1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
<!-- $PostgreSQL: pgsql/doc/src/sgml/wal.sgml,v 1.38 2005/11/04 23:14:02 petere Exp $ -->
<chapter id="wal">
<title>Reliability and the Write-Ahead Log</title>
<para>
This chapter explain how the Write-Ahead Log is used to obtain
efficient, reliable operation.
</para>
<sect1 id="wal-reliability">
<title>Reliability</title>
<para>
Reliability is an important property of any serious database
system, and <productname>PostgreSQL</> does everything possible to
guarantee reliable operation. One aspect of reliable operation is
that all data recorded by a committed transaction should be stored
in a nonvolatile area that is safe from power loss, operating
system failure, and hardware failure (except failure of the
nonvolatile area itself, of course). Successfully writing the data
to the computer's permanent storage (disk drive or equivalent)
ordinarily meets this requirement. In fact, even if a computer is
fatally damaged, if the disk drives survive they can be moved to
another computer with similar hardware and all committed
transactions will remain intact.
</para>
<para>
While forcing data periodically to the disk platters might seem like
a simple operation, it is not. Because disk drives are dramatically
slower than main memory and CPUs, several layers of caching exist
between the computer's main memory and the disk platters.
First, there is the operating system's buffer cache, which caches
frequently requested disk blocks and combines disk writes. Fortunately,
all operating systems give applications a way to force writes from
the buffer cache to disk, and <productname>PostgreSQL</> uses those
features. (See the <xref linkend="guc-wal-sync-method"> parameter
to adjust how this is done.)
</para>
<para>
Next, there may be a cache in the disk drive controller; this is
particularly common on <acronym>RAID</> controller cards. Some of
these caches are <firstterm>write-through</>, meaning writes are passed
along to the drive as soon as they arrive. Others are
<firstterm>write-back</>, meaning data is passed on to the drive at
some later time. Such caches can be a reliability hazard because the
memory in the disk controller cache is volatile, and will lose its
contents in a power failure. Better controller cards have
<firstterm>battery-backed</> caches, meaning the card has a battery that
maintains power to the cache in case of system power loss. After power
is restored the data will be written to the disk drives.
</para>
<para>
And finally, most disk drives have caches. Some are write-through
while some are write-back, and the
same concerns about data loss exist for write-back drive caches as
exist for disk controller caches. Consumer-grade IDE drives are
particularly likely to contain write-back caches that will not
survive a power failure.
</para>
<para>
When the operating system sends a write request to the disk hardware,
there is little it can do to make sure the data has arrived at a truly
non-volatile storage area. Rather, it is the
administrator's responsibility to be sure that all storage components
ensure data integrity. Avoid disk controllers that have non-battery-backed
write caches. At the drive level, disable write-back caching if the
drive cannot guarantee the data will be written before shutdown.
</para>
<para>
Another risk of data loss is posed by the disk platter write
operations themselves. Disk platters are divided into sectors,
commonly 512 bytes each. Every physical read or write operation
processes a whole sector.
When a write request arrives at the drive, it might be for 512 bytes,
1024 bytes, or 8192 bytes, and the process of writing could fail due
to power loss at any time, meaning some of the 512-byte sectors were
written, and others were not. To guard against such failures,
<productname>PostgreSQL</> periodically writes full page images to
permanent storage <emphasis>before</> modifying the actual page on
disk. By doing this, during crash recovery <productname>PostgreSQL</> can
restore partially-written pages. If you have a battery-backed disk
controller or file-system software (e.g., Reiser4) that prevents partial
page writes, you can turn off this page imaging by using the
<xref linkend="guc-full-page-writes"> parameter.
</para>
</sect1>
<sect1 id="wal-intro">
<title>Write-Ahead Logging (<acronym>WAL</acronym>)</title>
<indexterm zone="wal">
<primary>WAL</primary>
</indexterm>
<indexterm>
<primary>transaction log</primary>
<see>WAL</see>
</indexterm>
<para>
<firstterm>Write-Ahead Logging</firstterm> (<acronym>WAL</acronym>)
is a standard approach to transaction logging. Its detailed
description may be found in most (if not all) books about
transaction processing. Briefly, <acronym>WAL</acronym>'s central
concept is that changes to data files (where tables and indexes
reside) must be written only after those changes have been logged,
that is, when log records describing the changes have been flushed
to permanent storage. If we follow this procedure, we do not need
to flush data pages to disk on every transaction commit, because we
know that in the event of a crash we will be able to recover the
database using the log: any changes that have not been applied to
the data pages can be redone from the log records. (This is
roll-forward recovery, also known as REDO.)
</para>
<para>
A major benefit of using <acronym>WAL</acronym> is a
significantly reduced number of disk writes, because only the log
file needs to be flushed to disk at the time of transaction
commit, rather than every data file changed by the transaction.
In multiuser environments, commits of many transactions
may be accomplished with a single <function>fsync</function> of
the log file. Furthermore, the log file is written sequentially,
and so the cost of syncing the log is much less than the cost of
flushing the data pages. This is especially true for servers
handling many small transactions touching different parts of the data
store.
</para>
<para>
<acronym>WAL</acronym> also makes it possible to support on-line
backup and point-in-time recovery, as described in <xref
linkend="backup-online">. By archiving the WAL data we can support
reverting to any time instant covered by the available WAL data:
we simply install a prior physical backup of the database, and
replay the WAL log just as far as the desired time. What's more,
the physical backup doesn't have to be an instantaneous snapshot
of the database state — if it is made over some period of time,
then replaying the WAL log for that period will fix any internal
inconsistencies.
</para>
</sect1>
<sect1 id="wal-configuration">
<title><acronym>WAL</acronym> Configuration</title>
<para>
There are several <acronym>WAL</>-related configuration parameters that
affect database performance. This section explains their use.
Consult <xref linkend="runtime-config"> for general information about
setting server configuration parameters.
</para>
<para>
<firstterm>Checkpoints</firstterm><indexterm><primary>checkpoint</></>
are points in the sequence of transactions at which it is guaranteed
that the data files have been updated with all information written before
the checkpoint. At checkpoint time, all dirty data pages are flushed to
disk and a special checkpoint record is written to the log file.
In the event of a crash, the crash recovery procedure looks at the latest
checkpoint record to determine the point in the log (known as the redo
record) from which it should start the REDO operation. Any changes made to
data files before that point are known to be already on disk. Hence, after
a checkpoint has been made, any log segments preceding the one containing
the redo record are no longer needed and can be recycled or removed. (When
<acronym>WAL</acronym> archiving is being done, the log segments must be
archived before being recycled or removed.)
</para>
<para>
The server's background writer process will automatically perform
a checkpoint every so often. A checkpoint is created every <xref
linkend="guc-checkpoint-segments"> log segments, or every <xref
linkend="guc-checkpoint-timeout"> seconds, whichever comes first.
The default settings are 3 segments and 300 seconds respectively.
It is also possible to force a checkpoint by using the SQL command
<command>CHECKPOINT</command>.
</para>
<para>
Reducing <varname>checkpoint_segments</varname> and/or
<varname>checkpoint_timeout</varname> causes checkpoints to be done
more often. This allows faster after-crash recovery (since less work
will need to be redone). However, one must balance this against the
increased cost of flushing dirty data pages more often. If
<xref linkend="guc-full-page-writes"> is set (as is the default), there is
another factor to consider. To ensure data page consistency,
the first modification of a data page after each checkpoint results in
logging the entire page content. In that case,
a smaller checkpoint interval increases the volume of output to the WAL log,
partially negating the goal of using a smaller interval,
and in any case causing more disk I/O.
</para>
<para>
Checkpoints are fairly expensive, first because they require writing
out all currently dirty buffers, and second because they result in
extra subsequent WAL traffic as discussed above. It is therefore
wise to set the checkpointing parameters high enough that checkpoints
don't happen too often. As a simple sanity check on your checkpointing
parameters, you can set the <xref linkend="guc-checkpoint-warning">
parameter. If checkpoints happen closer together than
<varname>checkpoint_warning</> seconds,
a message will be output to the server log recommending increasing
<varname>checkpoint_segments</varname>. Occasional appearance of such
a message is not cause for alarm, but if it appears often then the
checkpoint control parameters should be increased. Bulk operations such
as large <command>COPY</> transfers may cause a number of such warnings
to appear if you have not set <varname>checkpoint_segments</> high
enough.
</para>
<para>
There will be at least one WAL segment file, and will normally
not be more than 2 * <varname>checkpoint_segments</varname> + 1
files. Each segment file is normally 16 MB (though this size can be
altered when building the server). You can use this to estimate space
requirements for <acronym>WAL</acronym>.
Ordinarily, when old log segment files are no longer needed, they
are recycled (renamed to become the next segments in the numbered
sequence). If, due to a short-term peak of log output rate, there
are more than 2 * <varname>checkpoint_segments</varname> + 1
segment files, the unneeded segment files will be deleted instead
of recycled until the system gets back under this limit.
</para>
<para>
There are two commonly used internal <acronym>WAL</acronym> functions:
<function>LogInsert</function> and <function>LogFlush</function>.
<function>LogInsert</function> is used to place a new record into
the <acronym>WAL</acronym> buffers in shared memory. If there is no
space for the new record, <function>LogInsert</function> will have
to write (move to kernel cache) a few filled <acronym>WAL</acronym>
buffers. This is undesirable because <function>LogInsert</function>
is used on every database low level modification (for example, row
insertion) at a time when an exclusive lock is held on affected
data pages, so the operation needs to be as fast as possible. What
is worse, writing <acronym>WAL</acronym> buffers may also force the
creation of a new log segment, which takes even more
time. Normally, <acronym>WAL</acronym> buffers should be written
and flushed by a <function>LogFlush</function> request, which is
made, for the most part, at transaction commit time to ensure that
transaction records are flushed to permanent storage. On systems
with high log output, <function>LogFlush</function> requests may
not occur often enough to prevent <function>LogInsert</function>
from having to do writes. On such systems
one should increase the number of <acronym>WAL</acronym> buffers by
modifying the configuration parameter <xref
linkend="guc-wal-buffers">. The default number of <acronym>WAL</acronym>
buffers is 8. Increasing this value will
correspondingly increase shared memory usage. When
<xref linkend="guc-full-page-writes"> is set and the system is very busy,
setting this value higher will help smooth response times during the
period immediately following each checkpoint.
</para>
<para>
The <xref linkend="guc-commit-delay"> parameter defines for how many
microseconds the server process will sleep after writing a commit
record to the log with <function>LogInsert</function> but before
performing a <function>LogFlush</function>. This delay allows other
server processes to add their commit records to the log so as to have all
of them flushed with a single log sync. No sleep will occur if
<xref linkend="guc-fsync">
is not enabled, nor if fewer than <xref linkend="guc-commit-siblings">
other sessions are currently in active transactions; this avoids
sleeping when it's unlikely that any other session will commit soon.
Note that on most platforms, the resolution of a sleep request is
ten milliseconds, so that any nonzero <varname>commit_delay</varname>
setting between 1 and 10000 microseconds would have the same effect.
Good values for these parameters are not yet clear; experimentation
is encouraged.
</para>
<para>
The <xref linkend="guc-wal-sync-method"> parameter determines how
<productname>PostgreSQL</productname> will ask the kernel to force
<acronym>WAL</acronym> updates out to disk.
All the options should be the same as far as reliability goes,
but it's quite platform-specific which one will be the fastest.
Note that this parameter is irrelevant if <varname>fsync</varname>
has been turned off.
</para>
<para>
Enabling the <xref linkend="guc-wal-debug"> configuration parameter
(provided that <productname>PostgreSQL</productname> has been
compiled with support for it) will result in each
<function>LogInsert</function> and <function>LogFlush</function>
<acronym>WAL</acronym> call being logged to the server log. This
option may be replaced by a more general mechanism in the future.
</para>
</sect1>
<sect1 id="wal-internals">
<title>WAL Internals</title>
<para>
<acronym>WAL</acronym> is automatically enabled; no action is
required from the administrator except ensuring that the
disk-space requirements for the <acronym>WAL</acronym> logs are met,
and that any necessary tuning is done (see <xref
linkend="wal-configuration">).
</para>
<para>
<acronym>WAL</acronym> logs are stored in the directory
<filename>pg_xlog</filename> under the data directory, as a set of
segment files, normally each 16 MB in size. Each segment is divided into
pages, normally 8 KB each. The log record headers are described in
<filename>access/xlog.h</filename>; the record content is dependent
on the type of event that is being logged. Segment files are given
ever-increasing numbers as names, starting at
<filename>000000010000000000000000</filename>. The numbers do not wrap, at
present, but it should take a very very long time to exhaust the
available stock of numbers.
</para>
<para>
It is of advantage if the log is located on another disk than the
main database files. This may be achieved by moving the directory
<filename>pg_xlog</filename> to another location (while the server
is shut down, of course) and creating a symbolic link from the
original location in the main data directory to the new location.
</para>
<para>
The aim of <acronym>WAL</acronym>, to ensure that the log is
written before database records are altered, may be subverted by
disk drives<indexterm><primary>disk drive</></> that falsely report a
successful write to the kernel,
when in fact they have only cached the data and not yet stored it
on the disk. A power failure in such a situation may still lead to
irrecoverable data corruption. Administrators should try to ensure
that disks holding <productname>PostgreSQL</productname>'s
<acronym>WAL</acronym> log files do not make such false reports.
</para>
<para>
After a checkpoint has been made and the log flushed, the
checkpoint's position is saved in the file
<filename>pg_control</filename>. Therefore, when recovery is to be
done, the server first reads <filename>pg_control</filename> and
then the checkpoint record; then it performs the REDO operation by
scanning forward from the log position indicated in the checkpoint
record. Because the entire content of data pages is saved in the
log on the first page modification after a checkpoint, all pages
changed since the checkpoint will be restored to a consistent
state.
</para>
<para>
To deal with the case where <filename>pg_control</filename> is
corrupted, we should support the possibility of scanning existing log
segments in reverse order — newest to oldest — in order to find the
latest checkpoint. This has not been implemented yet.
<filename>pg_control</filename> is small enough (less than one disk page)
that it is not subject to partial-write problems, and as of this writing
there have been no reports of database failures due solely to inability
to read <filename>pg_control</filename> itself. So while it is
theoretically a weak spot, <filename>pg_control</filename> does not
seem to be a problem in practice.
</para>
</sect1>
</chapter>
<!-- Keep this comment at the end of the file
Local variables:
mode:sgml
sgml-omittag:nil
sgml-shorttag:t
sgml-minimize-attributes:nil
sgml-always-quote-attributes:t
sgml-indent-step:1
sgml-indent-data:t
sgml-parent-document:nil
sgml-default-dtd-file:"./reference.ced"
sgml-exposed-tags:nil
sgml-local-catalogs:("/usr/lib/sgml/catalog")
sgml-local-ecat-files:nil
End:
-->
|