diff options
Diffstat (limited to 'src/backend/utils/adt/numeric.c')
-rw-r--r-- | src/backend/utils/adt/numeric.c | 171 |
1 files changed, 171 insertions, 0 deletions
diff --git a/src/backend/utils/adt/numeric.c b/src/backend/utils/adt/numeric.c index 76a597e56fa..c92ad5a4fe0 100644 --- a/src/backend/utils/adt/numeric.c +++ b/src/backend/utils/adt/numeric.c @@ -521,6 +521,8 @@ static void mod_var(const NumericVar *var1, const NumericVar *var2, static void ceil_var(const NumericVar *var, NumericVar *result); static void floor_var(const NumericVar *var, NumericVar *result); +static void gcd_var(const NumericVar *var1, const NumericVar *var2, + NumericVar *result); static void sqrt_var(const NumericVar *arg, NumericVar *result, int rscale); static void exp_var(const NumericVar *arg, NumericVar *result, int rscale); static int estimate_ln_dweight(const NumericVar *var); @@ -2839,6 +2841,107 @@ numeric_larger(PG_FUNCTION_ARGS) */ /* + * numeric_gcd() - + * + * Calculate the greatest common divisor of two numerics + */ +Datum +numeric_gcd(PG_FUNCTION_ARGS) +{ + Numeric num1 = PG_GETARG_NUMERIC(0); + Numeric num2 = PG_GETARG_NUMERIC(1); + NumericVar arg1; + NumericVar arg2; + NumericVar result; + Numeric res; + + /* + * Handle NaN + */ + if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) + PG_RETURN_NUMERIC(make_result(&const_nan)); + + /* + * Unpack the arguments + */ + init_var_from_num(num1, &arg1); + init_var_from_num(num2, &arg2); + + init_var(&result); + + /* + * Find the GCD and return the result + */ + gcd_var(&arg1, &arg2, &result); + + res = make_result(&result); + + free_var(&result); + + PG_RETURN_NUMERIC(res); +} + + +/* + * numeric_lcm() - + * + * Calculate the least common multiple of two numerics + */ +Datum +numeric_lcm(PG_FUNCTION_ARGS) +{ + Numeric num1 = PG_GETARG_NUMERIC(0); + Numeric num2 = PG_GETARG_NUMERIC(1); + NumericVar arg1; + NumericVar arg2; + NumericVar result; + Numeric res; + + /* + * Handle NaN + */ + if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) + PG_RETURN_NUMERIC(make_result(&const_nan)); + + /* + * Unpack the arguments + */ + init_var_from_num(num1, &arg1); + init_var_from_num(num2, &arg2); + + init_var(&result); + + /* + * Compute the result using lcm(x, y) = abs(x / gcd(x, y) * y), returning + * zero if either input is zero. + * + * Note that the division is guaranteed to be exact, returning an integer + * result, so the LCM is an integral multiple of both x and y. A display + * scale of Min(x.dscale, y.dscale) would be sufficient to represent it, + * but as with other numeric functions, we choose to return a result whose + * display scale is no smaller than either input. + */ + if (arg1.ndigits == 0 || arg2.ndigits == 0) + set_var_from_var(&const_zero, &result); + else + { + gcd_var(&arg1, &arg2, &result); + div_var(&arg1, &result, &result, 0, false); + mul_var(&arg2, &result, &result, arg2.dscale); + result.sign = NUMERIC_POS; + } + + result.dscale = Max(arg1.dscale, arg2.dscale); + + res = make_result(&result); + + free_var(&result); + + PG_RETURN_NUMERIC(res); +} + + +/* * numeric_fac() * * Compute factorial @@ -8040,6 +8143,74 @@ floor_var(const NumericVar *var, NumericVar *result) /* + * gcd_var() - + * + * Calculate the greatest common divisor of two numerics at variable level + */ +static void +gcd_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result) +{ + int res_dscale; + int cmp; + NumericVar tmp_arg; + NumericVar mod; + + res_dscale = Max(var1->dscale, var2->dscale); + + /* + * Arrange for var1 to be the number with the greater absolute value. + * + * This would happen automatically in the loop below, but avoids an + * expensive modulo operation. + */ + cmp = cmp_abs(var1, var2); + if (cmp < 0) + { + const NumericVar *tmp = var1; + + var1 = var2; + var2 = tmp; + } + + /* + * Also avoid the taking the modulo if the inputs have the same absolute + * value, or if the smaller input is zero. + */ + if (cmp == 0 || var2->ndigits == 0) + { + set_var_from_var(var1, result); + result->sign = NUMERIC_POS; + result->dscale = res_dscale; + return; + } + + init_var(&tmp_arg); + init_var(&mod); + + /* Use the Euclidean algorithm to find the GCD */ + set_var_from_var(var1, &tmp_arg); + set_var_from_var(var2, result); + + for (;;) + { + /* this loop can take a while, so allow it to be interrupted */ + CHECK_FOR_INTERRUPTS(); + + mod_var(&tmp_arg, result, &mod); + if (mod.ndigits == 0) + break; + set_var_from_var(result, &tmp_arg); + set_var_from_var(&mod, result); + } + result->sign = NUMERIC_POS; + result->dscale = res_dscale; + + free_var(&tmp_arg); + free_var(&mod); +} + + +/* * sqrt_var() - * * Compute the square root of x using Newton's algorithm |