diff options
Diffstat (limited to 'src/backend/utils/adt/array_typanalyze.c')
-rw-r--r-- | src/backend/utils/adt/array_typanalyze.c | 762 |
1 files changed, 762 insertions, 0 deletions
diff --git a/src/backend/utils/adt/array_typanalyze.c b/src/backend/utils/adt/array_typanalyze.c new file mode 100644 index 00000000000..941e2adb038 --- /dev/null +++ b/src/backend/utils/adt/array_typanalyze.c @@ -0,0 +1,762 @@ +/*------------------------------------------------------------------------- + * + * array_typanalyze.c + * Functions for gathering statistics from array columns + * + * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * + * IDENTIFICATION + * src/backend/utils/adt/array_typanalyze.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include "access/tuptoaster.h" +#include "catalog/pg_collation.h" +#include "commands/vacuum.h" +#include "utils/array.h" +#include "utils/datum.h" +#include "utils/typcache.h" + + +/* + * To avoid consuming too much memory, IO and CPU load during analysis, and/or + * too much space in the resulting pg_statistic rows, we ignore arrays that + * are wider than ARRAY_WIDTH_THRESHOLD (after detoasting!). Note that this + * number is considerably more than the similar WIDTH_THRESHOLD limit used + * in analyze.c's standard typanalyze code. + */ +#define ARRAY_WIDTH_THRESHOLD 0x10000 + +/* Extra data for compute_array_stats function */ +typedef struct +{ + /* Information about array element type */ + Oid type_id; /* element type's OID */ + Oid eq_opr; /* default equality operator's OID */ + bool typbyval; /* physical properties of element type */ + int16 typlen; + char typalign; + + /* + * Lookup data for element type's comparison and hash functions (these + * are in the type's typcache entry, which we expect to remain valid + * over the lifespan of the ANALYZE run) + */ + FmgrInfo *cmp; + FmgrInfo *hash; + + /* Saved state from std_typanalyze() */ + AnalyzeAttrComputeStatsFunc std_compute_stats; + void *std_extra_data; +} ArrayAnalyzeExtraData; + +/* + * While compute_array_stats is running, we keep a pointer to the extra data + * here for use by assorted subroutines. compute_array_stats doesn't + * currently need to be re-entrant, so avoiding this is not worth the extra + * notational cruft that would be needed. + */ +static ArrayAnalyzeExtraData *array_extra_data; + +/* A hash table entry for the Lossy Counting algorithm */ +typedef struct +{ + Datum key; /* This is 'e' from the LC algorithm. */ + int frequency; /* This is 'f'. */ + int delta; /* And this is 'delta'. */ + int last_container; /* For de-duplication of array elements. */ +} TrackItem; + +/* A hash table entry for distinct-elements counts */ +typedef struct +{ + int count; /* Count of distinct elements in an array */ + int frequency; /* Number of arrays seen with this count */ +} DECountItem; + +static void compute_array_stats(VacAttrStats *stats, + AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows); +static void prune_element_hashtable(HTAB *elements_tab, int b_current); +static uint32 element_hash(const void *key, Size keysize); +static int element_match(const void *key1, const void *key2, Size keysize); +static int element_compare(const void *key1, const void *key2); +static int trackitem_compare_frequencies_desc(const void *e1, const void *e2); +static int trackitem_compare_element(const void *e1, const void *e2); +static int countitem_compare_count(const void *e1, const void *e2); + + +/* + * array_typanalyze -- typanalyze function for array columns + */ +Datum +array_typanalyze(PG_FUNCTION_ARGS) +{ + VacAttrStats *stats = (VacAttrStats *) PG_GETARG_POINTER(0); + Oid element_typeid; + TypeCacheEntry *typentry; + ArrayAnalyzeExtraData *extra_data; + + /* + * Call the standard typanalyze function. It may fail to find needed + * operators, in which case we also can't do anything, so just fail. + */ + if (!std_typanalyze(stats)) + PG_RETURN_BOOL(false); + + /* + * Check attribute data type is a varlena array. + */ + element_typeid = stats->attrtype->typelem; + + if (!OidIsValid(element_typeid) || stats->attrtype->typlen != -1) + elog(ERROR, "array_typanalyze was invoked for non-array type %u", + stats->attrtypid); + + /* + * Gather information about the element type. If we fail to find + * something, return leaving the state from std_typanalyze() in place. + */ + typentry = lookup_type_cache(element_typeid, + TYPECACHE_EQ_OPR | + TYPECACHE_CMP_PROC_FINFO | + TYPECACHE_HASH_PROC_FINFO); + + if (!OidIsValid(typentry->eq_opr) || + !OidIsValid(typentry->cmp_proc_finfo.fn_oid) || + !OidIsValid(typentry->hash_proc_finfo.fn_oid)) + PG_RETURN_BOOL(true); + + /* Store our findings for use by compute_array_stats() */ + extra_data = (ArrayAnalyzeExtraData *) palloc(sizeof(ArrayAnalyzeExtraData)); + extra_data->type_id = typentry->type_id; + extra_data->eq_opr = typentry->eq_opr; + extra_data->typbyval = typentry->typbyval; + extra_data->typlen = typentry->typlen; + extra_data->typalign = typentry->typalign; + extra_data->cmp = &typentry->cmp_proc_finfo; + extra_data->hash = &typentry->hash_proc_finfo; + + /* Save old compute_stats and extra_data for scalar statistics ... */ + extra_data->std_compute_stats = stats->compute_stats; + extra_data->std_extra_data = stats->extra_data; + + /* ... and replace with our info */ + stats->compute_stats = compute_array_stats; + stats->extra_data = extra_data; + + /* + * Note we leave stats->minrows set as std_typanalyze set it. Should + * it be increased for array analysis purposes? + */ + + PG_RETURN_BOOL(true); +} + +/* + * compute_array_stats() -- compute statistics for a array column + * + * This function computes statistics useful for determining selectivity of + * the array operators <@, &&, and @>. It is invoked by ANALYZE via the + * compute_stats hook after sample rows have been collected. + * + * We also invoke the standard compute_stats function, which will compute + * "scalar" statistics relevant to the btree-style array comparison operators. + * However, exact duplicates of an entire array may be rare despite many + * arrays sharing individual elements. This especially afflicts long arrays, + * which are also liable to lack all scalar statistics due to the low + * WIDTH_THRESHOLD used in analyze.c. So, in addition to the standard stats, + * we find the most common array elements and compute a histogram of distinct + * element counts. + * + * The algorithm used is Lossy Counting, as proposed in the paper "Approximate + * frequency counts over data streams" by G. S. Manku and R. Motwani, in + * Proceedings of the 28th International Conference on Very Large Data Bases, + * Hong Kong, China, August 2002, section 4.2. The paper is available at + * http://www.vldb.org/conf/2002/S10P03.pdf + * + * The Lossy Counting (aka LC) algorithm goes like this: + * Let s be the threshold frequency for an item (the minimum frequency we + * are interested in) and epsilon the error margin for the frequency. Let D + * be a set of triples (e, f, delta), where e is an element value, f is that + * element's frequency (actually, its current occurrence count) and delta is + * the maximum error in f. We start with D empty and process the elements in + * batches of size w. (The batch size is also known as "bucket size" and is + * equal to 1/epsilon.) Let the current batch number be b_current, starting + * with 1. For each element e we either increment its f count, if it's + * already in D, or insert a new triple into D with values (e, 1, b_current + * - 1). After processing each batch we prune D, by removing from it all + * elements with f + delta <= b_current. After the algorithm finishes we + * suppress all elements from D that do not satisfy f >= (s - epsilon) * N, + * where N is the total number of elements in the input. We emit the + * remaining elements with estimated frequency f/N. The LC paper proves + * that this algorithm finds all elements with true frequency at least s, + * and that no frequency is overestimated or is underestimated by more than + * epsilon. Furthermore, given reasonable assumptions about the input + * distribution, the required table size is no more than about 7 times w. + * + * In the absence of a principled basis for other particular values, we + * follow ts_typanalyze() and use parameters s = 0.07/K, epsilon = s/10. + * But we leave out the correction for stopwords, which do not apply to + * arrays. These parameters give bucket width w = K/0.007 and maximum + * expected hashtable size of about 1000 * K. + * + * Elements may repeat within an array. Since duplicates do not change the + * behavior of <@, && or @>, we want to count each element only once per + * array. Therefore, we store in the finished pg_statistic entry each + * element's frequency as the fraction of all non-null rows that contain it. + * We divide the raw counts by nonnull_cnt to get those figures. + */ +static void +compute_array_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc, + int samplerows, double totalrows) +{ + ArrayAnalyzeExtraData *extra_data; + int num_mcelem; + int null_cnt = 0; + int null_elem_cnt = 0; + int analyzed_rows = 0; + + /* This is D from the LC algorithm. */ + HTAB *elements_tab; + HASHCTL elem_hash_ctl; + HASH_SEQ_STATUS scan_status; + + /* This is the current bucket number from the LC algorithm */ + int b_current; + + /* This is 'w' from the LC algorithm */ + int bucket_width; + int array_no; + int64 element_no; + TrackItem *item; + int slot_idx; + HTAB *count_tab; + HASHCTL count_hash_ctl; + DECountItem *count_item; + + extra_data = (ArrayAnalyzeExtraData *) stats->extra_data; + + /* + * Invoke analyze.c's standard analysis function to create scalar-style + * stats for the column. It will expect its own extra_data pointer, + * so temporarily install that. + */ + stats->extra_data = extra_data->std_extra_data; + (*extra_data->std_compute_stats) (stats, fetchfunc, samplerows, totalrows); + stats->extra_data = extra_data; + + /* + * Set up static pointer for use by subroutines. We wait till here in + * case std_compute_stats somehow recursively invokes us (probably not + * possible, but ...) + */ + array_extra_data = extra_data; + + /* + * We want statistics_target * 10 elements in the MCELEM array. This + * multiplier is pretty arbitrary, but is meant to reflect the fact that + * the number of individual elements tracked in pg_statistic ought to be + * more than the number of values for a simple scalar column. + */ + num_mcelem = stats->attr->attstattarget * 10; + + /* + * We set bucket width equal to num_mcelem / 0.007 as per the comment + * above. + */ + bucket_width = num_mcelem * 1000 / 7; + + /* + * Create the hashtable. It will be in local memory, so we don't need to + * worry about overflowing the initial size. Also we don't need to pay any + * attention to locking and memory management. + */ + MemSet(&elem_hash_ctl, 0, sizeof(elem_hash_ctl)); + elem_hash_ctl.keysize = sizeof(Datum); + elem_hash_ctl.entrysize = sizeof(TrackItem); + elem_hash_ctl.hash = element_hash; + elem_hash_ctl.match = element_match; + elem_hash_ctl.hcxt = CurrentMemoryContext; + elements_tab = hash_create("Analyzed elements table", + bucket_width * 7, + &elem_hash_ctl, + HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT); + + /* hashtable for array distinct elements counts */ + MemSet(&count_hash_ctl, 0, sizeof(count_hash_ctl)); + count_hash_ctl.keysize = sizeof(int); + count_hash_ctl.entrysize = sizeof(DECountItem); + count_hash_ctl.hash = tag_hash; + count_hash_ctl.hcxt = CurrentMemoryContext; + count_tab = hash_create("Array distinct element count table", + 64, + &count_hash_ctl, + HASH_ELEM | HASH_FUNCTION | HASH_CONTEXT); + + /* Initialize counters. */ + b_current = 1; + element_no = 0; + + /* Loop over the arrays. */ + for (array_no = 0; array_no < samplerows; array_no++) + { + Datum value; + bool isnull; + ArrayType *array; + int num_elems; + Datum *elem_values; + bool *elem_nulls; + bool null_present; + int j; + int64 prev_element_no = element_no; + int distinct_count; + bool count_item_found; + + vacuum_delay_point(); + + value = fetchfunc(stats, array_no, &isnull); + if (isnull) + { + /* array is null, just count that */ + null_cnt++; + continue; + } + + /* Skip too-large values. */ + if (toast_raw_datum_size(value) > ARRAY_WIDTH_THRESHOLD) + continue; + else + analyzed_rows++; + + /* + * Now detoast the array if needed, and deconstruct into datums. + */ + array = DatumGetArrayTypeP(value); + + Assert(ARR_ELEMTYPE(array) == extra_data->type_id); + deconstruct_array(array, + extra_data->type_id, + extra_data->typlen, + extra_data->typbyval, + extra_data->typalign, + &elem_values, &elem_nulls, &num_elems); + + /* + * We loop through the elements in the array and add them to our + * tracking hashtable. + */ + null_present = false; + for (j = 0; j < num_elems; j++) + { + Datum elem_value; + bool found; + + /* No null element processing other than flag setting here */ + if (elem_nulls[j]) + { + null_present = true; + continue; + } + + /* Lookup current element in hashtable, adding it if new */ + elem_value = elem_values[j]; + item = (TrackItem *) hash_search(elements_tab, + (const void *) &elem_value, + HASH_ENTER, &found); + + if (found) + { + /* The element value is already on the tracking list */ + + /* + * The operators we assist ignore duplicate array elements, + * so count a given distinct element only once per array. + */ + if (item->last_container == array_no) + continue; + + item->frequency++; + item->last_container = array_no; + } + else + { + /* Initialize new tracking list element */ + + /* + * If element type is pass-by-reference, we must copy it + * into palloc'd space, so that we can release the array + * below. (We do this so that the space needed for element + * values is limited by the size of the hashtable; if we + * kept all the array values around, it could be much more.) + */ + item->key = datumCopy(elem_value, + extra_data->typbyval, + extra_data->typlen); + + item->frequency = 1; + item->delta = b_current - 1; + item->last_container = array_no; + } + + /* element_no is the number of elements processed (ie N) */ + element_no++; + + /* We prune the D structure after processing each bucket */ + if (element_no % bucket_width == 0) + { + prune_element_hashtable(elements_tab, b_current); + b_current++; + } + } + + /* Count null element presence once per array. */ + if (null_present) + null_elem_cnt++; + + /* Update frequency of the particular array distinct element count. */ + distinct_count = (int) (element_no - prev_element_no); + count_item = (DECountItem *) hash_search(count_tab, &distinct_count, + HASH_ENTER, + &count_item_found); + + if (count_item_found) + count_item->frequency++; + else + count_item->frequency = 1; + + /* Free memory allocated while detoasting. */ + if (PointerGetDatum(array) != value) + pfree(array); + pfree(elem_values); + pfree(elem_nulls); + } + + /* Skip pg_statistic slots occupied by standard statistics */ + slot_idx = 0; + while (slot_idx < STATISTIC_NUM_SLOTS && stats->stakind[slot_idx] != 0) + slot_idx++; + if (slot_idx > STATISTIC_NUM_SLOTS - 2) + elog(ERROR, "insufficient pg_statistic slots for array stats"); + + /* We can only compute real stats if we found some non-null values. */ + if (analyzed_rows > 0) + { + int nonnull_cnt = analyzed_rows; + int count_items_count; + int i; + TrackItem **sort_table; + int track_len; + int64 cutoff_freq; + int64 minfreq, + maxfreq; + + /* + * We assume the standard stats code already took care of setting + * stats_valid, stanullfrac, stawidth, stadistinct. We'd have to + * re-compute those values if we wanted to not store the standard + * stats. + */ + + /* + * Construct an array of the interesting hashtable items, that is, + * those meeting the cutoff frequency (s - epsilon)*N. Also identify + * the minimum and maximum frequencies among these items. + * + * Since epsilon = s/10 and bucket_width = 1/epsilon, the cutoff + * frequency is 9*N / bucket_width. + */ + cutoff_freq = 9 * element_no / bucket_width; + + i = hash_get_num_entries(elements_tab); /* surely enough space */ + sort_table = (TrackItem **) palloc(sizeof(TrackItem *) * i); + + hash_seq_init(&scan_status, elements_tab); + track_len = 0; + minfreq = element_no; + maxfreq = 0; + while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL) + { + if (item->frequency > cutoff_freq) + { + sort_table[track_len++] = item; + minfreq = Min(minfreq, item->frequency); + maxfreq = Max(maxfreq, item->frequency); + } + } + Assert(track_len <= i); + + /* emit some statistics for debug purposes */ + elog(DEBUG3, "compute_array_stats: target # mces = %d, " + "bucket width = %d, " + "# elements = " INT64_FORMAT ", hashtable size = %d, " + "usable entries = %d", + num_mcelem, bucket_width, element_no, i, track_len); + + /* + * If we obtained more elements than we really want, get rid of those + * with least frequencies. The easiest way is to qsort the array into + * descending frequency order and truncate the array. + */ + if (num_mcelem < track_len) + { + qsort(sort_table, track_len, sizeof(TrackItem *), + trackitem_compare_frequencies_desc); + /* reset minfreq to the smallest frequency we're keeping */ + minfreq = sort_table[num_mcelem - 1]->frequency; + } + else + num_mcelem = track_len; + + /* Generate MCELEM slot entry */ + if (num_mcelem > 0) + { + MemoryContext old_context; + Datum *mcelem_values; + float4 *mcelem_freqs; + + /* + * We want to store statistics sorted on the element value using + * the element type's default comparison function. This permits + * fast binary searches in selectivity estimation functions. + */ + qsort(sort_table, num_mcelem, sizeof(TrackItem *), + trackitem_compare_element); + + /* Must copy the target values into anl_context */ + old_context = MemoryContextSwitchTo(stats->anl_context); + + /* + * We sorted statistics on the element value, but we want to be + * able to find the minimal and maximal frequencies without going + * through all the values. We also want the frequency of null + * elements. Store these three values at the end of mcelem_freqs. + */ + mcelem_values = (Datum *) palloc(num_mcelem * sizeof(Datum)); + mcelem_freqs = (float4 *) palloc((num_mcelem + 3) * sizeof(float4)); + + /* + * See comments above about use of nonnull_cnt as the divisor for + * the final frequency estimates. + */ + for (i = 0; i < num_mcelem; i++) + { + TrackItem *item = sort_table[i]; + + mcelem_values[i] = datumCopy(item->key, + extra_data->typbyval, + extra_data->typlen); + mcelem_freqs[i] = (double) item->frequency / + (double) nonnull_cnt; + } + mcelem_freqs[i++] = (double) minfreq / (double) nonnull_cnt; + mcelem_freqs[i++] = (double) maxfreq / (double) nonnull_cnt; + mcelem_freqs[i++] = (double) null_elem_cnt / (double) nonnull_cnt; + + MemoryContextSwitchTo(old_context); + + stats->stakind[slot_idx] = STATISTIC_KIND_MCELEM; + stats->staop[slot_idx] = extra_data->eq_opr; + stats->stanumbers[slot_idx] = mcelem_freqs; + /* See above comment about extra stanumber entries */ + stats->numnumbers[slot_idx] = num_mcelem + 3; + stats->stavalues[slot_idx] = mcelem_values; + stats->numvalues[slot_idx] = num_mcelem; + /* We are storing values of element type */ + stats->statypid[slot_idx] = extra_data->type_id; + stats->statyplen[slot_idx] = extra_data->typlen; + stats->statypbyval[slot_idx] = extra_data->typbyval; + stats->statypalign[slot_idx] = extra_data->typalign; + slot_idx++; + } + + /* Generate DECHIST slot entry */ + count_items_count = hash_get_num_entries(count_tab); + if (count_items_count > 0) + { + int num_hist = stats->attr->attstattarget; + DECountItem **sorted_count_items; + int count_item_index; + int delta; + int frac; + float4 *hist; + + /* num_hist must be at least 2 for the loop below to work */ + num_hist = Max(num_hist, 2); + + /* + * Create an array of DECountItem pointers, and sort them into + * increasing count order. + */ + sorted_count_items = (DECountItem **) + palloc(sizeof(DECountItem *) * count_items_count); + hash_seq_init(&scan_status, count_tab); + count_item_index = 0; + while ((count_item = (DECountItem *) hash_seq_search(&scan_status)) != NULL) + { + sorted_count_items[count_item_index++] = count_item; + } + qsort(sorted_count_items, count_items_count, + sizeof(DECountItem *), countitem_compare_count); + + /* + * Fill stanumbers with the histogram, followed by the average + * count. This array must be stored in anl_context. + */ + hist = (float4 *) + MemoryContextAlloc(stats->anl_context, + sizeof(float4) * (num_hist + 1)); + hist[num_hist] = (double) element_no / (double) nonnull_cnt; + + /* + * Construct the histogram. + * + * XXX this needs work: frac could overflow, and it's not clear + * how or why the code works. Even if it does work, it needs + * documented. + */ + delta = analyzed_rows - 1; + count_item_index = 0; + frac = sorted_count_items[0]->frequency * (num_hist - 1); + for (i = 0; i < num_hist; i++) + { + while (frac <= 0) + { + count_item_index++; + Assert(count_item_index < count_items_count); + frac += sorted_count_items[count_item_index]->frequency * (num_hist - 1); + } + hist[i] = sorted_count_items[count_item_index]->count; + frac -= delta; + } + Assert(count_item_index == count_items_count - 1); + + stats->stakind[slot_idx] = STATISTIC_KIND_DECHIST; + stats->staop[slot_idx] = extra_data->eq_opr; + stats->stanumbers[slot_idx] = hist; + stats->numnumbers[slot_idx] = num_hist + 1; + slot_idx++; + } + } + + /* + * We don't need to bother cleaning up any of our temporary palloc's. The + * hashtable should also go away, as it used a child memory context. + */ +} + +/* + * A function to prune the D structure from the Lossy Counting algorithm. + * Consult compute_tsvector_stats() for wider explanation. + */ +static void +prune_element_hashtable(HTAB *elements_tab, int b_current) +{ + HASH_SEQ_STATUS scan_status; + TrackItem *item; + + hash_seq_init(&scan_status, elements_tab); + while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL) + { + if (item->frequency + item->delta <= b_current) + { + Datum value = item->key; + + if (hash_search(elements_tab, (const void *) &item->key, + HASH_REMOVE, NULL) == NULL) + elog(ERROR, "hash table corrupted"); + /* We should free memory if element is not passed by value */ + if (!array_extra_data->typbyval) + pfree(DatumGetPointer(value)); + } + } +} + +/* + * Hash function for elements. + * + * We use the element type's default hash opclass, and the default collation + * if the type is collation-sensitive. + */ +static uint32 +element_hash(const void *key, Size keysize) +{ + Datum d = *((const Datum *) key); + Datum h; + + h = FunctionCall1Coll(array_extra_data->hash, DEFAULT_COLLATION_OID, d); + return DatumGetUInt32(h); +} + +/* + * Matching function for elements, to be used in hashtable lookups. + */ +static int +element_match(const void *key1, const void *key2, Size keysize) +{ + /* The keysize parameter is superfluous here */ + return element_compare(key1, key2); +} + +/* + * Comparison function for elements. + * + * We use the element type's default btree opclass, and the default collation + * if the type is collation-sensitive. + * + * XXX consider using SortSupport infrastructure + */ +static int +element_compare(const void *key1, const void *key2) +{ + Datum d1 = *((const Datum *) key1); + Datum d2 = *((const Datum *) key2); + Datum c; + + c = FunctionCall2Coll(array_extra_data->cmp, DEFAULT_COLLATION_OID, d1, d2); + return DatumGetInt32(c); +} + +/* + * qsort() comparator for sorting TrackItems by frequencies (descending sort) + */ +static int +trackitem_compare_frequencies_desc(const void *e1, const void *e2) +{ + const TrackItem *const * t1 = (const TrackItem *const *) e1; + const TrackItem *const * t2 = (const TrackItem *const *) e2; + + return (*t2)->frequency - (*t1)->frequency; +} + +/* + * qsort() comparator for sorting TrackItems by element values + */ +static int +trackitem_compare_element(const void *e1, const void *e2) +{ + const TrackItem *const * t1 = (const TrackItem *const *) e1; + const TrackItem *const * t2 = (const TrackItem *const *) e2; + + return element_compare(&(*t1)->key, &(*t2)->key); +} + +/* + * qsort() comparator for sorting DECountItems by count + */ +static int +countitem_compare_count(const void *e1, const void *e2) +{ + const DECountItem * const *t1 = (const DECountItem * const *) e1; + const DECountItem * const *t2 = (const DECountItem * const *) e2; + + if ((*t1)->count < (*t2)->count) + return -1; + else if ((*t1)->count == (*t2)->count) + return 0; + else + return 1; +} |