aboutsummaryrefslogtreecommitdiff
path: root/src/backend/utils/adt/array_typanalyze.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/utils/adt/array_typanalyze.c')
-rw-r--r--src/backend/utils/adt/array_typanalyze.c762
1 files changed, 762 insertions, 0 deletions
diff --git a/src/backend/utils/adt/array_typanalyze.c b/src/backend/utils/adt/array_typanalyze.c
new file mode 100644
index 00000000000..941e2adb038
--- /dev/null
+++ b/src/backend/utils/adt/array_typanalyze.c
@@ -0,0 +1,762 @@
+/*-------------------------------------------------------------------------
+ *
+ * array_typanalyze.c
+ * Functions for gathering statistics from array columns
+ *
+ * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * src/backend/utils/adt/array_typanalyze.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "access/tuptoaster.h"
+#include "catalog/pg_collation.h"
+#include "commands/vacuum.h"
+#include "utils/array.h"
+#include "utils/datum.h"
+#include "utils/typcache.h"
+
+
+/*
+ * To avoid consuming too much memory, IO and CPU load during analysis, and/or
+ * too much space in the resulting pg_statistic rows, we ignore arrays that
+ * are wider than ARRAY_WIDTH_THRESHOLD (after detoasting!). Note that this
+ * number is considerably more than the similar WIDTH_THRESHOLD limit used
+ * in analyze.c's standard typanalyze code.
+ */
+#define ARRAY_WIDTH_THRESHOLD 0x10000
+
+/* Extra data for compute_array_stats function */
+typedef struct
+{
+ /* Information about array element type */
+ Oid type_id; /* element type's OID */
+ Oid eq_opr; /* default equality operator's OID */
+ bool typbyval; /* physical properties of element type */
+ int16 typlen;
+ char typalign;
+
+ /*
+ * Lookup data for element type's comparison and hash functions (these
+ * are in the type's typcache entry, which we expect to remain valid
+ * over the lifespan of the ANALYZE run)
+ */
+ FmgrInfo *cmp;
+ FmgrInfo *hash;
+
+ /* Saved state from std_typanalyze() */
+ AnalyzeAttrComputeStatsFunc std_compute_stats;
+ void *std_extra_data;
+} ArrayAnalyzeExtraData;
+
+/*
+ * While compute_array_stats is running, we keep a pointer to the extra data
+ * here for use by assorted subroutines. compute_array_stats doesn't
+ * currently need to be re-entrant, so avoiding this is not worth the extra
+ * notational cruft that would be needed.
+ */
+static ArrayAnalyzeExtraData *array_extra_data;
+
+/* A hash table entry for the Lossy Counting algorithm */
+typedef struct
+{
+ Datum key; /* This is 'e' from the LC algorithm. */
+ int frequency; /* This is 'f'. */
+ int delta; /* And this is 'delta'. */
+ int last_container; /* For de-duplication of array elements. */
+} TrackItem;
+
+/* A hash table entry for distinct-elements counts */
+typedef struct
+{
+ int count; /* Count of distinct elements in an array */
+ int frequency; /* Number of arrays seen with this count */
+} DECountItem;
+
+static void compute_array_stats(VacAttrStats *stats,
+ AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows);
+static void prune_element_hashtable(HTAB *elements_tab, int b_current);
+static uint32 element_hash(const void *key, Size keysize);
+static int element_match(const void *key1, const void *key2, Size keysize);
+static int element_compare(const void *key1, const void *key2);
+static int trackitem_compare_frequencies_desc(const void *e1, const void *e2);
+static int trackitem_compare_element(const void *e1, const void *e2);
+static int countitem_compare_count(const void *e1, const void *e2);
+
+
+/*
+ * array_typanalyze -- typanalyze function for array columns
+ */
+Datum
+array_typanalyze(PG_FUNCTION_ARGS)
+{
+ VacAttrStats *stats = (VacAttrStats *) PG_GETARG_POINTER(0);
+ Oid element_typeid;
+ TypeCacheEntry *typentry;
+ ArrayAnalyzeExtraData *extra_data;
+
+ /*
+ * Call the standard typanalyze function. It may fail to find needed
+ * operators, in which case we also can't do anything, so just fail.
+ */
+ if (!std_typanalyze(stats))
+ PG_RETURN_BOOL(false);
+
+ /*
+ * Check attribute data type is a varlena array.
+ */
+ element_typeid = stats->attrtype->typelem;
+
+ if (!OidIsValid(element_typeid) || stats->attrtype->typlen != -1)
+ elog(ERROR, "array_typanalyze was invoked for non-array type %u",
+ stats->attrtypid);
+
+ /*
+ * Gather information about the element type. If we fail to find
+ * something, return leaving the state from std_typanalyze() in place.
+ */
+ typentry = lookup_type_cache(element_typeid,
+ TYPECACHE_EQ_OPR |
+ TYPECACHE_CMP_PROC_FINFO |
+ TYPECACHE_HASH_PROC_FINFO);
+
+ if (!OidIsValid(typentry->eq_opr) ||
+ !OidIsValid(typentry->cmp_proc_finfo.fn_oid) ||
+ !OidIsValid(typentry->hash_proc_finfo.fn_oid))
+ PG_RETURN_BOOL(true);
+
+ /* Store our findings for use by compute_array_stats() */
+ extra_data = (ArrayAnalyzeExtraData *) palloc(sizeof(ArrayAnalyzeExtraData));
+ extra_data->type_id = typentry->type_id;
+ extra_data->eq_opr = typentry->eq_opr;
+ extra_data->typbyval = typentry->typbyval;
+ extra_data->typlen = typentry->typlen;
+ extra_data->typalign = typentry->typalign;
+ extra_data->cmp = &typentry->cmp_proc_finfo;
+ extra_data->hash = &typentry->hash_proc_finfo;
+
+ /* Save old compute_stats and extra_data for scalar statistics ... */
+ extra_data->std_compute_stats = stats->compute_stats;
+ extra_data->std_extra_data = stats->extra_data;
+
+ /* ... and replace with our info */
+ stats->compute_stats = compute_array_stats;
+ stats->extra_data = extra_data;
+
+ /*
+ * Note we leave stats->minrows set as std_typanalyze set it. Should
+ * it be increased for array analysis purposes?
+ */
+
+ PG_RETURN_BOOL(true);
+}
+
+/*
+ * compute_array_stats() -- compute statistics for a array column
+ *
+ * This function computes statistics useful for determining selectivity of
+ * the array operators <@, &&, and @>. It is invoked by ANALYZE via the
+ * compute_stats hook after sample rows have been collected.
+ *
+ * We also invoke the standard compute_stats function, which will compute
+ * "scalar" statistics relevant to the btree-style array comparison operators.
+ * However, exact duplicates of an entire array may be rare despite many
+ * arrays sharing individual elements. This especially afflicts long arrays,
+ * which are also liable to lack all scalar statistics due to the low
+ * WIDTH_THRESHOLD used in analyze.c. So, in addition to the standard stats,
+ * we find the most common array elements and compute a histogram of distinct
+ * element counts.
+ *
+ * The algorithm used is Lossy Counting, as proposed in the paper "Approximate
+ * frequency counts over data streams" by G. S. Manku and R. Motwani, in
+ * Proceedings of the 28th International Conference on Very Large Data Bases,
+ * Hong Kong, China, August 2002, section 4.2. The paper is available at
+ * http://www.vldb.org/conf/2002/S10P03.pdf
+ *
+ * The Lossy Counting (aka LC) algorithm goes like this:
+ * Let s be the threshold frequency for an item (the minimum frequency we
+ * are interested in) and epsilon the error margin for the frequency. Let D
+ * be a set of triples (e, f, delta), where e is an element value, f is that
+ * element's frequency (actually, its current occurrence count) and delta is
+ * the maximum error in f. We start with D empty and process the elements in
+ * batches of size w. (The batch size is also known as "bucket size" and is
+ * equal to 1/epsilon.) Let the current batch number be b_current, starting
+ * with 1. For each element e we either increment its f count, if it's
+ * already in D, or insert a new triple into D with values (e, 1, b_current
+ * - 1). After processing each batch we prune D, by removing from it all
+ * elements with f + delta <= b_current. After the algorithm finishes we
+ * suppress all elements from D that do not satisfy f >= (s - epsilon) * N,
+ * where N is the total number of elements in the input. We emit the
+ * remaining elements with estimated frequency f/N. The LC paper proves
+ * that this algorithm finds all elements with true frequency at least s,
+ * and that no frequency is overestimated or is underestimated by more than
+ * epsilon. Furthermore, given reasonable assumptions about the input
+ * distribution, the required table size is no more than about 7 times w.
+ *
+ * In the absence of a principled basis for other particular values, we
+ * follow ts_typanalyze() and use parameters s = 0.07/K, epsilon = s/10.
+ * But we leave out the correction for stopwords, which do not apply to
+ * arrays. These parameters give bucket width w = K/0.007 and maximum
+ * expected hashtable size of about 1000 * K.
+ *
+ * Elements may repeat within an array. Since duplicates do not change the
+ * behavior of <@, && or @>, we want to count each element only once per
+ * array. Therefore, we store in the finished pg_statistic entry each
+ * element's frequency as the fraction of all non-null rows that contain it.
+ * We divide the raw counts by nonnull_cnt to get those figures.
+ */
+static void
+compute_array_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc,
+ int samplerows, double totalrows)
+{
+ ArrayAnalyzeExtraData *extra_data;
+ int num_mcelem;
+ int null_cnt = 0;
+ int null_elem_cnt = 0;
+ int analyzed_rows = 0;
+
+ /* This is D from the LC algorithm. */
+ HTAB *elements_tab;
+ HASHCTL elem_hash_ctl;
+ HASH_SEQ_STATUS scan_status;
+
+ /* This is the current bucket number from the LC algorithm */
+ int b_current;
+
+ /* This is 'w' from the LC algorithm */
+ int bucket_width;
+ int array_no;
+ int64 element_no;
+ TrackItem *item;
+ int slot_idx;
+ HTAB *count_tab;
+ HASHCTL count_hash_ctl;
+ DECountItem *count_item;
+
+ extra_data = (ArrayAnalyzeExtraData *) stats->extra_data;
+
+ /*
+ * Invoke analyze.c's standard analysis function to create scalar-style
+ * stats for the column. It will expect its own extra_data pointer,
+ * so temporarily install that.
+ */
+ stats->extra_data = extra_data->std_extra_data;
+ (*extra_data->std_compute_stats) (stats, fetchfunc, samplerows, totalrows);
+ stats->extra_data = extra_data;
+
+ /*
+ * Set up static pointer for use by subroutines. We wait till here in
+ * case std_compute_stats somehow recursively invokes us (probably not
+ * possible, but ...)
+ */
+ array_extra_data = extra_data;
+
+ /*
+ * We want statistics_target * 10 elements in the MCELEM array. This
+ * multiplier is pretty arbitrary, but is meant to reflect the fact that
+ * the number of individual elements tracked in pg_statistic ought to be
+ * more than the number of values for a simple scalar column.
+ */
+ num_mcelem = stats->attr->attstattarget * 10;
+
+ /*
+ * We set bucket width equal to num_mcelem / 0.007 as per the comment
+ * above.
+ */
+ bucket_width = num_mcelem * 1000 / 7;
+
+ /*
+ * Create the hashtable. It will be in local memory, so we don't need to
+ * worry about overflowing the initial size. Also we don't need to pay any
+ * attention to locking and memory management.
+ */
+ MemSet(&elem_hash_ctl, 0, sizeof(elem_hash_ctl));
+ elem_hash_ctl.keysize = sizeof(Datum);
+ elem_hash_ctl.entrysize = sizeof(TrackItem);
+ elem_hash_ctl.hash = element_hash;
+ elem_hash_ctl.match = element_match;
+ elem_hash_ctl.hcxt = CurrentMemoryContext;
+ elements_tab = hash_create("Analyzed elements table",
+ bucket_width * 7,
+ &elem_hash_ctl,
+ HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
+
+ /* hashtable for array distinct elements counts */
+ MemSet(&count_hash_ctl, 0, sizeof(count_hash_ctl));
+ count_hash_ctl.keysize = sizeof(int);
+ count_hash_ctl.entrysize = sizeof(DECountItem);
+ count_hash_ctl.hash = tag_hash;
+ count_hash_ctl.hcxt = CurrentMemoryContext;
+ count_tab = hash_create("Array distinct element count table",
+ 64,
+ &count_hash_ctl,
+ HASH_ELEM | HASH_FUNCTION | HASH_CONTEXT);
+
+ /* Initialize counters. */
+ b_current = 1;
+ element_no = 0;
+
+ /* Loop over the arrays. */
+ for (array_no = 0; array_no < samplerows; array_no++)
+ {
+ Datum value;
+ bool isnull;
+ ArrayType *array;
+ int num_elems;
+ Datum *elem_values;
+ bool *elem_nulls;
+ bool null_present;
+ int j;
+ int64 prev_element_no = element_no;
+ int distinct_count;
+ bool count_item_found;
+
+ vacuum_delay_point();
+
+ value = fetchfunc(stats, array_no, &isnull);
+ if (isnull)
+ {
+ /* array is null, just count that */
+ null_cnt++;
+ continue;
+ }
+
+ /* Skip too-large values. */
+ if (toast_raw_datum_size(value) > ARRAY_WIDTH_THRESHOLD)
+ continue;
+ else
+ analyzed_rows++;
+
+ /*
+ * Now detoast the array if needed, and deconstruct into datums.
+ */
+ array = DatumGetArrayTypeP(value);
+
+ Assert(ARR_ELEMTYPE(array) == extra_data->type_id);
+ deconstruct_array(array,
+ extra_data->type_id,
+ extra_data->typlen,
+ extra_data->typbyval,
+ extra_data->typalign,
+ &elem_values, &elem_nulls, &num_elems);
+
+ /*
+ * We loop through the elements in the array and add them to our
+ * tracking hashtable.
+ */
+ null_present = false;
+ for (j = 0; j < num_elems; j++)
+ {
+ Datum elem_value;
+ bool found;
+
+ /* No null element processing other than flag setting here */
+ if (elem_nulls[j])
+ {
+ null_present = true;
+ continue;
+ }
+
+ /* Lookup current element in hashtable, adding it if new */
+ elem_value = elem_values[j];
+ item = (TrackItem *) hash_search(elements_tab,
+ (const void *) &elem_value,
+ HASH_ENTER, &found);
+
+ if (found)
+ {
+ /* The element value is already on the tracking list */
+
+ /*
+ * The operators we assist ignore duplicate array elements,
+ * so count a given distinct element only once per array.
+ */
+ if (item->last_container == array_no)
+ continue;
+
+ item->frequency++;
+ item->last_container = array_no;
+ }
+ else
+ {
+ /* Initialize new tracking list element */
+
+ /*
+ * If element type is pass-by-reference, we must copy it
+ * into palloc'd space, so that we can release the array
+ * below. (We do this so that the space needed for element
+ * values is limited by the size of the hashtable; if we
+ * kept all the array values around, it could be much more.)
+ */
+ item->key = datumCopy(elem_value,
+ extra_data->typbyval,
+ extra_data->typlen);
+
+ item->frequency = 1;
+ item->delta = b_current - 1;
+ item->last_container = array_no;
+ }
+
+ /* element_no is the number of elements processed (ie N) */
+ element_no++;
+
+ /* We prune the D structure after processing each bucket */
+ if (element_no % bucket_width == 0)
+ {
+ prune_element_hashtable(elements_tab, b_current);
+ b_current++;
+ }
+ }
+
+ /* Count null element presence once per array. */
+ if (null_present)
+ null_elem_cnt++;
+
+ /* Update frequency of the particular array distinct element count. */
+ distinct_count = (int) (element_no - prev_element_no);
+ count_item = (DECountItem *) hash_search(count_tab, &distinct_count,
+ HASH_ENTER,
+ &count_item_found);
+
+ if (count_item_found)
+ count_item->frequency++;
+ else
+ count_item->frequency = 1;
+
+ /* Free memory allocated while detoasting. */
+ if (PointerGetDatum(array) != value)
+ pfree(array);
+ pfree(elem_values);
+ pfree(elem_nulls);
+ }
+
+ /* Skip pg_statistic slots occupied by standard statistics */
+ slot_idx = 0;
+ while (slot_idx < STATISTIC_NUM_SLOTS && stats->stakind[slot_idx] != 0)
+ slot_idx++;
+ if (slot_idx > STATISTIC_NUM_SLOTS - 2)
+ elog(ERROR, "insufficient pg_statistic slots for array stats");
+
+ /* We can only compute real stats if we found some non-null values. */
+ if (analyzed_rows > 0)
+ {
+ int nonnull_cnt = analyzed_rows;
+ int count_items_count;
+ int i;
+ TrackItem **sort_table;
+ int track_len;
+ int64 cutoff_freq;
+ int64 minfreq,
+ maxfreq;
+
+ /*
+ * We assume the standard stats code already took care of setting
+ * stats_valid, stanullfrac, stawidth, stadistinct. We'd have to
+ * re-compute those values if we wanted to not store the standard
+ * stats.
+ */
+
+ /*
+ * Construct an array of the interesting hashtable items, that is,
+ * those meeting the cutoff frequency (s - epsilon)*N. Also identify
+ * the minimum and maximum frequencies among these items.
+ *
+ * Since epsilon = s/10 and bucket_width = 1/epsilon, the cutoff
+ * frequency is 9*N / bucket_width.
+ */
+ cutoff_freq = 9 * element_no / bucket_width;
+
+ i = hash_get_num_entries(elements_tab); /* surely enough space */
+ sort_table = (TrackItem **) palloc(sizeof(TrackItem *) * i);
+
+ hash_seq_init(&scan_status, elements_tab);
+ track_len = 0;
+ minfreq = element_no;
+ maxfreq = 0;
+ while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
+ {
+ if (item->frequency > cutoff_freq)
+ {
+ sort_table[track_len++] = item;
+ minfreq = Min(minfreq, item->frequency);
+ maxfreq = Max(maxfreq, item->frequency);
+ }
+ }
+ Assert(track_len <= i);
+
+ /* emit some statistics for debug purposes */
+ elog(DEBUG3, "compute_array_stats: target # mces = %d, "
+ "bucket width = %d, "
+ "# elements = " INT64_FORMAT ", hashtable size = %d, "
+ "usable entries = %d",
+ num_mcelem, bucket_width, element_no, i, track_len);
+
+ /*
+ * If we obtained more elements than we really want, get rid of those
+ * with least frequencies. The easiest way is to qsort the array into
+ * descending frequency order and truncate the array.
+ */
+ if (num_mcelem < track_len)
+ {
+ qsort(sort_table, track_len, sizeof(TrackItem *),
+ trackitem_compare_frequencies_desc);
+ /* reset minfreq to the smallest frequency we're keeping */
+ minfreq = sort_table[num_mcelem - 1]->frequency;
+ }
+ else
+ num_mcelem = track_len;
+
+ /* Generate MCELEM slot entry */
+ if (num_mcelem > 0)
+ {
+ MemoryContext old_context;
+ Datum *mcelem_values;
+ float4 *mcelem_freqs;
+
+ /*
+ * We want to store statistics sorted on the element value using
+ * the element type's default comparison function. This permits
+ * fast binary searches in selectivity estimation functions.
+ */
+ qsort(sort_table, num_mcelem, sizeof(TrackItem *),
+ trackitem_compare_element);
+
+ /* Must copy the target values into anl_context */
+ old_context = MemoryContextSwitchTo(stats->anl_context);
+
+ /*
+ * We sorted statistics on the element value, but we want to be
+ * able to find the minimal and maximal frequencies without going
+ * through all the values. We also want the frequency of null
+ * elements. Store these three values at the end of mcelem_freqs.
+ */
+ mcelem_values = (Datum *) palloc(num_mcelem * sizeof(Datum));
+ mcelem_freqs = (float4 *) palloc((num_mcelem + 3) * sizeof(float4));
+
+ /*
+ * See comments above about use of nonnull_cnt as the divisor for
+ * the final frequency estimates.
+ */
+ for (i = 0; i < num_mcelem; i++)
+ {
+ TrackItem *item = sort_table[i];
+
+ mcelem_values[i] = datumCopy(item->key,
+ extra_data->typbyval,
+ extra_data->typlen);
+ mcelem_freqs[i] = (double) item->frequency /
+ (double) nonnull_cnt;
+ }
+ mcelem_freqs[i++] = (double) minfreq / (double) nonnull_cnt;
+ mcelem_freqs[i++] = (double) maxfreq / (double) nonnull_cnt;
+ mcelem_freqs[i++] = (double) null_elem_cnt / (double) nonnull_cnt;
+
+ MemoryContextSwitchTo(old_context);
+
+ stats->stakind[slot_idx] = STATISTIC_KIND_MCELEM;
+ stats->staop[slot_idx] = extra_data->eq_opr;
+ stats->stanumbers[slot_idx] = mcelem_freqs;
+ /* See above comment about extra stanumber entries */
+ stats->numnumbers[slot_idx] = num_mcelem + 3;
+ stats->stavalues[slot_idx] = mcelem_values;
+ stats->numvalues[slot_idx] = num_mcelem;
+ /* We are storing values of element type */
+ stats->statypid[slot_idx] = extra_data->type_id;
+ stats->statyplen[slot_idx] = extra_data->typlen;
+ stats->statypbyval[slot_idx] = extra_data->typbyval;
+ stats->statypalign[slot_idx] = extra_data->typalign;
+ slot_idx++;
+ }
+
+ /* Generate DECHIST slot entry */
+ count_items_count = hash_get_num_entries(count_tab);
+ if (count_items_count > 0)
+ {
+ int num_hist = stats->attr->attstattarget;
+ DECountItem **sorted_count_items;
+ int count_item_index;
+ int delta;
+ int frac;
+ float4 *hist;
+
+ /* num_hist must be at least 2 for the loop below to work */
+ num_hist = Max(num_hist, 2);
+
+ /*
+ * Create an array of DECountItem pointers, and sort them into
+ * increasing count order.
+ */
+ sorted_count_items = (DECountItem **)
+ palloc(sizeof(DECountItem *) * count_items_count);
+ hash_seq_init(&scan_status, count_tab);
+ count_item_index = 0;
+ while ((count_item = (DECountItem *) hash_seq_search(&scan_status)) != NULL)
+ {
+ sorted_count_items[count_item_index++] = count_item;
+ }
+ qsort(sorted_count_items, count_items_count,
+ sizeof(DECountItem *), countitem_compare_count);
+
+ /*
+ * Fill stanumbers with the histogram, followed by the average
+ * count. This array must be stored in anl_context.
+ */
+ hist = (float4 *)
+ MemoryContextAlloc(stats->anl_context,
+ sizeof(float4) * (num_hist + 1));
+ hist[num_hist] = (double) element_no / (double) nonnull_cnt;
+
+ /*
+ * Construct the histogram.
+ *
+ * XXX this needs work: frac could overflow, and it's not clear
+ * how or why the code works. Even if it does work, it needs
+ * documented.
+ */
+ delta = analyzed_rows - 1;
+ count_item_index = 0;
+ frac = sorted_count_items[0]->frequency * (num_hist - 1);
+ for (i = 0; i < num_hist; i++)
+ {
+ while (frac <= 0)
+ {
+ count_item_index++;
+ Assert(count_item_index < count_items_count);
+ frac += sorted_count_items[count_item_index]->frequency * (num_hist - 1);
+ }
+ hist[i] = sorted_count_items[count_item_index]->count;
+ frac -= delta;
+ }
+ Assert(count_item_index == count_items_count - 1);
+
+ stats->stakind[slot_idx] = STATISTIC_KIND_DECHIST;
+ stats->staop[slot_idx] = extra_data->eq_opr;
+ stats->stanumbers[slot_idx] = hist;
+ stats->numnumbers[slot_idx] = num_hist + 1;
+ slot_idx++;
+ }
+ }
+
+ /*
+ * We don't need to bother cleaning up any of our temporary palloc's. The
+ * hashtable should also go away, as it used a child memory context.
+ */
+}
+
+/*
+ * A function to prune the D structure from the Lossy Counting algorithm.
+ * Consult compute_tsvector_stats() for wider explanation.
+ */
+static void
+prune_element_hashtable(HTAB *elements_tab, int b_current)
+{
+ HASH_SEQ_STATUS scan_status;
+ TrackItem *item;
+
+ hash_seq_init(&scan_status, elements_tab);
+ while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
+ {
+ if (item->frequency + item->delta <= b_current)
+ {
+ Datum value = item->key;
+
+ if (hash_search(elements_tab, (const void *) &item->key,
+ HASH_REMOVE, NULL) == NULL)
+ elog(ERROR, "hash table corrupted");
+ /* We should free memory if element is not passed by value */
+ if (!array_extra_data->typbyval)
+ pfree(DatumGetPointer(value));
+ }
+ }
+}
+
+/*
+ * Hash function for elements.
+ *
+ * We use the element type's default hash opclass, and the default collation
+ * if the type is collation-sensitive.
+ */
+static uint32
+element_hash(const void *key, Size keysize)
+{
+ Datum d = *((const Datum *) key);
+ Datum h;
+
+ h = FunctionCall1Coll(array_extra_data->hash, DEFAULT_COLLATION_OID, d);
+ return DatumGetUInt32(h);
+}
+
+/*
+ * Matching function for elements, to be used in hashtable lookups.
+ */
+static int
+element_match(const void *key1, const void *key2, Size keysize)
+{
+ /* The keysize parameter is superfluous here */
+ return element_compare(key1, key2);
+}
+
+/*
+ * Comparison function for elements.
+ *
+ * We use the element type's default btree opclass, and the default collation
+ * if the type is collation-sensitive.
+ *
+ * XXX consider using SortSupport infrastructure
+ */
+static int
+element_compare(const void *key1, const void *key2)
+{
+ Datum d1 = *((const Datum *) key1);
+ Datum d2 = *((const Datum *) key2);
+ Datum c;
+
+ c = FunctionCall2Coll(array_extra_data->cmp, DEFAULT_COLLATION_OID, d1, d2);
+ return DatumGetInt32(c);
+}
+
+/*
+ * qsort() comparator for sorting TrackItems by frequencies (descending sort)
+ */
+static int
+trackitem_compare_frequencies_desc(const void *e1, const void *e2)
+{
+ const TrackItem *const * t1 = (const TrackItem *const *) e1;
+ const TrackItem *const * t2 = (const TrackItem *const *) e2;
+
+ return (*t2)->frequency - (*t1)->frequency;
+}
+
+/*
+ * qsort() comparator for sorting TrackItems by element values
+ */
+static int
+trackitem_compare_element(const void *e1, const void *e2)
+{
+ const TrackItem *const * t1 = (const TrackItem *const *) e1;
+ const TrackItem *const * t2 = (const TrackItem *const *) e2;
+
+ return element_compare(&(*t1)->key, &(*t2)->key);
+}
+
+/*
+ * qsort() comparator for sorting DECountItems by count
+ */
+static int
+countitem_compare_count(const void *e1, const void *e2)
+{
+ const DECountItem * const *t1 = (const DECountItem * const *) e1;
+ const DECountItem * const *t2 = (const DECountItem * const *) e2;
+
+ if ((*t1)->count < (*t2)->count)
+ return -1;
+ else if ((*t1)->count == (*t2)->count)
+ return 0;
+ else
+ return 1;
+}