/* out of inner search loop */
			}
			offnum = OffsetNumberNext(offnum);
		}
	}

	/*
	 * Since this can be redone later if needed, mark as dirty hint.
	 *
	 * Whenever we mark anything LP_DEAD, we also set the page's
	 * BTP_HAS_GARBAGE flag, which is likewise just a hint.  (Note that we
	 * only rely on the page-level flag in !heapkeyspace indexes.)
	 */
	if (killedsomething)
	{
		opaque->btpo_flags |= BTP_HAS_GARBAGE;
		MarkBufferDirtyHint(so->currPos.buf, true);
	}

	_bt_unlockbuf(scan->indexRelation, so->currPos.buf);
}


/*
 * The following routines manage a shared-memory area in which we track
 * assignment of "vacuum cycle IDs" to currently-active btree vacuuming
 * operations.  There is a single counter which increments each time we
 * start a vacuum to assign it a cycle ID.  Since multiple vacuums could
 * be active concurrently, we have to track the cycle ID for each active
 * vacuum; this requires at most MaxBackends entries (usually far fewer).
 * We assume at most one vacuum can be active for a given index.
 *
 * Access to the shared memory area is controlled by BtreeVacuumLock.
 * In principle we could use a separate lmgr locktag for each index,
 * but a single LWLock is much cheaper, and given the short time that
 * the lock is ever held, the concurrency hit should be minimal.
 */

typedef struct BTOneVacInfo
{
	LockRelId	relid;			/* global identifier of an index */
	BTCycleId	cycleid;		/* cycle ID for its active VACUUM */
} BTOneVacInfo;

typedef struct BTVacInfo
{
	BTCycleId	cycle_ctr;		/* cycle ID most recently assigned */
	int			num_vacuums;	/* number of currently active VACUUMs */
	int			max_vacuums;	/* allocated length of vacuums[] array */
	BTOneVacInfo vacuums[FLEXIBLE_ARRAY_MEMBER];
} BTVacInfo;

static BTVacInfo *btvacinfo;


/*
 * _bt_vacuum_cycleid --- get the active vacuum cycle ID for an index,
 *		or zero if there is no active VACUUM
 *
 * Note: for correct interlocking, the caller must already hold pin and
 * exclusive lock on each buffer it will store the cycle ID into.  This
 * ensures that even if a VACUUM starts immediately afterwards, it cannot
 * process those pages until the page split is complete.
 */
BTCycleId
_bt_vacuum_cycleid(Relation rel)
{
	BTCycleId	result = 0;
	int			i;

	/* Share lock is enough since this is a read-only operation */
	LWLockAcquire(BtreeVacuumLock, LW_SHARED);

	for (i = 0; i < btvacinfo->num_vacuums; i++)
	{
		BTOneVacInfo *vac = &btvacinfo->vacuums[i];

		if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
			vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
		{
			result = vac->cycleid;
			break;
		}
	}

	LWLockRelease(BtreeVacuumLock);
	return result;
}

/*
 * _bt_start_vacuum --- assign a cycle ID to a just-starting VACUUM operation
 *
 * Note: the caller must guarantee that it will eventually call
 * _bt_end_vacuum, else we'll permanently leak an array slot.  To ensure
 * that this happens even in elog(FATAL) scenarios, the appropriate coding
 * is not just a PG_TRY, but
 *		PG_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel))
 */
BTCycleId
_bt_start_vacuum(Relation rel)
{
	BTCycleId	result;
	int			i;
	BTOneVacInfo *vac;

	LWLockAcquire(BtreeVacuumLock, LW_EXCLUSIVE);

	/*
	 * Assign the next cycle ID, being careful to avoid zero as well as the
	 * reserved high values.
	 */
	result = ++(btvacinfo->cycle_ctr);
	if (result == 0 || result > MAX_BT_CYCLE_ID)
		result = btvacinfo->cycle_ctr = 1;

	/* Let's just make sure there's no entry already for this index */
	for (i = 0; i < btvacinfo->num_vacuums; i++)
	{
		vac = &btvacinfo->vacuums[i];
		if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
			vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
		{
			/*
			 * Unlike most places in the backend, we have to explicitly
			 * release our LWLock before throwing an error.  This is because
			 * we expect _bt_end_vacuum() to be called before transaction
			 * abort cleanup can run to release LWLocks.
			 */
			LWLockRelease(BtreeVacuumLock);
			elog(ERROR, "multiple active vacuums for index \"%s\"",
				 RelationGetRelationName(rel));
		}
	}

	/* OK, add an entry */
	if (btvacinfo->num_vacuums >= btvacinfo->max_vacuums)
	{
		LWLockRelease(BtreeVacuumLock);
		elog(ERROR, "out of btvacinfo slots");
	}
	vac = &btvacinfo->vacuums[btvacinfo->num_vacuums];
	vac->relid = rel->rd_lockInfo.lockRelId;
	vac->cycleid = result;
	btvacinfo->num_vacuums++;

	LWLockRelease(BtreeVacuumLock);
	return result;
}

/*
 * _bt_end_vacuum --- mark a btree VACUUM operation as done
 *
 * Note: this is deliberately coded not to complain if no entry is found;
 * this allows the caller to put PG_TRY around the start_vacuum operation.
 */
void
_bt_end_vacuum(Relation rel)
{
	int			i;

	LWLockAcquire(BtreeVacuumLock, LW_EXCLUSIVE);

	/* Find the array entry */
	for (i = 0; i < btvacinfo->num_vacuums; i++)
	{
		BTOneVacInfo *vac = &btvacinfo->vacuums[i];

		if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
			vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
		{
			/* Remove it by shifting down the last entry */
			*vac = btvacinfo->vacuums[btvacinfo->num_vacuums - 1];
			btvacinfo->num_vacuums--;
			break;
		}
	}

	LWLockRelease(BtreeVacuumLock);
}

/*
 * _bt_end_vacuum wrapped as an on_shmem_exit callback function
 */
void
_bt_end_vacuum_callback(int code, Datum arg)
{
	_bt_end_vacuum((Relation) DatumGetPointer(arg));
}

/*
 * BTreeShmemSize --- report amount of shared memory space needed
 */
Size
BTreeShmemSize(void)
{
	Size		size;

	size = offsetof(BTVacInfo, vacuums);
	size = add_size(size, mul_size(MaxBackends, sizeof(BTOneVacInfo)));
	return size;
}

/*
 * BTreeShmemInit --- initialize this module's shared memory
 */
void
BTreeShmemInit(void)
{
	bool		found;

	btvacinfo = (BTVacInfo *) ShmemInitStruct("BTree Vacuum State",
											  BTreeShmemSize(),
											  &found);

	if (!IsUnderPostmaster)
	{
		/* Initialize shared memory area */
		Assert(!found);

		/*
		 * It doesn't really matter what the cycle counter starts at, but
		 * having it always start the same doesn't seem good.  Seed with
		 * low-order bits of time() instead.
		 */
		btvacinfo->cycle_ctr = (BTCycleId) time(NULL);

		btvacinfo->num_vacuums = 0;
		btvacinfo->max_vacuums = MaxBackends;
	}
	else
		Assert(found);
}

bytea *
btoptions(Datum reloptions, bool validate)
{
	static const relopt_parse_elt tab[] = {
		{"fillfactor", RELOPT_TYPE_INT, offsetof(BTOptions, fillfactor)},
		{"vacuum_cleanup_index_scale_factor", RELOPT_TYPE_REAL,
		offsetof(BTOptions, vacuum_cleanup_index_scale_factor)},
		{"deduplicate_items", RELOPT_TYPE_BOOL,
		offsetof(BTOptions, deduplicate_items)}
	};

	return (bytea *) build_reloptions(reloptions, validate,
									  RELOPT_KIND_BTREE,
									  sizeof(BTOptions),
									  tab, lengthof(tab));
}

/*
 *	btproperty() -- Check boolean properties of indexes.
 *
 * This is optional, but handling AMPROP_RETURNABLE here saves opening the rel
 * to call btcanreturn.
 */
bool
btproperty(Oid index_oid, int attno,
		   IndexAMProperty prop, const char *propname,
		   bool *res, bool *isnull)
{
	switch (prop)
	{
		case AMPROP_RETURNABLE:
			/* answer only for columns, not AM or whole index */
			if (attno == 0)
				return false;
			/* otherwise, btree can always return data */
			*res = true;
			return true;

		default:
			return false;		/* punt to generic code */
	}
}

/*
 *	btbuildphasename() -- Return name of index build phase.
 */
char *
btbuildphasename(int64 phasenum)
{
	switch (phasenum)
	{
		case PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE:
			return "initializing";
		case PROGRESS_BTREE_PHASE_INDEXBUILD_TABLESCAN:
			return "scanning table";
		case PROGRESS_BTREE_PHASE_PERFORMSORT_1:
			return "sorting live tuples";
		case PROGRESS_BTREE_PHASE_PERFORMSORT_2:
			return "sorting dead tuples";
		case PROGRESS_BTREE_PHASE_LEAF_LOAD:
			return "loading tuples in tree";
		default:
			return NULL;
	}
}

/*
 *	_bt_truncate() -- create tuple without unneeded suffix attributes.
 *
 * Returns truncated pivot index tuple allocated in caller's memory context,
 * with key attributes copied from caller's firstright argument.  If rel is
 * an INCLUDE index, non-key attributes will definitely be truncated away,
 * since they're not part of the key space.  More aggressive suffix
 * truncation can take place when it's clear that the returned tuple does not
 * need one or more suffix key attributes.  We only need to keep firstright
 * attributes up to and including the first non-lastleft-equal attribute.
 * Caller's insertion scankey is used to compare the tuples; the scankey's
 * argument values are not considered here.
 *
 * Note that returned tuple's t_tid offset will hold the number of attributes
 * present, so the original item pointer offset is not represented.  Caller
 * should only change truncated tuple's downlink.  Note also that truncated
 * key attributes are treated as containing "minus infinity" values by
 * _bt_compare().
 *
 * In the worst case (when a heap TID must be appended to distinguish lastleft
 * from firstright), the size of the returned tuple is the size of firstright
 * plus the size of an additional MAXALIGN()'d item pointer.  This guarantee
 * is important, since callers need to stay under the 1/3 of a page
 * restriction on tuple size.  If this routine is ever taught to truncate
 * within an attribute/datum, it will need to avoid returning an enlarged
 * tuple to caller when truncation + TOAST compression ends up enlarging the
 * final datum.
 */
IndexTuple
_bt_truncate(Relation rel, IndexTuple lastleft, IndexTuple firstright,
			 BTScanInsert itup_key)
{
	TupleDesc	itupdesc = RelationGetDescr(rel);
	int16		nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
	int			keepnatts;
	IndexTuple	pivot;
	IndexTuple	tidpivot;
	ItemPointer pivotheaptid;
	Size		newsize;

	/*
	 * We should only ever truncate non-pivot tuples from leaf pages.  It's
	 * never okay to truncate when splitting an internal page.
	 */
	Assert(!BTreeTupleIsPivot(lastleft) && !BTreeTupleIsPivot(firstright));

	/* Determine how many attributes must be kept in truncated tuple */
	keepnatts = _bt_keep_natts(rel, lastleft, firstright, itup_key);

#ifdef DEBUG_NO_TRUNCATE
	/* Force truncation to be ineffective for testing purposes */
	keepnatts = nkeyatts + 1;
#endif

	pivot = index_truncate_tuple(itupdesc, firstright,
								 Min(keepnatts, nkeyatts));

	if (BTreeTupleIsPosting(pivot))
	{
		/*
		 * index_truncate_tuple() just returns a straight copy of firstright
		 * when it has no attributes to truncate.  When that happens, we may
		 * need to truncate away a posting list here instead.
		 */
		Assert(keepnatts == nkeyatts || keepnatts == nkeyatts + 1);
		Assert(IndexRelationGetNumberOfAttributes(rel) == nkeyatts);
		pivot->t_info &= ~INDEX_SIZE_MASK;
		pivot->t_info |= MAXALIGN(BTreeTupleGetPostingOffset(firstright));
	}

	/*
	 * If there is a distinguishing key attribute within pivot tuple, we're
	 * done
	 */
	if (keepnatts <= nkeyatts)
	{
		BTreeTupleSetNAtts(pivot, keepnatts, false);
		return pivot;
	}

	/*
	 * We have to store a heap TID in the new pivot tuple, since no non-TID
	 * key attribute value in firstright distinguishes the right side of the
	 * split from the left side.  nbtree conceptualizes this case as an
	 * inability to truncate away any key attributes, since heap TID is
	 * treated as just another key attribute (despite lacking a pg_attribute
	 * entry).
	 *
	 * Use enlarged space that holds a copy of pivot.  We need the extra space
	 * to store a heap TID at the end (using the special pivot tuple
	 * representation).  Note that the original pivot already has firstright's
	 * possible posting list/non-key attribute values removed at this point.
	 */
	newsize = MAXALIGN(IndexTupleSize(pivot)) + MAXALIGN(sizeof(ItemPointerData));
	tidpivot = palloc0(newsize);
	memcpy(tidpivot, pivot, MAXALIGN(IndexTupleSize(pivot)));
	/* Cannot leak memory here */
	pfree(pivot);

	/*
	 * Store all of firstright's key attribute values plus a tiebreaker heap
	 * TID value in enlarged pivot tuple
	 */
	tidpivot->t_info &= ~INDEX_SIZE_MASK;
	tidpivot->t_info |= newsize;
	BTreeTupleSetNAtts(tidpivot, nkeyatts, true);
	pivotheaptid = BTreeTupleGetHeapTID(tidpivot);

	/*
	 * Lehman & Yao use lastleft as the leaf high key in all cases, but don't
	 * consider suffix truncation.  It seems like a good idea to follow that
	 * example in cases where no truncation takes place -- use lastleft's heap
	 * TID.  (This is also the closest value to negative infinity that's
	 * legally usable.)
	 */
	ItemPointerCopy(BTreeTupleGetMaxHeapTID(lastleft), pivotheaptid);

	/*
	 * We're done.  Assert() that heap TID invariants hold before returning.
	 *
	 * Lehman and Yao require that the downlink to the right page, which is to
	 * be inserted into the parent page in the second phase of a page split be
	 * a strict lower bound on items on the right page, and a non-strict upper
	 * bound for items on the left page.  Assert that heap TIDs follow these
	 * invariants, since a heap TID value is apparently needed as a
	 * tiebreaker.
	 */
#ifndef DEBUG_NO_TRUNCATE
	Assert(ItemPointerCompare(BTreeTupleGetMaxHeapTID(lastleft),
							  BTreeTupleGetHeapTID(firstright)) < 0);
	Assert(ItemPointerCompare(pivotheaptid,
							  BTreeTupleGetHeapTID(lastleft)) >= 0);
	Assert(ItemPointerCompare(pivotheaptid,
							  BTreeTupleGetHeapTID(firstright)) < 0);
#else

	/*
	 * Those invariants aren't guaranteed to hold for lastleft + firstright
	 * heap TID attribute values when they're considered here only because
	 * DEBUG_NO_TRUNCATE is defined (a heap TID is probably not actually
	 * needed as a tiebreaker).  DEBUG_NO_TRUNCATE must therefore use a heap
	 * TID value that always works as a strict lower bound for items to the
	 * right.  In particular, it must avoid using firstright's leading key
	 * attribute values along with lastleft's heap TID value when lastleft's
	 * TID happens to be greater than firstright's TID.
	 */
	ItemPointerCopy(BTreeTupleGetHeapTID(firstright), pivotheaptid);

	/*
	 * Pivot heap TID should never be fully equal to firstright.  Note that
	 * the pivot heap TID will still end up equal to lastleft's heap TID when
	 * that's the only usable value.
	 */
	ItemPointerSetOffsetNumber(pivotheaptid,
							   OffsetNumberPrev(ItemPointerGetOffsetNumber(pivotheaptid)));
	Assert(ItemPointerCompare(pivotheaptid,
							  BTreeTupleGetHeapTID(firstright)) < 0);
#endif

	return tidpivot;
}

/*
 * _bt_keep_natts - how many key attributes to keep when truncating.
 *
 * Caller provides two tuples that enclose a split point.  Caller's insertion
 * scankey is used to compare the tuples; the scankey's argument values are
 * not considered here.
 *
 * This can return a number of attributes that is one greater than the
 * number of key attributes for the index relation.  This indicates that the
 * caller must use a heap TID as a unique-ifier in new pivot tuple.
 */
static int
_bt_keep_natts(Relation rel, IndexTuple lastleft, IndexTuple firstright,
			   BTScanInsert itup_key)
{
	int			nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
	TupleDesc	itupdesc = RelationGetDescr(rel);
	int			keepnatts;
	ScanKey		scankey;

	/*
	 * _bt_compare() treats truncated key attributes as having the value minus
	 * infinity, which would break searches within !heapkeyspace indexes.  We
	 * must still truncate away non-key attribute values, though.
	 */
	if (!itup_key->heapkeyspace)
		return nkeyatts;

	scankey = itup_key->scankeys;
	keepnatts = 1;
	for (int attnum = 1; attnum <= nkeyatts; attnum++, scankey++)
	{
		Datum		datum1,
					datum2;
		bool		isNull1,
					isNull2;

		datum1 = index_getattr(lastleft, attnum, itupdesc, &isNull1);
		datum2 = index_getattr(firstright, attnum, itupdesc, &isNull2);

		if (isNull1 != isNull2)
			break;

		if (!isNull1 &&
			DatumGetInt32(FunctionCall2Coll(&scankey->sk_func,
											scankey->sk_collation,
											datum1,
											datum2)) != 0)
			break;

		keepnatts++;
	}

	/*
	 * Assert that _bt_keep_natts_fast() agrees with us in passing.  This is
	 * expected in an allequalimage index.
	 */
	Assert(!itup_key->allequalimage ||
		   keepnatts == _bt_keep_natts_fast(rel, lastleft, firstright));

	return keepnatts;
}

/*
 * _bt_keep_natts_fast - fast bitwise variant of _bt_keep_natts.
 *
 * This is exported so that a candidate split point can have its effect on
 * suffix truncation inexpensively evaluated ahead of time when finding a
 * split location.  A naive bitwise approach to datum comparisons is used to
 * save cycles.
 *
 * The approach taken here usually provides the same answer as _bt_keep_natts
 * will (for the same pair of tuples from a heapkeyspace index), since the
 * majority of btree opclasses can never indicate that two datums are equal
 * unless they're bitwise equal after detoasting.  When an index only has
 * "equal image" columns, routine is guaranteed to give the same result as
 * _bt_keep_natts would.
 *
 * Callers can rely on the fact that attributes considered equal here are
 * definitely also equal according to _bt_keep_natts, even when the index uses
 * an opclass or collation that is not "allequalimage"/deduplication-safe.
 * This weaker guarantee is good enough for nbtsplitloc.c caller, since false
 * negatives generally only have the effect of making leaf page splits use a
 * more balanced split point.
 */
int
_bt_keep_natts_fast(Relation rel, IndexTuple lastleft, IndexTuple firstright)
{
	TupleDesc	itupdesc = RelationGetDescr(rel);
	int			keysz = IndexRelationGetNumberOfKeyAttributes(rel);
	int			keepnatts;

	keepnatts = 1;
	for (int attnum = 1; attnum <= keysz; attnum++)
	{
		Datum		datum1,
					datum2;
		bool		isNull1,
					isNull2;
		CompactAttribute *att;

		datum1 = index_getattr(lastleft, attnum, itupdesc, &isNull1);
		datum2 = index_getattr(firstright, attnum, itupdesc, &isNull2);
		att = TupleDescCompactAttr(itupdesc, attnum - 1);

		if (isNull1 != isNull2)
			break;

		if (!isNull1 &&
			!datum_image_eq(datum1, datum2, att->attbyval, att->attlen))
			break;

		keepnatts++;
	}

	return keepnatts;
}

/*
 *  _bt_check_natts() -- Verify tuple has expected number of attributes.
 *
 * Returns value indicating if the expected number of attributes were found
 * for a particular offset on page.  This can be used as a general purpose
 * sanity check.
 *
 * Testing a tuple directly with BTreeTupleGetNAtts() should generally be
 * preferred to calling here.  That's usually more convenient, and is always
 * more explicit.  Call here instead when offnum's tuple may be a negative
 * infinity tuple that uses the pre-v11 on-disk representation, or when a low
 * context check is appropriate.  This routine is as strict as possible about
 * what is expected on each version of btree.
 */
bool
_bt_check_natts(Relation rel, bool heapkeyspace, Page page, OffsetNumber offnum)
{
	int16		natts = IndexRelationGetNumberOfAttributes(rel);
	int16		nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
	BTPageOpaque opaque = BTPageGetOpaque(page);
	IndexTuple	itup;
	int			tupnatts;

	/*
	 * We cannot reliably test a deleted or half-dead page, since they have
	 * dummy high keys
	 */
	if (P_IGNORE(opaque))
		return true;

	Assert(offnum >= FirstOffsetNumber &&
		   offnum <= PageGetMaxOffsetNumber(page));

	itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
	tupnatts = BTreeTupleGetNAtts(itup, rel);

	/* !heapkeyspace indexes do not support deduplication */
	if (!heapkeyspace && BTreeTupleIsPosting(itup))
		return false;

	/* Posting list tuples should never have "pivot heap TID" bit set */
	if (BTreeTupleIsPosting(itup) &&
		(ItemPointerGetOffsetNumberNoCheck(&itup->t_tid) &
		 BT_PIVOT_HEAP_TID_ATTR) != 0)
		return false;

	/* INCLUDE indexes do not support deduplication */
	if (natts != nkeyatts && BTreeTupleIsPosting(itup))
		return false;

	if (P_ISLEAF(opaque))
	{
		if (offnum >= P_FIRSTDATAKEY(opaque))
		{
			/*
			 * Non-pivot tuple should never be explicitly marked as a pivot
			 * tuple
			 */
			if (BTreeTupleIsPivot(itup))
				return false;

			/*
			 * Leaf tuples that are not the page high key (non-pivot tuples)
			 * should never be truncated.  (Note that tupnatts must have been
			 * inferred, even with a posting list tuple, because only pivot
			 * tuples store tupnatts directly.)
			 */
			return tupnatts == natts;
		}
		else
		{
			/*
			 * Rightmost page doesn't contain a page high key, so tuple was
			 * checked above as ordinary leaf tuple
			 */
			Assert(!P_RIGHTMOST(opaque));

			/*
			 * !heapkeyspace high key tuple contains only key attributes. Note
			 * that tupnatts will only have been explicitly represented in
			 * !heapkeyspace indexes that happen to have non-key attributes.
			 */
			if (!heapkeyspace)
				return tupnatts == nkeyatts;

			/* Use generic heapkeyspace pivot tuple handling */
		}
	}
	else						/* !P_ISLEAF(opaque) */
	{
		if (offnum == P_FIRSTDATAKEY(opaque))
		{
			/*
			 * The first tuple on any internal page (possibly the first after
			 * its high key) is its negative infinity tuple.  Negative
			 * infinity tuples are always truncated to zero attributes.  They
			 * are a particular kind of pivot tuple.
			 */
			if (heapkeyspace)
				return tupnatts == 0;

			/*
			 * The number of attributes won't be explicitly represented if the
			 * negative infinity tuple was generated during a page split that
			 * occurred with a version of Postgres before v11.  There must be
			 * a problem when there is an explicit representation that is
			 * non-zero, or when there is no explicit representation and the
			 * tuple is evidently not a pre-pg_upgrade tuple.
			 *
			 * Prior to v11, downlinks always had P_HIKEY as their offset.
			 * Accept that as an alternative indication of a valid
			 * !heapkeyspace negative infinity tuple.
			 */
			return tupnatts == 0 ||
				ItemPointerGetOffsetNumber(&(itup->t_tid)) == P_HIKEY;
		}
		else
		{
			/*
			 * !heapkeyspace downlink tuple with separator key contains only
			 * key attributes.  Note that tupnatts will only have been
			 * explicitly represented in !heapkeyspace indexes that happen to
			 * have non-key attributes.
			 */
			if (!heapkeyspace)
				return tupnatts == nkeyatts;

			/* Use generic heapkeyspace pivot tuple handling */
		}
	}

	/* Handle heapkeyspace pivot tuples (excluding minus infinity items) */
	Assert(heapkeyspace);

	/*
	 * Explicit representation of the number of attributes is mandatory with
	 * heapkeyspace index pivot tuples, regardless of whether or not there are
	 * non-key attributes.
	 */
	if (!BTreeTupleIsPivot(itup))
		return false;

	/* Pivot tuple should not use posting list representation (redundant) */
	if (BTreeTupleIsPosting(itup))
		return false;

	/*
	 * Heap TID is a tiebreaker key attribute, so it cannot be untruncated
	 * when any other key attribute is truncated
	 */
	if (BTreeTupleGetHeapTID(itup) != NULL && tupnatts != nkeyatts)
		return false;

	/*
	 * Pivot tuple must have at least one untruncated key attribute (minus
	 * infinity pivot tuples are the only exception).  Pivot tuples can never
	 * represent that there is a value present for a key attribute that
	 * exceeds pg_index.indnkeyatts for the index.
	 */
	return tupnatts > 0 && tupnatts <= nkeyatts;
}

/*
 *
 *  _bt_check_third_page() -- check whether tuple fits on a btree page at all.
 *
 * We actually need to be able to fit three items on every page, so restrict
 * any one item to 1/3 the per-page available space.  Note that itemsz should
 * not include the ItemId overhead.
 *
 * It might be useful to apply TOAST methods rather than throw an error here.
 * Using out of line storage would break assumptions made by suffix truncation
 * and by contrib/amcheck, though.
 */
void
_bt_check_third_page(Relation rel, Relation heap, bool needheaptidspace,
					 Page page, IndexTuple newtup)
{
	Size		itemsz;
	BTPageOpaque opaque;

	itemsz = MAXALIGN(IndexTupleSize(newtup));

	/* Double check item size against limit */
	if (itemsz <= BTMaxItemSize)
		return;

	/*
	 * Tuple is probably too large to fit on page, but it's possible that the
	 * index uses version 2 or version 3, or that page is an internal page, in
	 * which case a slightly higher limit applies.
	 */
	if (!needheaptidspace && itemsz <= BTMaxItemSizeNoHeapTid)
		return;

	/*
	 * Internal page insertions cannot fail here, because that would mean that
	 * an earlier leaf level insertion that should have failed didn't
	 */
	opaque = BTPageGetOpaque(page);
	if (!P_ISLEAF(opaque))
		elog(ERROR, "cannot insert oversized tuple of size %zu on internal page of index \"%s\"",
			 itemsz, RelationGetRelationName(rel));

	ereport(ERROR,
			(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
			 errmsg("index row size %zu exceeds btree version %u maximum %zu for index \"%s\"",
					itemsz,
					needheaptidspace ? BTREE_VERSION : BTREE_NOVAC_VERSION,
					needheaptidspace ? BTMaxItemSize : BTMaxItemSizeNoHeapTid,
					RelationGetRelationName(rel)),
			 errdetail("Index row references tuple (%u,%u) in relation \"%s\".",
					   ItemPointerGetBlockNumber(BTreeTupleGetHeapTID(newtup)),
					   ItemPointerGetOffsetNumber(BTreeTupleGetHeapTID(newtup)),
					   RelationGetRelationName(heap)),
			 errhint("Values larger than 1/3 of a buffer page cannot be indexed.\n"
					 "Consider a function index of an MD5 hash of the value, "
					 "or use full text indexing."),
			 errtableconstraint(heap, RelationGetRelationName(rel))));
}

/*
 * Are all attributes in rel "equality is image equality" attributes?
 *
 * We use each attribute's BTEQUALIMAGE_PROC opclass procedure.  If any
 * opclass either lacks a BTEQUALIMAGE_PROC procedure or returns false, we
 * return false; otherwise we return true.
 *
 * Returned boolean value is stored in index metapage during index builds.
 * Deduplication can only be used when we return true.
 */
bool
_bt_allequalimage(Relation rel, bool debugmessage)
{
	bool		allequalimage = true;

	/* INCLUDE indexes can never support deduplication */
	if (IndexRelationGetNumberOfAttributes(rel) !=
		IndexRelationGetNumberOfKeyAttributes(rel))
		return false;

	for (int i = 0; i < IndexRelationGetNumberOfKeyAttributes(rel); i++)
	{
		Oid			opfamily = rel->rd_opfamily[i];
		Oid			opcintype = rel->rd_opcintype[i];
		Oid			collation = rel->rd_indcollation[i];
		Oid			equalimageproc;

		equalimageproc = get_opfamily_proc(opfamily, opcintype, opcintype,
										   BTEQUALIMAGE_PROC);

		/*
		 * If there is no BTEQUALIMAGE_PROC then deduplication is assumed to
		 * be unsafe.  Otherwise, actually call proc and see what it says.
		 */
		if (!OidIsValid(equalimageproc) ||
			!DatumGetBool(OidFunctionCall1Coll(equalimageproc, collation,
											   ObjectIdGetDatum(opcintype))))
		{
			allequalimage = false;
			break;
		}
	}

	if (debugmessage)
	{
		if (allequalimage)
			elog(DEBUG1, "index \"%s\" can safely use deduplication",
				 RelationGetRelationName(rel));
		else
			elog(DEBUG1, "index \"%s\" cannot use deduplication",
				 RelationGetRelationName(rel));
	}

	return allequalimage;
}