diff options
Diffstat (limited to 'src/common/scram-common.c')
-rw-r--r-- | src/common/scram-common.c | 196 |
1 files changed, 196 insertions, 0 deletions
diff --git a/src/common/scram-common.c b/src/common/scram-common.c new file mode 100644 index 00000000000..4a1c3809cfe --- /dev/null +++ b/src/common/scram-common.c @@ -0,0 +1,196 @@ +/*------------------------------------------------------------------------- + * scram-common.c + * Shared frontend/backend code for SCRAM authentication + * + * This contains the common low-level functions needed in both frontend and + * backend, for implement the Salted Challenge Response Authentication + * Mechanism (SCRAM), per IETF's RFC 5802. + * + * Portions Copyright (c) 2016, PostgreSQL Global Development Group + * + * IDENTIFICATION + * src/common/scram-common.c + * + *------------------------------------------------------------------------- + */ +#ifndef FRONTEND +#include "postgres.h" +#include "utils/memutils.h" +#else +#include "postgres_fe.h" +#endif + +#include "common/scram-common.h" + +#define HMAC_IPAD 0x36 +#define HMAC_OPAD 0x5C + +/* + * Calculate HMAC per RFC2104. + * + * The hash function used is SHA-256. + */ +void +scram_HMAC_init(scram_HMAC_ctx *ctx, const uint8 *key, int keylen) +{ + uint8 k_ipad[SHA256_HMAC_B]; + int i; + uint8 keybuf[SCRAM_KEY_LEN]; + + /* + * If the key is longer than the block size (64 bytes for SHA-256), pass + * it through SHA-256 once to shrink it down. + */ + if (keylen > SHA256_HMAC_B) + { + pg_sha256_ctx sha256_ctx; + + pg_sha256_init(&sha256_ctx); + pg_sha256_update(&sha256_ctx, key, keylen); + pg_sha256_final(&sha256_ctx, keybuf); + key = keybuf; + keylen = SCRAM_KEY_LEN; + } + + memset(k_ipad, HMAC_IPAD, SHA256_HMAC_B); + memset(ctx->k_opad, HMAC_OPAD, SHA256_HMAC_B); + + for (i = 0; i < keylen; i++) + { + k_ipad[i] ^= key[i]; + ctx->k_opad[i] ^= key[i]; + } + + /* tmp = H(K XOR ipad, text) */ + pg_sha256_init(&ctx->sha256ctx); + pg_sha256_update(&ctx->sha256ctx, k_ipad, SHA256_HMAC_B); +} + +/* + * Update HMAC calculation + * The hash function used is SHA-256. + */ +void +scram_HMAC_update(scram_HMAC_ctx *ctx, const char *str, int slen) +{ + pg_sha256_update(&ctx->sha256ctx, (const uint8 *) str, slen); +} + +/* + * Finalize HMAC calculation. + * The hash function used is SHA-256. + */ +void +scram_HMAC_final(uint8 *result, scram_HMAC_ctx *ctx) +{ + uint8 h[SCRAM_KEY_LEN]; + + pg_sha256_final(&ctx->sha256ctx, h); + + /* H(K XOR opad, tmp) */ + pg_sha256_init(&ctx->sha256ctx); + pg_sha256_update(&ctx->sha256ctx, ctx->k_opad, SHA256_HMAC_B); + pg_sha256_update(&ctx->sha256ctx, h, SCRAM_KEY_LEN); + pg_sha256_final(&ctx->sha256ctx, result); +} + +/* + * Iterate hash calculation of HMAC entry using given salt. + * scram_Hi() is essentially PBKDF2 (see RFC2898) with HMAC() as the + * pseudorandom function. + */ +static void +scram_Hi(const char *str, const char *salt, int saltlen, int iterations, uint8 *result) +{ + int str_len = strlen(str); + uint32 one = htonl(1); + int i, + j; + uint8 Ui[SCRAM_KEY_LEN]; + uint8 Ui_prev[SCRAM_KEY_LEN]; + scram_HMAC_ctx hmac_ctx; + + /* First iteration */ + scram_HMAC_init(&hmac_ctx, (uint8 *) str, str_len); + scram_HMAC_update(&hmac_ctx, salt, saltlen); + scram_HMAC_update(&hmac_ctx, (char *) &one, sizeof(uint32)); + scram_HMAC_final(Ui_prev, &hmac_ctx); + memcpy(result, Ui_prev, SCRAM_KEY_LEN); + + /* Subsequent iterations */ + for (i = 2; i <= iterations; i++) + { + scram_HMAC_init(&hmac_ctx, (uint8 *) str, str_len); + scram_HMAC_update(&hmac_ctx, (const char *) Ui_prev, SCRAM_KEY_LEN); + scram_HMAC_final(Ui, &hmac_ctx); + for (j = 0; j < SCRAM_KEY_LEN; j++) + result[j] ^= Ui[j]; + memcpy(Ui_prev, Ui, SCRAM_KEY_LEN); + } +} + + +/* + * Calculate SHA-256 hash for a NULL-terminated string. (The NULL terminator is + * not included in the hash). + */ +void +scram_H(const uint8 *input, int len, uint8 *result) +{ + pg_sha256_ctx ctx; + + pg_sha256_init(&ctx); + pg_sha256_update(&ctx, input, len); + pg_sha256_final(&ctx, result); +} + +/* + * Normalize a password for SCRAM authentication. + */ +static void +scram_Normalize(const char *password, char *result) +{ + /* + * XXX: Here SASLprep should be applied on password. However, per RFC5802, + * it is required that the password is encoded in UTF-8, something that is + * not guaranteed in this protocol. We may want to revisit this + * normalization function once encoding functions are available as well in + * the frontend in order to be able to encode properly this string, and + * then apply SASLprep on it. + */ + memcpy(result, password, strlen(password) + 1); +} + +/* + * Encrypt password for SCRAM authentication. This basically applies the + * normalization of the password and a hash calculation using the salt + * value given by caller. + */ +static void +scram_SaltedPassword(const char *password, const char *salt, int saltlen, int iterations, + uint8 *result) +{ + char *pwbuf; + + pwbuf = (char *) malloc(strlen(password) + 1); + scram_Normalize(password, pwbuf); + scram_Hi(pwbuf, salt, saltlen, iterations, result); + free(pwbuf); +} + +/* + * Calculate ClientKey or ServerKey. + */ +void +scram_ClientOrServerKey(const char *password, + const char *salt, int saltlen, int iterations, + const char *keystr, uint8 *result) +{ + uint8 keybuf[SCRAM_KEY_LEN]; + scram_HMAC_ctx ctx; + + scram_SaltedPassword(password, salt, saltlen, iterations, keybuf); + scram_HMAC_init(&ctx, keybuf, SCRAM_KEY_LEN); + scram_HMAC_update(&ctx, keystr, strlen(keystr)); + scram_HMAC_final(result, &ctx); +} |