aboutsummaryrefslogtreecommitdiff
path: root/src/backend/storage/large_object/inv_api.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/storage/large_object/inv_api.c')
-rw-r--r--src/backend/storage/large_object/inv_api.c1165
1 files changed, 1165 insertions, 0 deletions
diff --git a/src/backend/storage/large_object/inv_api.c b/src/backend/storage/large_object/inv_api.c
new file mode 100644
index 00000000000..ae57032f94a
--- /dev/null
+++ b/src/backend/storage/large_object/inv_api.c
@@ -0,0 +1,1165 @@
+/*-------------------------------------------------------------------------
+ *
+ * inv_api.c--
+ * routines for manipulating inversion fs large objects. This file
+ * contains the user-level large object application interface routines.
+ *
+ * Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * $Header: /cvsroot/pgsql/src/backend/storage/large_object/inv_api.c,v 1.1.1.1 1996/07/09 06:21:55 scrappy Exp $
+ *
+ *-------------------------------------------------------------------------
+ */
+#include <stdio.h> /* for sprintf() */
+#include <sys/file.h>
+#include "c.h"
+#include "libpq/libpq-fs.h"
+#include "access/genam.h"
+#include "access/heapam.h"
+#include "access/relscan.h"
+#include "access/tupdesc.h"
+#include "access/xact.h"
+#include "access/nbtree.h"
+#include "access/tupdesc.h"
+#include "catalog/index.h" /* for index_create() */
+#include "catalog/catalog.h" /* for newoid() */
+#include "catalog/pg_am.h" /* for BTREE_AM_OID */
+#include "catalog/pg_opclass.h" /* for INT4_OPS_OID */
+#include "catalog/pg_proc.h" /* for INT4GE_PROC_OID */
+#include "storage/itemptr.h"
+#include "storage/bufpage.h"
+#include "storage/bufmgr.h"
+#include "utils/rel.h"
+#include "utils/palloc.h"
+#include "storage/large_object.h"
+#include "utils/elog.h"
+#include "utils/syscache.h"
+#include "utils/builtins.h" /* for namestrcpy() */
+#include "catalog/heap.h"
+#include "nodes/pg_list.h"
+
+/*
+ * Warning, Will Robinson... In order to pack data into an inversion
+ * file as densely as possible, we violate the class abstraction here.
+ * When we're appending a new tuple to the end of the table, we check
+ * the last page to see how much data we can put on it. If it's more
+ * than IMINBLK, we write enough to fill the page. This limits external
+ * fragmentation. In no case can we write more than IMAXBLK, since
+ * the 8K postgres page size less overhead leaves only this much space
+ * for data.
+ */
+
+#define IFREESPC(p) (PageGetFreeSpace(p) - sizeof(HeapTupleData) - sizeof(struct varlena) - sizeof(int32))
+#define IMAXBLK 8092
+#define IMINBLK 512
+
+/* non-export function prototypes */
+static HeapTuple inv_fetchtup();
+static HeapTuple inv_newtuple();
+static int inv_wrnew(LargeObjectDesc *obj_desc, char *buf, int nbytes);
+static int inv_wrold(LargeObjectDesc *obj_desc, char *dbuf, int nbytes,
+ HeapTuple htup, Buffer buffer);
+static void inv_indextup(LargeObjectDesc *obj_desc, HeapTuple htup);
+static int _inv_getsize(Relation hreln, TupleDesc hdesc, Relation ireln);
+
+/*
+ * inv_create -- create a new large object.
+ *
+ * Arguments:
+ * flags -- storage manager to use, archive mode, etc.
+ *
+ * Returns:
+ * large object descriptor, appropriately filled in.
+ */
+LargeObjectDesc *
+inv_create(int flags)
+{
+ int file_oid;
+ LargeObjectDesc *retval;
+ Relation r;
+ Relation indr;
+ int smgr;
+ char archchar;
+ TupleDesc tupdesc;
+ AttrNumber attNums[1];
+ Oid classObjectId[1];
+ char objname[NAMEDATALEN];
+ char indname[NAMEDATALEN];
+
+ /* parse flags */
+ smgr = flags & INV_SMGRMASK;
+ if (flags & INV_ARCHIVE)
+ archchar = 'h';
+ else
+ archchar = 'n';
+
+ /* add one here since the pg_class tuple created
+ will have the next oid and we want to have the relation name
+ to correspond to the tuple OID */
+ file_oid = newoid()+1;
+
+ /* come up with some table names */
+ sprintf(objname, "Xinv%d", file_oid);
+ sprintf(indname, "Xinx%d", file_oid);
+
+ if (SearchSysCacheTuple(RELNAME, PointerGetDatum(objname),
+ 0,0,0) != NULL) {
+ elog(WARN,
+ "internal error: %s already exists -- cannot create large obj",
+ objname);
+ }
+ if (SearchSysCacheTuple(RELNAME, PointerGetDatum(indname),
+ 0,0,0) != NULL) {
+ elog(WARN,
+ "internal error: %s already exists -- cannot create large obj",
+ indname);
+ }
+
+ /* this is pretty painful... want a tuple descriptor */
+ tupdesc = CreateTemplateTupleDesc(2);
+ (void) TupleDescInitEntry(tupdesc, (AttrNumber) 1,
+ "olastbye",
+ "int4",
+ 0, false);
+ (void) TupleDescInitEntry(tupdesc, (AttrNumber) 2,
+ "odata",
+ "bytea",
+ 0, false);
+ /*
+ * First create the table to hold the inversion large object. It
+ * will be located on whatever storage manager the user requested.
+ */
+
+ (void) heap_create(objname,
+ objname,
+ (int) archchar, smgr,
+ tupdesc);
+
+ /* make the relation visible in this transaction */
+ CommandCounterIncrement();
+ r = heap_openr(objname);
+
+ if (!RelationIsValid(r)) {
+ elog(WARN, "cannot create large object on %s under inversion",
+ smgrout(smgr));
+ }
+
+ /*
+ * Now create a btree index on the relation's olastbyte attribute to
+ * make seeks go faster. The hardwired constants are embarassing
+ * to me, and are symptomatic of the pressure under which this code
+ * was written.
+ *
+ * ok, mao, let's put in some symbolic constants - jolly
+ */
+
+ attNums[0] = 1;
+ classObjectId[0] = INT4_OPS_OID;
+ index_create(objname, indname, NULL, BTREE_AM_OID,
+ 1, &attNums[0], &classObjectId[0],
+ 0, (Datum) NULL, NULL);
+
+ /* make the index visible in this transaction */
+ CommandCounterIncrement();
+ indr = index_openr(indname);
+
+ if (!RelationIsValid(indr)) {
+ elog(WARN, "cannot create index for large obj on %s under inversion",
+ smgrout(smgr));
+ }
+
+ retval = (LargeObjectDesc *) palloc(sizeof(LargeObjectDesc));
+
+ retval->heap_r = r;
+ retval->index_r = indr;
+ retval->iscan = (IndexScanDesc) NULL;
+ retval->hdesc = RelationGetTupleDescriptor(r);
+ retval->idesc = RelationGetTupleDescriptor(indr);
+ retval->offset = retval->lowbyte =
+ retval->highbyte = 0;
+ ItemPointerSetInvalid(&(retval->htid));
+
+ if (flags & INV_WRITE) {
+ RelationSetLockForWrite(r);
+ retval->flags = IFS_WRLOCK|IFS_RDLOCK;
+ } else if (flags & INV_READ) {
+ RelationSetLockForRead(r);
+ retval->flags = IFS_RDLOCK;
+ }
+ retval->flags |= IFS_ATEOF;
+
+ return(retval);
+}
+
+LargeObjectDesc *
+inv_open(Oid lobjId, int flags)
+{
+ LargeObjectDesc *retval;
+ Relation r;
+ char *indname;
+ Relation indrel;
+
+ r = heap_open(lobjId);
+
+ if (!RelationIsValid(r))
+ return ((LargeObjectDesc *) NULL);
+
+ indname = pstrdup((r->rd_rel->relname).data);
+
+ /*
+ * hack hack hack... we know that the fourth character of the relation
+ * name is a 'v', and that the fourth character of the index name is an
+ * 'x', and that they're otherwise identical.
+ */
+ indname[3] = 'x';
+ indrel = index_openr(indname);
+
+ if (!RelationIsValid(indrel))
+ return ((LargeObjectDesc *) NULL);
+
+ retval = (LargeObjectDesc *) palloc(sizeof(LargeObjectDesc));
+
+ retval->heap_r = r;
+ retval->index_r = indrel;
+ retval->iscan = (IndexScanDesc) NULL;
+ retval->hdesc = RelationGetTupleDescriptor(r);
+ retval->idesc = RelationGetTupleDescriptor(indrel);
+ retval->offset = retval->lowbyte = retval->highbyte = 0;
+ ItemPointerSetInvalid(&(retval->htid));
+
+ if (flags & INV_WRITE) {
+ RelationSetLockForWrite(r);
+ retval->flags = IFS_WRLOCK|IFS_RDLOCK;
+ } else if (flags & INV_READ) {
+ RelationSetLockForRead(r);
+ retval->flags = IFS_RDLOCK;
+ }
+
+ return(retval);
+}
+
+/*
+ * Closes an existing large object descriptor.
+ */
+void
+inv_close(LargeObjectDesc *obj_desc)
+{
+ Assert(PointerIsValid(obj_desc));
+
+ if (obj_desc->iscan != (IndexScanDesc) NULL)
+ index_endscan(obj_desc->iscan);
+
+ heap_close(obj_desc->heap_r);
+ index_close(obj_desc->index_r);
+
+ pfree(obj_desc);
+}
+
+/*
+ * Destroys an existing large object, and frees its associated pointers.
+ *
+ * returns -1 if failed
+ */
+int
+inv_destroy(Oid lobjId)
+{
+ Relation r;
+
+ r = (Relation) RelationIdGetRelation(lobjId);
+ if (!RelationIsValid(r) || r->rd_rel->relkind == RELKIND_INDEX)
+ return -1;
+
+ heap_destroy(r->rd_rel->relname.data);
+ return 1;
+}
+
+/*
+ * inv_stat() -- do a stat on an inversion file.
+ *
+ * For the time being, this is an insanely expensive operation. In
+ * order to find the size of the file, we seek to the last block in
+ * it and compute the size from that. We scan pg_class to determine
+ * the file's owner and create time. We don't maintain mod time or
+ * access time, yet.
+ *
+ * These fields aren't stored in a table anywhere because they're
+ * updated so frequently, and postgres only appends tuples at the
+ * end of relations. Once clustering works, we should fix this.
+ */
+int
+inv_stat(LargeObjectDesc *obj_desc, struct pgstat *stbuf)
+{
+ Assert(PointerIsValid(obj_desc));
+ Assert(stbuf != NULL);
+
+ /* need read lock for stat */
+ if (!(obj_desc->flags & IFS_RDLOCK)) {
+ RelationSetLockForRead(obj_desc->heap_r);
+ obj_desc->flags |= IFS_RDLOCK;
+ }
+
+ stbuf->st_ino = obj_desc->heap_r->rd_id;
+#if 1
+ stbuf->st_mode = (S_IFREG | 0666); /* IFREG|rw-rw-rw- */
+#else
+ stbuf->st_mode = 100666; /* IFREG|rw-rw-rw- */
+#endif
+ stbuf->st_size = _inv_getsize(obj_desc->heap_r,
+ obj_desc->hdesc,
+ obj_desc->index_r);
+
+ stbuf->st_uid = obj_desc->heap_r->rd_rel->relowner;
+
+ /* we have no good way of computing access times right now */
+ stbuf->st_atime_s = stbuf->st_mtime_s = stbuf->st_ctime_s = 0;
+
+ return (0);
+}
+
+int
+inv_seek(LargeObjectDesc *obj_desc, int offset, int whence)
+{
+ int oldOffset;
+ Datum d;
+ ScanKeyData skey;
+
+ Assert(PointerIsValid(obj_desc));
+
+ if (whence == SEEK_CUR) {
+ offset += obj_desc->offset; /* calculate absolute position */
+ return (inv_seek(obj_desc, offset, SEEK_SET));
+ }
+
+ /*
+ * if you seek past the end (offset > 0) I have
+ * no clue what happens :-( B.L. 9/1/93
+ */
+ if (whence == SEEK_END) {
+ /* need read lock for getsize */
+ if (!(obj_desc->flags & IFS_RDLOCK)) {
+ RelationSetLockForRead(obj_desc->heap_r);
+ obj_desc->flags |= IFS_RDLOCK;
+ }
+ offset += _inv_getsize(obj_desc->heap_r,
+ obj_desc->hdesc,
+ obj_desc->index_r );
+ return (inv_seek(obj_desc, offset, SEEK_SET));
+ }
+
+ /*
+ * Whenever we do a seek, we turn off the EOF flag bit to force
+ * ourselves to check for real on the next read.
+ */
+
+ obj_desc->flags &= ~IFS_ATEOF;
+ oldOffset = obj_desc->offset;
+ obj_desc->offset = offset;
+
+ /* try to avoid doing any work, if we can manage it */
+ if (offset >= obj_desc->lowbyte
+ && offset <= obj_desc->highbyte
+ && oldOffset <= obj_desc->highbyte
+ && obj_desc->iscan != (IndexScanDesc) NULL)
+ return (offset);
+
+ /*
+ * To do a seek on an inversion file, we start an index scan that
+ * will bring us to the right place. Each tuple in an inversion file
+ * stores the offset of the last byte that appears on it, and we have
+ * an index on this.
+ */
+
+
+ /* right now, just assume that the operation is SEEK_SET */
+ if (obj_desc->iscan != (IndexScanDesc) NULL) {
+ d = Int32GetDatum(offset);
+ btmovescan(obj_desc->iscan, d);
+ } else {
+
+ ScanKeyEntryInitialize(&skey, 0x0, 1, INT4GE_PROC_OID,
+ Int32GetDatum(offset));
+
+ obj_desc->iscan = index_beginscan(obj_desc->index_r,
+ (bool) 0, (uint16) 1,
+ &skey);
+ }
+
+ return (offset);
+}
+
+int
+inv_tell(LargeObjectDesc *obj_desc)
+{
+ Assert(PointerIsValid(obj_desc));
+
+ return (obj_desc->offset);
+}
+
+int
+inv_read(LargeObjectDesc *obj_desc, char *buf, int nbytes)
+{
+ HeapTuple htup;
+ Buffer b;
+ int nread;
+ int off;
+ int ncopy;
+ Datum d;
+ struct varlena *fsblock;
+ bool isNull;
+
+ Assert(PointerIsValid(obj_desc));
+ Assert(buf != NULL);
+
+ /* if we're already at EOF, we don't need to do any work here */
+ if (obj_desc->flags & IFS_ATEOF)
+ return (0);
+
+ /* make sure we obey two-phase locking */
+ if (!(obj_desc->flags & IFS_RDLOCK)) {
+ RelationSetLockForRead(obj_desc->heap_r);
+ obj_desc->flags |= IFS_RDLOCK;
+ }
+
+ nread = 0;
+
+ /* fetch a block at a time */
+ while (nread < nbytes) {
+
+ /* fetch an inversion file system block */
+ htup = inv_fetchtup(obj_desc, &b);
+
+ if (!HeapTupleIsValid(htup)) {
+ obj_desc->flags |= IFS_ATEOF;
+ break;
+ }
+
+ /* copy the data from this block into the buffer */
+ d = (Datum) heap_getattr(htup, b, 2, obj_desc->hdesc, &isNull);
+ fsblock = (struct varlena *) DatumGetPointer(d);
+
+ off = obj_desc->offset - obj_desc->lowbyte;
+ ncopy = obj_desc->highbyte - obj_desc->offset + 1;
+ if (ncopy > (nbytes - nread))
+ ncopy = (nbytes - nread);
+ memmove(buf, &(fsblock->vl_dat[off]), ncopy);
+
+ /* be a good citizen */
+ ReleaseBuffer(b);
+
+ /* move pointers past the amount we just read */
+ buf += ncopy;
+ nread += ncopy;
+ obj_desc->offset += ncopy;
+ }
+
+ /* that's it */
+ return (nread);
+}
+
+int
+inv_write(LargeObjectDesc *obj_desc, char *buf, int nbytes)
+{
+ HeapTuple htup;
+ Buffer b;
+ int nwritten;
+ int tuplen;
+
+ Assert(PointerIsValid(obj_desc));
+ Assert(buf != NULL);
+
+ /*
+ * Make sure we obey two-phase locking. A write lock entitles you
+ * to read the relation, as well.
+ */
+
+ if (!(obj_desc->flags & IFS_WRLOCK)) {
+ RelationSetLockForRead(obj_desc->heap_r);
+ obj_desc->flags |= (IFS_WRLOCK|IFS_RDLOCK);
+ }
+
+ nwritten = 0;
+
+ /* write a block at a time */
+ while (nwritten < nbytes) {
+
+ /*
+ * Fetch the current inversion file system block. If the
+ * class storing the inversion file is empty, we don't want
+ * to do an index lookup, since index lookups choke on empty
+ * files (should be fixed someday).
+ */
+
+ if ((obj_desc->flags & IFS_ATEOF)
+ || obj_desc->heap_r->rd_nblocks == 0)
+ htup = (HeapTuple) NULL;
+ else
+ htup = inv_fetchtup(obj_desc, &b);
+
+ /* either append or replace a block, as required */
+ if (!HeapTupleIsValid(htup)) {
+ tuplen = inv_wrnew(obj_desc, buf, nbytes - nwritten);
+ } else {
+ if (obj_desc->offset > obj_desc->highbyte)
+ tuplen = inv_wrnew(obj_desc, buf, nbytes - nwritten);
+ else
+ tuplen = inv_wrold(obj_desc, buf, nbytes - nwritten, htup, b);
+ }
+
+ /* move pointers past the amount we just wrote */
+ buf += tuplen;
+ nwritten += tuplen;
+ obj_desc->offset += tuplen;
+ }
+
+ /* that's it */
+ return (nwritten);
+}
+
+/*
+ * inv_fetchtup -- Fetch an inversion file system block.
+ *
+ * This routine finds the file system block containing the offset
+ * recorded in the obj_desc structure. Later, we need to think about
+ * the effects of non-functional updates (can you rewrite the same
+ * block twice in a single transaction?), but for now, we won't bother.
+ *
+ * Parameters:
+ * obj_desc -- the object descriptor.
+ * bufP -- pointer to a buffer in the buffer cache; caller
+ * must free this.
+ *
+ * Returns:
+ * A heap tuple containing the desired block, or NULL if no
+ * such tuple exists.
+ */
+static HeapTuple
+inv_fetchtup(LargeObjectDesc *obj_desc, Buffer *bufP)
+{
+ HeapTuple htup;
+ RetrieveIndexResult res;
+ Datum d;
+ int firstbyte, lastbyte;
+ struct varlena *fsblock;
+ bool isNull;
+
+ /*
+ * If we've exhausted the current block, we need to get the next one.
+ * When we support time travel and non-functional updates, we will
+ * need to loop over the blocks, rather than just have an 'if', in
+ * order to find the one we're really interested in.
+ */
+
+ if (obj_desc->offset > obj_desc->highbyte
+ || obj_desc->offset < obj_desc->lowbyte
+ || !ItemPointerIsValid(&(obj_desc->htid))) {
+
+ /* initialize scan key if not done */
+ if (obj_desc->iscan==(IndexScanDesc)NULL) {
+ ScanKeyData skey;
+
+ ScanKeyEntryInitialize(&skey, 0x0, 1, INT4GE_PROC_OID,
+ Int32GetDatum(0));
+ obj_desc->iscan =
+ index_beginscan(obj_desc->index_r,
+ (bool) 0, (uint16) 1,
+ &skey);
+ }
+
+ do {
+ res = index_getnext(obj_desc->iscan, ForwardScanDirection);
+
+ if (res == (RetrieveIndexResult) NULL) {
+ ItemPointerSetInvalid(&(obj_desc->htid));
+ return ((HeapTuple) NULL);
+ }
+
+ /*
+ * For time travel, we need to use the actual time qual here,
+ * rather that NowTimeQual. We currently have no way to pass
+ * a time qual in.
+ */
+
+ htup = heap_fetch(obj_desc->heap_r, NowTimeQual,
+ &(res->heap_iptr), bufP);
+
+ } while (htup == (HeapTuple) NULL);
+
+ /* remember this tid -- we may need it for later reads/writes */
+ ItemPointerCopy(&(res->heap_iptr), &(obj_desc->htid));
+
+ } else {
+ htup = heap_fetch(obj_desc->heap_r, NowTimeQual,
+ &(obj_desc->htid), bufP);
+ }
+
+ /*
+ * By here, we have the heap tuple we're interested in. We cache
+ * the upper and lower bounds for this block in the object descriptor
+ * and return the tuple.
+ */
+
+ d = (Datum)heap_getattr(htup, *bufP, 1, obj_desc->hdesc, &isNull);
+ lastbyte = (int32) DatumGetInt32(d);
+ d = (Datum)heap_getattr(htup, *bufP, 2, obj_desc->hdesc, &isNull);
+ fsblock = (struct varlena *) DatumGetPointer(d);
+
+ /* order of + and - is important -- these are unsigned quantites near 0 */
+ firstbyte = (lastbyte + 1 + sizeof(fsblock->vl_len)) - fsblock->vl_len;
+
+ obj_desc->lowbyte = firstbyte;
+ obj_desc->highbyte = lastbyte;
+
+ /* done */
+ return (htup);
+}
+
+/*
+ * inv_wrnew() -- append a new filesystem block tuple to the inversion
+ * file.
+ *
+ * In response to an inv_write, we append one or more file system
+ * blocks to the class containing the large object. We violate the
+ * class abstraction here in order to pack things as densely as we
+ * are able. We examine the last page in the relation, and write
+ * just enough to fill it, assuming that it has above a certain
+ * threshold of space available. If the space available is less than
+ * the threshold, we allocate a new page by writing a big tuple.
+ *
+ * By the time we get here, we know all the parameters passed in
+ * are valid, and that we hold the appropriate lock on the heap
+ * relation.
+ *
+ * Parameters:
+ * obj_desc: large object descriptor for which to append block.
+ * buf: buffer containing data to write.
+ * nbytes: amount to write
+ *
+ * Returns:
+ * number of bytes actually written to the new tuple.
+ */
+static int
+inv_wrnew(LargeObjectDesc *obj_desc, char *buf, int nbytes)
+{
+ Relation hr;
+ HeapTuple ntup;
+ Buffer buffer;
+ Page page;
+ int nblocks;
+ int nwritten;
+
+ hr = obj_desc->heap_r;
+
+ /*
+ * Get the last block in the relation. If there's no data in the
+ * relation at all, then we just get a new block. Otherwise, we
+ * check the last block to see whether it has room to accept some
+ * or all of the data that the user wants to write. If it doesn't,
+ * then we allocate a new block.
+ */
+
+ nblocks = RelationGetNumberOfBlocks(hr);
+
+ if (nblocks > 0)
+ buffer = ReadBuffer(hr, nblocks - 1);
+ else
+ buffer = ReadBuffer(hr, P_NEW);
+
+ page = BufferGetPage(buffer);
+
+ /*
+ * If the last page is too small to hold all the data, and it's too
+ * small to hold IMINBLK, then we allocate a new page. If it will
+ * hold at least IMINBLK, but less than all the data requested, then
+ * we write IMINBLK here. The caller is responsible for noticing that
+ * less than the requested number of bytes were written, and calling
+ * this routine again.
+ */
+
+ nwritten = IFREESPC(page);
+ if (nwritten < nbytes) {
+ if (nwritten < IMINBLK) {
+ ReleaseBuffer(buffer);
+ buffer = ReadBuffer(hr, P_NEW);
+ page = BufferGetPage(buffer);
+ PageInit(page, BufferGetPageSize(buffer), 0);
+ if (nbytes > IMAXBLK)
+ nwritten = IMAXBLK;
+ else
+ nwritten = nbytes;
+ }
+ } else {
+ nwritten = nbytes;
+ }
+
+ /*
+ * Insert a new file system block tuple, index it, and write it out.
+ */
+
+ ntup = inv_newtuple(obj_desc, buffer, page, buf, nwritten);
+ inv_indextup(obj_desc, ntup);
+
+ /* new tuple is inserted */
+ WriteBuffer(buffer);
+
+ return (nwritten);
+}
+
+static int
+inv_wrold(LargeObjectDesc *obj_desc,
+ char *dbuf,
+ int nbytes,
+ HeapTuple htup,
+ Buffer buffer)
+{
+ Relation hr;
+ HeapTuple ntup;
+ Buffer newbuf;
+ Page page;
+ Page newpage;
+ int tupbytes;
+ Datum d;
+ struct varlena *fsblock;
+ int nwritten, nblocks, freespc;
+ bool isNull;
+ int keep_offset;
+
+ /*
+ * Since we're using a no-overwrite storage manager, the way we
+ * overwrite blocks is to mark the old block invalid and append
+ * a new block. First mark the old block invalid. This violates
+ * the tuple abstraction.
+ */
+
+ TransactionIdStore(GetCurrentTransactionId(), &(htup->t_xmax));
+ htup->t_cmax = GetCurrentCommandId();
+
+ /*
+ * If we're overwriting the entire block, we're lucky. All we need
+ * to do is to insert a new block.
+ */
+
+ if (obj_desc->offset == obj_desc->lowbyte
+ && obj_desc->lowbyte + nbytes >= obj_desc->highbyte) {
+ WriteBuffer(buffer);
+ return (inv_wrnew(obj_desc, dbuf, nbytes));
+ }
+
+ /*
+ * By here, we need to overwrite part of the data in the current
+ * tuple. In order to reduce the degree to which we fragment blocks,
+ * we guarantee that no block will be broken up due to an overwrite.
+ * This means that we need to allocate a tuple on a new page, if
+ * there's not room for the replacement on this one.
+ */
+
+ newbuf = buffer;
+ page = BufferGetPage(buffer);
+ newpage = BufferGetPage(newbuf);
+ hr = obj_desc->heap_r;
+ freespc = IFREESPC(page);
+ d = (Datum)heap_getattr(htup, buffer, 2, obj_desc->hdesc, &isNull);
+ fsblock = (struct varlena *) DatumGetPointer(d);
+ tupbytes = fsblock->vl_len - sizeof(fsblock->vl_len);
+
+ if (freespc < tupbytes) {
+
+ /*
+ * First see if there's enough space on the last page of the
+ * table to put this tuple.
+ */
+
+ nblocks = RelationGetNumberOfBlocks(hr);
+
+ if (nblocks > 0)
+ newbuf = ReadBuffer(hr, nblocks - 1);
+ else
+ newbuf = ReadBuffer(hr, P_NEW);
+
+ newpage = BufferGetPage(newbuf);
+ freespc = IFREESPC(newpage);
+
+ /*
+ * If there's no room on the last page, allocate a new last
+ * page for the table, and put it there.
+ */
+
+ if (freespc < tupbytes) {
+ ReleaseBuffer(newbuf);
+ newbuf = ReadBuffer(hr, P_NEW);
+ newpage = BufferGetPage(newbuf);
+ PageInit(newpage, BufferGetPageSize(newbuf), 0);
+ }
+ }
+
+ nwritten = nbytes;
+ if (nwritten > obj_desc->highbyte - obj_desc->offset + 1)
+ nwritten = obj_desc->highbyte - obj_desc->offset + 1;
+ memmove(VARDATA(fsblock)+ (obj_desc->offset - obj_desc->lowbyte),
+ dbuf,nwritten);
+ /* we are rewriting the entire old block, therefore
+ we reset offset to the lowbyte of the original block
+ before jumping into inv_newtuple() */
+ keep_offset = obj_desc->offset;
+ obj_desc->offset = obj_desc->lowbyte;
+ ntup = inv_newtuple(obj_desc, newbuf, newpage, VARDATA(fsblock),
+ tupbytes);
+ /* after we are done, we restore to the true offset */
+ obj_desc->offset = keep_offset;
+
+ /*
+ * By here, we have a page (newpage) that's guaranteed to have
+ * enough space on it to put the new tuple. Call inv_newtuple
+ * to do the work. Passing NULL as a buffer to inv_newtuple()
+ * keeps it from copying any data into the new tuple. When it
+ * returns, the tuple is ready to receive data from the old
+ * tuple and the user's data buffer.
+ */
+/*
+ ntup = inv_newtuple(obj_desc, newbuf, newpage, (char *) NULL, tupbytes);
+ dptr = ((char *) ntup) + ntup->t_hoff - sizeof(ntup->t_bits) + sizeof(int4)
+ + sizeof(fsblock->vl_len);
+
+ if (obj_desc->offset > obj_desc->lowbyte) {
+ memmove(dptr,
+ &(fsblock->vl_dat[0]),
+ obj_desc->offset - obj_desc->lowbyte);
+ dptr += obj_desc->offset - obj_desc->lowbyte;
+ }
+
+
+ nwritten = nbytes;
+ if (nwritten > obj_desc->highbyte - obj_desc->offset + 1)
+ nwritten = obj_desc->highbyte - obj_desc->offset + 1;
+
+ memmove(dptr, dbuf, nwritten);
+ dptr += nwritten;
+
+ if (obj_desc->offset + nwritten < obj_desc->highbyte + 1) {
+*/
+/*
+ loc = (obj_desc->highbyte - obj_desc->offset)
+ + nwritten;
+ sz = obj_desc->highbyte - (obj_desc->lowbyte + loc);
+
+ what's going on here?? - jolly
+*/
+/*
+ sz = (obj_desc->highbyte + 1) - (obj_desc->offset + nwritten);
+ memmove(&(fsblock->vl_dat[0]), dptr, sz);
+ }
+*/
+
+
+ /* index the new tuple */
+ inv_indextup(obj_desc, ntup);
+
+ /* move the scandesc forward so we don't reread the newly inserted
+ tuple on the next index scan */
+ if (obj_desc->iscan)
+ index_getnext(obj_desc->iscan, ForwardScanDirection);
+
+ /*
+ * Okay, by here, a tuple for the new block is correctly placed,
+ * indexed, and filled. Write the changed pages out.
+ */
+
+ WriteBuffer(buffer);
+ if (newbuf != buffer)
+ WriteBuffer(newbuf);
+
+ /* done */
+ return (nwritten);
+}
+
+static HeapTuple
+inv_newtuple(LargeObjectDesc *obj_desc,
+ Buffer buffer,
+ Page page,
+ char *dbuf,
+ int nwrite)
+{
+ HeapTuple ntup;
+ PageHeader ph;
+ int tupsize;
+ int hoff;
+ Offset lower;
+ Offset upper;
+ ItemId itemId;
+ OffsetNumber off;
+ OffsetNumber limit;
+ char *attptr;
+
+ /* compute tuple size -- no nulls */
+ hoff = sizeof(HeapTupleData) - sizeof(ntup->t_bits);
+
+ /* add in olastbyte, varlena.vl_len, varlena.vl_dat */
+ tupsize = hoff + (2 * sizeof(int32)) + nwrite;
+ tupsize = LONGALIGN(tupsize);
+
+ /*
+ * Allocate the tuple on the page, violating the page abstraction.
+ * This code was swiped from PageAddItem().
+ */
+
+ ph = (PageHeader) page;
+ limit = OffsetNumberNext(PageGetMaxOffsetNumber(page));
+
+ /* look for "recyclable" (unused & deallocated) ItemId */
+ for (off = FirstOffsetNumber; off < limit; off = OffsetNumberNext(off)) {
+ itemId = &ph->pd_linp[off - 1];
+ if ((((*itemId).lp_flags & LP_USED) == 0) &&
+ ((*itemId).lp_len == 0))
+ break;
+ }
+
+ if (off > limit)
+ lower = (Offset) (((char *) (&ph->pd_linp[off])) - ((char *) page));
+ else if (off == limit)
+ lower = ph->pd_lower + sizeof (ItemIdData);
+ else
+ lower = ph->pd_lower;
+
+ upper = ph->pd_upper - tupsize;
+
+ itemId = &ph->pd_linp[off - 1];
+ (*itemId).lp_off = upper;
+ (*itemId).lp_len = tupsize;
+ (*itemId).lp_flags = LP_USED;
+ ph->pd_lower = lower;
+ ph->pd_upper = upper;
+
+ ntup = (HeapTuple) ((char *) page + upper);
+
+ /*
+ * Tuple is now allocated on the page. Next, fill in the tuple
+ * header. This block of code violates the tuple abstraction.
+ */
+
+ ntup->t_len = tupsize;
+ ItemPointerSet(&(ntup->t_ctid), BufferGetBlockNumber(buffer), off);
+ ItemPointerSetInvalid(&(ntup->t_chain));
+ LastOidProcessed = ntup->t_oid = newoid();
+ TransactionIdStore(GetCurrentTransactionId(), &(ntup->t_xmin));
+ ntup->t_cmin = GetCurrentCommandId();
+ StoreInvalidTransactionId(&(ntup->t_xmax));
+ ntup->t_cmax = 0;
+ ntup->t_tmin = INVALID_ABSTIME;
+ ntup->t_tmax = CURRENT_ABSTIME;
+ ntup->t_natts = 2;
+ ntup->t_hoff = hoff;
+ ntup->t_vtype = 0;
+ ntup->t_infomask = 0x0;
+
+ /* if a NULL is passed in, avoid the calculations below */
+ if (dbuf == NULL)
+ return ntup;
+
+ /*
+ * Finally, copy the user's data buffer into the tuple. This violates
+ * the tuple and class abstractions.
+ */
+
+ attptr = ((char *) ntup) + hoff;
+ *((int32 *) attptr) = obj_desc->offset + nwrite - 1;
+ attptr += sizeof(int32);
+
+ /*
+ ** mer fixed disk layout of varlenas to get rid of the need for this.
+ **
+ ** *((int32 *) attptr) = nwrite + sizeof(int32);
+ ** attptr += sizeof(int32);
+ */
+
+ *((int32 *) attptr) = nwrite + sizeof(int32);
+ attptr += sizeof(int32);
+
+ /*
+ * If a data buffer was passed in, then copy the data from the buffer
+ * to the tuple. Some callers (eg, inv_wrold()) may not pass in a
+ * buffer, since they have to copy part of the old tuple data and
+ * part of the user's new data into the new tuple.
+ */
+
+ if (dbuf != (char *) NULL)
+ memmove(attptr, dbuf, nwrite);
+
+ /* keep track of boundary of current tuple */
+ obj_desc->lowbyte = obj_desc->offset;
+ obj_desc->highbyte = obj_desc->offset + nwrite - 1;
+
+ /* new tuple is filled -- return it */
+ return (ntup);
+}
+
+static void
+inv_indextup(LargeObjectDesc *obj_desc, HeapTuple htup)
+{
+ IndexTuple itup;
+ InsertIndexResult res;
+ Datum v[1];
+ char n[1];
+
+ n[0] = ' ';
+ v[0] = Int32GetDatum(obj_desc->highbyte);
+ itup = index_formtuple(obj_desc->idesc, &v[0], &n[0]);
+ memmove((char *)&(itup->t_tid),
+ (char *)&(htup->t_ctid),
+ sizeof(ItemPointerData));
+ res = index_insert(obj_desc->index_r, itup);
+
+ if (res)
+ pfree(res);
+
+ pfree(itup);
+}
+
+/*
+static void
+DumpPage(Page page, int blkno)
+{
+ ItemId lp;
+ HeapTuple tup;
+ int flags, i, nline;
+ ItemPointerData pointerData;
+
+ printf("\t[subblock=%d]:lower=%d:upper=%d:special=%d\n", 0,
+ ((PageHeader)page)->pd_lower, ((PageHeader)page)->pd_upper,
+ ((PageHeader)page)->pd_special);
+
+ printf("\t:MaxOffsetNumber=%d\n",
+ (int16) PageGetMaxOffsetNumber(page));
+
+ nline = (int16) PageGetMaxOffsetNumber(page);
+
+{
+ int i;
+ char *cp;
+
+ i = PageGetSpecialSize(page);
+ cp = PageGetSpecialPointer(page);
+
+ printf("\t:SpecialData=");
+
+ while (i > 0) {
+ printf(" 0x%02x", *cp);
+ cp += 1;
+ i -= 1;
+ }
+ printf("\n");
+}
+ for (i = 0; i < nline; i++) {
+ lp = ((PageHeader)page)->pd_linp + i;
+ flags = (*lp).lp_flags;
+ ItemPointerSet(&pointerData, blkno, 1 + i);
+ printf("%s:off=%d:flags=0x%x:len=%d",
+ ItemPointerFormExternal(&pointerData), (*lp).lp_off,
+ flags, (*lp).lp_len);
+
+ if (flags & LP_USED) {
+ HeapTupleData htdata;
+
+ printf(":USED");
+
+ memmove((char *) &htdata,
+ (char *) &((char *)page)[(*lp).lp_off],
+ sizeof(htdata));
+
+ tup = &htdata;
+
+ printf("\n\t:ctid=%s:oid=%d",
+ ItemPointerFormExternal(&tup->t_ctid),
+ tup->t_oid);
+ printf(":natts=%d:thoff=%d:vtype=`%c' (0x%02x):",
+ tup->t_natts,
+ tup->t_hoff, tup->t_vtype, tup->t_vtype);
+
+ printf("\n\t:tmin=%d:cmin=%u:",
+ tup->t_tmin, tup->t_cmin);
+
+ printf("xmin=%u:", tup->t_xmin);
+
+ printf("\n\t:tmax=%d:cmax=%u:",
+ tup->t_tmax, tup->t_cmax);
+
+ printf("xmax=%u:", tup->t_xmax);
+
+ printf("\n\t:chain=%s:\n",
+ ItemPointerFormExternal(&tup->t_chain));
+ } else
+ putchar('\n');
+ }
+}
+
+static char*
+ItemPointerFormExternal(ItemPointer pointer)
+{
+ static char itemPointerString[32];
+
+ if (!ItemPointerIsValid(pointer)) {
+ memmove(itemPointerString, "<-,-,->", sizeof "<-,-,->");
+ } else {
+ sprintf(itemPointerString, "<%u,%u>",
+ ItemPointerGetBlockNumber(pointer),
+ ItemPointerGetOffsetNumber(pointer));
+ }
+
+ return (itemPointerString);
+}
+*/
+
+static int
+_inv_getsize(Relation hreln, TupleDesc hdesc, Relation ireln)
+{
+ IndexScanDesc iscan;
+ RetrieveIndexResult res;
+ Buffer buf;
+ HeapTuple htup;
+ Datum d;
+ long size;
+ bool isNull;
+
+ /* scan backwards from end */
+ iscan = index_beginscan(ireln, (bool) 1, 0, (ScanKey) NULL);
+
+ buf = InvalidBuffer;
+
+ do {
+ res = index_getnext(iscan, BackwardScanDirection);
+
+ /*
+ * If there are no more index tuples, then the relation is empty,
+ * so the file's size is zero.
+ */
+
+ if (res == (RetrieveIndexResult) NULL) {
+ index_endscan(iscan);
+ return (0);
+ }
+
+ /*
+ * For time travel, we need to use the actual time qual here,
+ * rather that NowTimeQual. We currently have no way to pass
+ * a time qual in.
+ */
+
+ if (buf != InvalidBuffer)
+ (void) ReleaseBuffer(buf);
+
+ htup = heap_fetch(hreln, NowTimeQual, &(res->heap_iptr), &buf);
+
+ } while (!HeapTupleIsValid(htup));
+
+ /* don't need the index scan anymore */
+ index_endscan(iscan);
+
+ /* get olastbyte attribute */
+ d = (Datum) heap_getattr(htup, buf, 1, hdesc, &isNull);
+ size = DatumGetInt32(d) + 1;
+
+ /* wei hates it if you forget to do this */
+ ReleaseBuffer(buf);
+
+ return (size);
+}