aboutsummaryrefslogtreecommitdiff
path: root/src/backend/statistics/mcv.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/statistics/mcv.c')
-rw-r--r--src/backend/statistics/mcv.c1695
1 files changed, 1695 insertions, 0 deletions
diff --git a/src/backend/statistics/mcv.c b/src/backend/statistics/mcv.c
new file mode 100644
index 00000000000..1f3f32474ec
--- /dev/null
+++ b/src/backend/statistics/mcv.c
@@ -0,0 +1,1695 @@
+/*-------------------------------------------------------------------------
+ *
+ * mcv.c
+ * POSTGRES multivariate MCV lists
+ *
+ *
+ * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * IDENTIFICATION
+ * src/backend/statistics/mcv.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include <math.h>
+
+#include "access/htup_details.h"
+#include "catalog/pg_collation.h"
+#include "catalog/pg_statistic_ext.h"
+#include "fmgr.h"
+#include "funcapi.h"
+#include "nodes/nodeFuncs.h"
+#include "optimizer/clauses.h"
+#include "statistics/extended_stats_internal.h"
+#include "statistics/statistics.h"
+#include "utils/builtins.h"
+#include "utils/bytea.h"
+#include "utils/fmgroids.h"
+#include "utils/fmgrprotos.h"
+#include "utils/lsyscache.h"
+#include "utils/syscache.h"
+#include "utils/typcache.h"
+
+/*
+ * Computes size of a serialized MCV item, depending on the number of
+ * dimensions (columns) the statistic is defined on. The datum values are
+ * stored in a separate array (deduplicated, to minimize the size), and
+ * so the serialized items only store uint16 indexes into that array.
+ *
+ * Each serialized item store (in this order):
+ *
+ * - indexes to values (ndim * sizeof(uint16))
+ * - null flags (ndim * sizeof(bool))
+ * - frequency (sizeof(double))
+ * - base_frequency (sizeof(double))
+ *
+ * So in total each MCV item requires this many bytes:
+ *
+ * ndim * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double)
+ */
+#define ITEM_SIZE(ndims) \
+ ((ndims) * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double))
+
+/*
+ * Macros for convenient access to parts of a serialized MCV item.
+ */
+#define ITEM_INDEXES(item) ((uint16 *) (item))
+#define ITEM_NULLS(item,ndims) ((bool *) (ITEM_INDEXES(item) + (ndims)))
+#define ITEM_FREQUENCY(item,ndims) ((double *) (ITEM_NULLS(item, ndims) + (ndims)))
+#define ITEM_BASE_FREQUENCY(item,ndims) ((double *) (ITEM_FREQUENCY(item, ndims) + 1))
+
+
+static MultiSortSupport build_mss(VacAttrStats **stats, int numattrs);
+
+static SortItem *build_distinct_groups(int numrows, SortItem *items,
+ MultiSortSupport mss, int *ndistinct);
+
+static int count_distinct_groups(int numrows, SortItem *items,
+ MultiSortSupport mss);
+
+/*
+ * get_mincount_for_mcv_list
+ * Determine the minimum number of times a value needs to appear in
+ * the sample for it to be included in the MCV list.
+ *
+ * We want to keep only values that appear sufficiently often in the
+ * sample that it is reasonable to extrapolate their sample frequencies to
+ * the entire table. We do this by placing an upper bound on the relative
+ * standard error of the sample frequency, so that any estimates the
+ * planner generates from the MCV statistics can be expected to be
+ * reasonably accurate.
+ *
+ * Since we are sampling without replacement, the sample frequency of a
+ * particular value is described by a hypergeometric distribution. A
+ * common rule of thumb when estimating errors in this situation is to
+ * require at least 10 instances of the value in the sample, in which case
+ * the distribution can be approximated by a normal distribution, and
+ * standard error analysis techniques can be applied. Given a sample size
+ * of n, a population size of N, and a sample frequency of p=cnt/n, the
+ * standard error of the proportion p is given by
+ * SE = sqrt(p*(1-p)/n) * sqrt((N-n)/(N-1))
+ * where the second term is the finite population correction. To get
+ * reasonably accurate planner estimates, we impose an upper bound on the
+ * relative standard error of 20% -- i.e., SE/p < 0.2. This 20% relative
+ * error bound is fairly arbitrary, but has been found empirically to work
+ * well. Rearranging this formula gives a lower bound on the number of
+ * instances of the value seen:
+ * cnt > n*(N-n) / (N-n+0.04*n*(N-1))
+ * This bound is at most 25, and approaches 0 as n approaches 0 or N. The
+ * case where n approaches 0 cannot happen in practice, since the sample
+ * size is at least 300. The case where n approaches N corresponds to
+ * sampling the whole the table, in which case it is reasonable to keep
+ * the whole MCV list (have no lower bound), so it makes sense to apply
+ * this formula for all inputs, even though the above derivation is
+ * technically only valid when the right hand side is at least around 10.
+ *
+ * An alternative way to look at this formula is as follows -- assume that
+ * the number of instances of the value seen scales up to the entire
+ * table, so that the population count is K=N*cnt/n. Then the distribution
+ * in the sample is a hypergeometric distribution parameterised by N, n
+ * and K, and the bound above is mathematically equivalent to demanding
+ * that the standard deviation of that distribution is less than 20% of
+ * its mean. Thus the relative errors in any planner estimates produced
+ * from the MCV statistics are likely to be not too large.
+ */
+static double
+get_mincount_for_mcv_list(int samplerows, double totalrows)
+{
+ double n = samplerows;
+ double N = totalrows;
+ double numer,
+ denom;
+
+ numer = n * (N - n);
+ denom = N - n + 0.04 * n * (N - 1);
+
+ /* Guard against division by zero (possible if n = N = 1) */
+ if (denom == 0.0)
+ return 0.0;
+
+ return numer / denom;
+}
+
+/*
+ * Builds MCV list from the set of sampled rows.
+ *
+ * The algorithm is quite simple:
+ *
+ * (1) sort the data (default collation, '<' for the data type)
+ *
+ * (2) count distinct groups, decide how many to keep
+ *
+ * (3) build the MCV list using the threshold determined in (2)
+ *
+ * (4) remove rows represented by the MCV from the sample
+ *
+ */
+MCVList *
+statext_mcv_build(int numrows, HeapTuple *rows, Bitmapset *attrs,
+ VacAttrStats **stats, double totalrows)
+{
+ int i,
+ numattrs,
+ ngroups,
+ nitems;
+
+ AttrNumber *attnums = build_attnums_array(attrs, &numattrs);
+
+ SortItem *items;
+ SortItem *groups;
+ MCVList *mcvlist = NULL;
+
+ /* comparator for all the columns */
+ MultiSortSupport mss = build_mss(stats, numattrs);
+
+ /* sort the rows */
+ items = build_sorted_items(numrows, &nitems, rows, stats[0]->tupDesc,
+ mss, numattrs, attnums);
+
+ if (!items)
+ return NULL;
+
+ /* transform the sorted rows into groups (sorted by frequency) */
+ groups = build_distinct_groups(nitems, items, mss, &ngroups);
+
+ /*
+ * Maximum number of MCV items to store, based on the attribute with the
+ * largest stats target (and the number of groups we have available).
+ */
+ nitems = stats[0]->attr->attstattarget;
+ for (i = 1; i < numattrs; i++)
+ {
+ if (stats[i]->attr->attstattarget > nitems)
+ nitems = stats[i]->attr->attstattarget;
+ }
+ if (nitems > ngroups)
+ nitems = ngroups;
+
+ /*
+ * Decide how many items to keep in the MCV list. We can't use the same
+ * algorithm as per-column MCV lists, because that only considers the
+ * actual group frequency - but we're primarily interested in how the
+ * actual frequency differs from the base frequency (product of simple
+ * per-column frequencies, as if the columns were independent).
+ *
+ * Using the same algorithm might exclude items that are close to the
+ * "average" frequency. But it does not say whether the frequency is
+ * close to base frequency or not. We also need to consider unexpectedly
+ * uncommon items (compared to base frequency), and the single-column
+ * algorithm ignores that entirely.
+ *
+ * If we can fit all the items onto the MCV list, do that. Otherwise
+ * use get_mincount_for_mcv_list to decide which items to keep in the
+ * MCV list, based on the number of occurrences in the sample.
+ */
+ if (ngroups > nitems)
+ {
+ double mincount;
+
+ mincount = get_mincount_for_mcv_list(numrows, totalrows);
+
+ /*
+ * Walk the groups until we find the first group with a count below
+ * the mincount threshold (the index of that group is the number of
+ * groups we want to keep).
+ */
+ for (i = 0; i < nitems; i++)
+ {
+ if (groups[i].count < mincount)
+ {
+ nitems = i;
+ break;
+ }
+ }
+ }
+
+ /*
+ * At this point we know the number of items for the MCV list. There might
+ * be none (for uniform distribution with many groups), and in that case
+ * there will be no MCV list. Otherwise construct the MCV list.
+ */
+ if (nitems > 0)
+ {
+ int j;
+
+ /*
+ * Allocate the MCV list structure, set the global parameters.
+ */
+ mcvlist = (MCVList *) palloc0(sizeof(MCVList));
+
+ mcvlist->magic = STATS_MCV_MAGIC;
+ mcvlist->type = STATS_MCV_TYPE_BASIC;
+ mcvlist->ndimensions = numattrs;
+ mcvlist->nitems = nitems;
+
+ /* store info about data type OIDs */
+ for (i = 0; i < numattrs; i++)
+ mcvlist->types[i] = stats[i]->attrtypid;
+
+ /*
+ * Preallocate Datum/isnull arrays for all items.
+ *
+ * XXX Perhaps we might allocate this in a single chunk, to reduce
+ * the palloc overhead. We're the only ones dealing with the built
+ * MCV lists anyway. Not sure it's worth it, though, as we're not
+ * re-building stats very often.
+ */
+ mcvlist->items = (MCVItem **) palloc(sizeof(MCVItem *) * nitems);
+
+ for (i = 0; i < nitems; i++)
+ {
+ mcvlist->items[i] = (MCVItem *) palloc(sizeof(MCVItem));
+ mcvlist->items[i]->values = (Datum *) palloc(sizeof(Datum) * numattrs);
+ mcvlist->items[i]->isnull = (bool *) palloc(sizeof(bool) * numattrs);
+ }
+
+ /* Copy the first chunk of groups into the result. */
+ for (i = 0; i < nitems; i++)
+ {
+ /* just pointer to the proper place in the list */
+ MCVItem *item = mcvlist->items[i];
+
+ /* copy values for the group */
+ memcpy(item->values, groups[i].values, sizeof(Datum) * numattrs);
+ memcpy(item->isnull, groups[i].isnull, sizeof(bool) * numattrs);
+
+ /* groups should be sorted by frequency in descending order */
+ Assert((i == 0) || (groups[i - 1].count >= groups[i].count));
+
+ /* group frequency */
+ item->frequency = (double) groups[i].count / numrows;
+
+ /* base frequency, if the attributes were independent */
+ item->base_frequency = 1.0;
+ for (j = 0; j < numattrs; j++)
+ {
+ int count = 0;
+ int k;
+
+ for (k = 0; k < ngroups; k++)
+ {
+ if (multi_sort_compare_dim(j, &groups[i], &groups[k], mss) == 0)
+ count += groups[k].count;
+ }
+
+ item->base_frequency *= (double) count / numrows;
+ }
+ }
+ }
+
+ pfree(items);
+ pfree(groups);
+
+ return mcvlist;
+}
+
+/*
+ * build_mss
+ * build MultiSortSupport for the attributes passed in attrs
+ */
+static MultiSortSupport
+build_mss(VacAttrStats **stats, int numattrs)
+{
+ int i;
+
+ /* Sort by multiple columns (using array of SortSupport) */
+ MultiSortSupport mss = multi_sort_init(numattrs);
+
+ /* prepare the sort functions for all the attributes */
+ for (i = 0; i < numattrs; i++)
+ {
+ VacAttrStats *colstat = stats[i];
+ TypeCacheEntry *type;
+
+ type = lookup_type_cache(colstat->attrtypid, TYPECACHE_LT_OPR);
+ if (type->lt_opr == InvalidOid) /* shouldn't happen */
+ elog(ERROR, "cache lookup failed for ordering operator for type %u",
+ colstat->attrtypid);
+
+ multi_sort_add_dimension(mss, i, type->lt_opr, type->typcollation);
+ }
+
+ return mss;
+}
+
+/*
+ * count_distinct_groups
+ * count distinct combinations of SortItems in the array
+ *
+ * The array is assumed to be sorted according to the MultiSortSupport.
+ */
+static int
+count_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss)
+{
+ int i;
+ int ndistinct;
+
+ ndistinct = 1;
+ for (i = 1; i < numrows; i++)
+ {
+ /* make sure the array really is sorted */
+ Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0);
+
+ if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0)
+ ndistinct += 1;
+ }
+
+ return ndistinct;
+}
+
+/*
+ * compare_sort_item_count
+ * comparator for sorting items by count (frequencies) in descending order
+ */
+static int
+compare_sort_item_count(const void *a, const void *b)
+{
+ SortItem *ia = (SortItem *) a;
+ SortItem *ib = (SortItem *) b;
+
+ if (ia->count == ib->count)
+ return 0;
+ else if (ia->count > ib->count)
+ return -1;
+
+ return 1;
+}
+
+/*
+ * build_distinct_groups
+ * build an array of SortItems for distinct groups and counts matching items
+ *
+ * The input array is assumed to be sorted
+ */
+static SortItem *
+build_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss,
+ int *ndistinct)
+{
+ int i,
+ j;
+ int ngroups = count_distinct_groups(numrows, items, mss);
+
+ SortItem *groups = (SortItem *) palloc(ngroups * sizeof(SortItem));
+
+ j = 0;
+ groups[0] = items[0];
+ groups[0].count = 1;
+
+ for (i = 1; i < numrows; i++)
+ {
+ /* Assume sorted in ascending order. */
+ Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0);
+
+ /* New distinct group detected. */
+ if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0)
+ {
+ groups[++j] = items[i];
+ groups[j].count = 0;
+ }
+
+ groups[j].count++;
+ }
+
+ /* ensure we filled the expected number of distinct groups */
+ Assert(j + 1 == ngroups);
+
+ /* Sort the distinct groups by frequency (in descending order). */
+ pg_qsort((void *) groups, ngroups, sizeof(SortItem),
+ compare_sort_item_count);
+
+ *ndistinct = ngroups;
+ return groups;
+}
+
+
+/*
+ * statext_mcv_load
+ * Load the MCV list for the indicated pg_statistic_ext tuple
+ */
+MCVList *
+statext_mcv_load(Oid mvoid)
+{
+ bool isnull;
+ Datum mcvlist;
+ HeapTuple htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(mvoid));
+
+ if (!HeapTupleIsValid(htup))
+ elog(ERROR, "cache lookup failed for statistics object %u", mvoid);
+
+ mcvlist = SysCacheGetAttr(STATEXTOID, htup,
+ Anum_pg_statistic_ext_stxmcv, &isnull);
+
+ ReleaseSysCache(htup);
+
+ if (isnull)
+ return NULL;
+
+ return statext_mcv_deserialize(DatumGetByteaP(mcvlist));
+}
+
+
+/*
+ * Serialize MCV list into a bytea value.
+ *
+ * The basic algorithm is simple:
+ *
+ * (1) perform deduplication (for each attribute separately)
+ * (a) collect all (non-NULL) attribute values from all MCV items
+ * (b) sort the data (using 'lt' from VacAttrStats)
+ * (c) remove duplicate values from the array
+ *
+ * (2) serialize the arrays into a bytea value
+ *
+ * (3) process all MCV list items
+ * (a) replace values with indexes into the arrays
+ *
+ * Each attribute has to be processed separately, as we may be mixing different
+ * datatypes, with different sort operators, etc.
+ *
+ * We use uint16 values for the indexes in step (3), as we currently don't allow
+ * more than 8k MCV items anyway, although that's mostly arbitrary limit. We might
+ * increase this to 65k and still fit into uint16. Furthermore, this limit is on
+ * the number of distinct values per column, and we usually have few of those
+ * (and various combinations of them for the those MCV list). So uint16 seems fine.
+ *
+ * We don't really expect the serialization to save as much space as for
+ * histograms, as we are not doing any bucket splits (which is the source
+ * of high redundancy in histograms).
+ *
+ * TODO: Consider packing boolean flags (NULL) for each item into a single char
+ * (or a longer type) instead of using an array of bool items.
+ */
+bytea *
+statext_mcv_serialize(MCVList * mcvlist, VacAttrStats **stats)
+{
+ int i;
+ int dim;
+ int ndims = mcvlist->ndimensions;
+ int itemsize = ITEM_SIZE(ndims);
+
+ SortSupport ssup;
+ DimensionInfo *info;
+
+ Size total_length;
+
+ /* allocate the item just once */
+ char *item = palloc0(itemsize);
+
+ /* serialized items (indexes into arrays, etc.) */
+ bytea *output;
+ char *data = NULL;
+
+ /* values per dimension (and number of non-NULL values) */
+ Datum **values = (Datum **) palloc0(sizeof(Datum *) * ndims);
+ int *counts = (int *) palloc0(sizeof(int) * ndims);
+
+ /*
+ * We'll include some rudimentary information about the attributes (type
+ * length, etc.), so that we don't have to look them up while
+ * deserializing the MCV list.
+ *
+ * XXX Maybe this is not a great idea? Or maybe we should actually copy
+ * more fields, e.g. typeid, which would allow us to display the MCV list
+ * using only the serialized representation (currently we have to fetch
+ * this info from the relation).
+ */
+ info = (DimensionInfo *) palloc0(sizeof(DimensionInfo) * ndims);
+
+ /* sort support data for all attributes included in the MCV list */
+ ssup = (SortSupport) palloc0(sizeof(SortSupportData) * ndims);
+
+ /* collect and deduplicate values for each dimension (attribute) */
+ for (dim = 0; dim < ndims; dim++)
+ {
+ int ndistinct;
+ TypeCacheEntry *typentry;
+
+ /*
+ * Lookup the LT operator (can't get it from stats extra_data, as we
+ * don't know how to interpret that - scalar vs. array etc.).
+ */
+ typentry = lookup_type_cache(stats[dim]->attrtypid, TYPECACHE_LT_OPR);
+
+ /* copy important info about the data type (length, by-value) */
+ info[dim].typlen = stats[dim]->attrtype->typlen;
+ info[dim].typbyval = stats[dim]->attrtype->typbyval;
+
+ /* allocate space for values in the attribute and collect them */
+ values[dim] = (Datum *) palloc0(sizeof(Datum) * mcvlist->nitems);
+
+ for (i = 0; i < mcvlist->nitems; i++)
+ {
+ /* skip NULL values - we don't need to deduplicate those */
+ if (mcvlist->items[i]->isnull[dim])
+ continue;
+
+ /* append the value at the end */
+ values[dim][counts[dim]] = mcvlist->items[i]->values[dim];
+ counts[dim] += 1;
+ }
+
+ /* if there are just NULL values in this dimension, we're done */
+ if (counts[dim] == 0)
+ continue;
+
+ /* sort and deduplicate the data */
+ ssup[dim].ssup_cxt = CurrentMemoryContext;
+ ssup[dim].ssup_collation = DEFAULT_COLLATION_OID;
+ ssup[dim].ssup_nulls_first = false;
+
+ PrepareSortSupportFromOrderingOp(typentry->lt_opr, &ssup[dim]);
+
+ qsort_arg(values[dim], counts[dim], sizeof(Datum),
+ compare_scalars_simple, &ssup[dim]);
+
+ /*
+ * Walk through the array and eliminate duplicate values, but keep the
+ * ordering (so that we can do bsearch later). We know there's at
+ * least one item as (counts[dim] != 0), so we can skip the first
+ * element.
+ */
+ ndistinct = 1; /* number of distinct values */
+ for (i = 1; i < counts[dim]; i++)
+ {
+ /* expect sorted array */
+ Assert(compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim]) <= 0);
+
+ /* if the value is the same as the previous one, we can skip it */
+ if (!compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim]))
+ continue;
+
+ values[dim][ndistinct] = values[dim][i];
+ ndistinct += 1;
+ }
+
+ /* we must not exceed PG_UINT16_MAX, as we use uint16 indexes */
+ Assert(ndistinct <= PG_UINT16_MAX);
+
+ /*
+ * Store additional info about the attribute - number of deduplicated
+ * values, and also size of the serialized data. For fixed-length data
+ * types this is trivial to compute, for varwidth types we need to
+ * actually walk the array and sum the sizes.
+ */
+ info[dim].nvalues = ndistinct;
+
+ if (info[dim].typlen > 0) /* fixed-length data types */
+ info[dim].nbytes = info[dim].nvalues * info[dim].typlen;
+ else if (info[dim].typlen == -1) /* varlena */
+ {
+ info[dim].nbytes = 0;
+ for (i = 0; i < info[dim].nvalues; i++)
+ {
+ values[dim][i] = PointerGetDatum(PG_DETOAST_DATUM(values[dim][i]));
+ info[dim].nbytes += VARSIZE_ANY(values[dim][i]);
+ }
+ }
+ else if (info[dim].typlen == -2) /* cstring */
+ {
+ info[dim].nbytes = 0;
+ for (i = 0; i < info[dim].nvalues; i++)
+ {
+ /* c-strings include terminator, so +1 byte */
+ values[dim][i] = PointerGetDatum(PG_DETOAST_DATUM(values[dim][i]));
+ info[dim].nbytes += strlen(DatumGetCString(values[dim][i])) + 1;
+ }
+ }
+
+ /* we know (count>0) so there must be some data */
+ Assert(info[dim].nbytes > 0);
+ }
+
+ /*
+ * Now we can finally compute how much space we'll actually need for the
+ * whole serialized MCV list, as it contains these fields:
+ *
+ * - length (4B) for varlena - magic (4B) - type (4B) - ndimensions (4B) -
+ * nitems (4B) - info (ndim * sizeof(DimensionInfo) - arrays of values for
+ * each dimension - serialized items (nitems * itemsize)
+ *
+ * So the 'header' size is 20B + ndim * sizeof(DimensionInfo) and then we
+ * will place all the data (values + indexes). We'll however use offsetof
+ * and sizeof to compute sizes of the structs.
+ */
+ total_length = (sizeof(int32) + offsetof(MCVList, items)
+ + (ndims * sizeof(DimensionInfo))
+ + mcvlist->nitems * itemsize);
+
+ /* add space for the arrays of deduplicated values */
+ for (i = 0; i < ndims; i++)
+ total_length += info[i].nbytes;
+
+ /* allocate space for the serialized MCV list, set header fields */
+ output = (bytea *) palloc0(total_length);
+ SET_VARSIZE(output, total_length);
+
+ /* 'data' points to the current position in the output buffer */
+ data = VARDATA(output);
+
+ /* MCV list header (number of items, ...) */
+ memcpy(data, mcvlist, offsetof(MCVList, items));
+ data += offsetof(MCVList, items);
+
+ /* information about the attributes */
+ memcpy(data, info, sizeof(DimensionInfo) * ndims);
+ data += sizeof(DimensionInfo) * ndims;
+
+ /* Copy the deduplicated values for all attributes to the output. */
+ for (dim = 0; dim < ndims; dim++)
+ {
+#ifdef USE_ASSERT_CHECKING
+ /* remember the starting point for Asserts later */
+ char *tmp = data;
+#endif
+ for (i = 0; i < info[dim].nvalues; i++)
+ {
+ Datum v = values[dim][i];
+
+ if (info[dim].typbyval) /* passed by value */
+ {
+ memcpy(data, &v, info[dim].typlen);
+ data += info[dim].typlen;
+ }
+ else if (info[dim].typlen > 0) /* pased by reference */
+ {
+ memcpy(data, DatumGetPointer(v), info[dim].typlen);
+ data += info[dim].typlen;
+ }
+ else if (info[dim].typlen == -1) /* varlena */
+ {
+ int len = VARSIZE_ANY(v);
+
+ memcpy(data, DatumGetPointer(v), len);
+ data += len;
+ }
+ else if (info[dim].typlen == -2) /* cstring */
+ {
+ Size len = strlen(DatumGetCString(v)) + 1; /* terminator */
+
+ memcpy(data, DatumGetCString(v), len );
+ data += len;
+ }
+
+ /* no underflows or overflows */
+ Assert((data > tmp) && ((data - tmp) <= info[dim].nbytes));
+ }
+
+ /*
+ * check we got exactly the amount of data we expected for this
+ * dimension
+ */
+ Assert((data - tmp) == info[dim].nbytes);
+ }
+
+ /* Serialize the items, with uint16 indexes instead of the values. */
+ for (i = 0; i < mcvlist->nitems; i++)
+ {
+ MCVItem *mcvitem = mcvlist->items[i];
+
+ /* don't write beyond the allocated space */
+ Assert(data <= (char *) output + total_length - itemsize);
+
+ /* reset the item (we only allocate it once and reuse it) */
+ memset(item, 0, itemsize);
+
+ for (dim = 0; dim < ndims; dim++)
+ {
+ Datum *value;
+
+ /* do the lookup only for non-NULL values */
+ if (mcvlist->items[i]->isnull[dim])
+ continue;
+
+ value = (Datum *) bsearch_arg(&mcvitem->values[dim], values[dim],
+ info[dim].nvalues, sizeof(Datum),
+ compare_scalars_simple, &ssup[dim]);
+
+ Assert(value != NULL); /* serialization or deduplication error */
+
+ /* compute index within the array */
+ ITEM_INDEXES(item)[dim] = (uint16) (value - values[dim]);
+
+ /* check the index is within expected bounds */
+ Assert(ITEM_INDEXES(item)[dim] >= 0);
+ Assert(ITEM_INDEXES(item)[dim] < info[dim].nvalues);
+ }
+
+ /* copy NULL and frequency flags into the item */
+ memcpy(ITEM_NULLS(item, ndims), mcvitem->isnull, sizeof(bool) * ndims);
+ memcpy(ITEM_FREQUENCY(item, ndims), &mcvitem->frequency, sizeof(double));
+ memcpy(ITEM_BASE_FREQUENCY(item, ndims), &mcvitem->base_frequency, sizeof(double));
+
+ /* copy the serialized item into the array */
+ memcpy(data, item, itemsize);
+
+ data += itemsize;
+ }
+
+ /* at this point we expect to match the total_length exactly */
+ Assert((data - (char *) output) == total_length);
+
+ pfree(item);
+ pfree(values);
+ pfree(counts);
+
+ return output;
+}
+
+/*
+ * Reads serialized MCV list into MCVList structure.
+ *
+ * Unlike with histograms, we deserialize the MCV list fully (i.e. we don't
+ * keep the deduplicated arrays and pointers into them), as we don't expect
+ * there to be a lot of duplicate values. But perhaps that's not true and we
+ * should keep the MCV in serialized form too.
+ *
+ * XXX See how much memory we could save by keeping the deduplicated version
+ * (both for typical and corner cases with few distinct values but many items).
+ */
+MCVList *
+statext_mcv_deserialize(bytea *data)
+{
+ int dim,
+ i;
+ Size expected_size;
+ MCVList *mcvlist;
+ char *tmp;
+
+ int ndims,
+ nitems,
+ itemsize;
+ DimensionInfo *info = NULL;
+ Datum **values = NULL;
+
+ /* local allocation buffer (used only for deserialization) */
+ int bufflen;
+ char *buff;
+ char *ptr;
+
+ /* buffer used for the result */
+ int rbufflen;
+ char *rbuff;
+ char *rptr;
+
+ if (data == NULL)
+ return NULL;
+
+ /*
+ * We can't possibly deserialize a MCV list if there's not even a complete
+ * header.
+ */
+ if (VARSIZE_ANY_EXHDR(data) < offsetof(MCVList, items))
+ elog(ERROR, "invalid MCV size %ld (expected at least %zu)",
+ VARSIZE_ANY_EXHDR(data), offsetof(MCVList, items));
+
+ /* read the MCV list header */
+ mcvlist = (MCVList *) palloc0(sizeof(MCVList));
+
+ /* initialize pointer to the data part (skip the varlena header) */
+ tmp = VARDATA_ANY(data);
+
+ /* get the header and perform further sanity checks */
+ memcpy(mcvlist, tmp, offsetof(MCVList, items));
+ tmp += offsetof(MCVList, items);
+
+ if (mcvlist->magic != STATS_MCV_MAGIC)
+ elog(ERROR, "invalid MCV magic %u (expected %u)",
+ mcvlist->magic, STATS_MCV_MAGIC);
+
+ if (mcvlist->type != STATS_MCV_TYPE_BASIC)
+ elog(ERROR, "invalid MCV type %u (expected %u)",
+ mcvlist->type, STATS_MCV_TYPE_BASIC);
+
+ if (mcvlist->ndimensions == 0)
+ elog(ERROR, "invalid zero-length dimension array in MCVList");
+ else if ((mcvlist->ndimensions > STATS_MAX_DIMENSIONS) ||
+ (mcvlist->ndimensions < 0))
+ elog(ERROR, "invalid length (%d) dimension array in MCVList",
+ mcvlist->ndimensions);
+
+ if (mcvlist->nitems == 0)
+ elog(ERROR, "invalid zero-length item array in MCVList");
+ else if (mcvlist->nitems > STATS_MCVLIST_MAX_ITEMS)
+ elog(ERROR, "invalid length (%u) item array in MCVList",
+ mcvlist->nitems);
+
+ nitems = mcvlist->nitems;
+ ndims = mcvlist->ndimensions;
+ itemsize = ITEM_SIZE(ndims);
+
+ /*
+ * Check amount of data including DimensionInfo for all dimensions and
+ * also the serialized items (including uint16 indexes). Also, walk
+ * through the dimension information and add it to the sum.
+ */
+ expected_size = offsetof(MCVList, items) +
+ ndims * sizeof(DimensionInfo) +
+ (nitems * itemsize);
+
+ /*
+ * Check that we have at least the dimension and info records, along with
+ * the items. We don't know the size of the serialized values yet. We need
+ * to do this check first, before accessing the dimension info.
+ */
+ if (VARSIZE_ANY_EXHDR(data) < expected_size)
+ elog(ERROR, "invalid MCV size %ld (expected %zu)",
+ VARSIZE_ANY_EXHDR(data), expected_size);
+
+ /* Now it's safe to access the dimension info. */
+ info = (DimensionInfo *) (tmp);
+ tmp += ndims * sizeof(DimensionInfo);
+
+ /* account for the value arrays */
+ for (dim = 0; dim < ndims; dim++)
+ {
+ /*
+ * XXX I wonder if we can/should rely on asserts here. Maybe those
+ * checks should be done every time?
+ */
+ Assert(info[dim].nvalues >= 0);
+ Assert(info[dim].nbytes >= 0);
+
+ expected_size += info[dim].nbytes;
+ }
+
+ /*
+ * Now we know the total expected MCV size, including all the pieces
+ * (header, dimension info. items and deduplicated data). So do the final
+ * check on size.
+ */
+ if (VARSIZE_ANY_EXHDR(data) != expected_size)
+ elog(ERROR, "invalid MCV size %ld (expected %zu)",
+ VARSIZE_ANY_EXHDR(data), expected_size);
+
+ /*
+ * Allocate one large chunk of memory for the intermediate data, needed
+ * only for deserializing the MCV list (and allocate densely to minimize
+ * the palloc overhead).
+ *
+ * Let's see how much space we'll actually need, and also include space
+ * for the array with pointers.
+ *
+ * We need an array of Datum pointers values for each dimension, so that
+ * we can easily translate the uint16 indexes. We also need a top-level
+ * array of pointers to those per-dimension arrays.
+ *
+ * For byval types with size matching sizeof(Datum) we can reuse the
+ * serialized array directly.
+ */
+ bufflen = sizeof(Datum **) * ndims; /* space for top-level pointers */
+
+ for (dim = 0; dim < ndims; dim++)
+ {
+ /* for full-size byval types, we reuse the serialized value */
+ if (!(info[dim].typbyval && info[dim].typlen == sizeof(Datum)))
+ bufflen += (sizeof(Datum) * info[dim].nvalues);
+ }
+
+ buff = palloc0(bufflen);
+ ptr = buff;
+
+ values = (Datum **) buff;
+ ptr += (sizeof(Datum *) * ndims);
+
+ /*
+ * XXX This uses pointers to the original data array (the types not passed
+ * by value), so when someone frees the memory, e.g. by doing something
+ * like this:
+ *
+ * bytea * data = ... fetch the data from catalog ...
+ *
+ * MCVList mcvlist = deserialize_mcv_list(data);
+ *
+ * pfree(data);
+ *
+ * then 'mcvlist' references the freed memory. Should copy the pieces.
+ */
+ for (dim = 0; dim < ndims; dim++)
+ {
+#ifdef USE_ASSERT_CHECKING
+ /* remember where data for this dimension starts */
+ char *start = tmp;
+#endif
+ if (info[dim].typbyval)
+ {
+ /* passed by value / size matches Datum - just reuse the array */
+ if (info[dim].typlen == sizeof(Datum))
+ {
+ values[dim] = (Datum *) tmp;
+ tmp += info[dim].nbytes;
+
+ /* no overflow of input array */
+ Assert(tmp <= start + info[dim].nbytes);
+ }
+ else
+ {
+ values[dim] = (Datum *) ptr;
+ ptr += (sizeof(Datum) * info[dim].nvalues);
+
+ for (i = 0; i < info[dim].nvalues; i++)
+ {
+ /* just point into the array */
+ memcpy(&values[dim][i], tmp, info[dim].typlen);
+ tmp += info[dim].typlen;
+
+ /* no overflow of input array */
+ Assert(tmp <= start + info[dim].nbytes);
+ }
+ }
+ }
+ else
+ {
+ /* all the other types need a chunk of the buffer */
+ values[dim] = (Datum *) ptr;
+ ptr += (sizeof(Datum) * info[dim].nvalues);
+
+ /* passed by reference, but fixed length (name, tid, ...) */
+ if (info[dim].typlen > 0)
+ {
+ for (i = 0; i < info[dim].nvalues; i++)
+ {
+ /* just point into the array */
+ values[dim][i] = PointerGetDatum(tmp);
+ tmp += info[dim].typlen;
+
+ /* no overflow of input array */
+ Assert(tmp <= start + info[dim].nbytes);
+ }
+ }
+ else if (info[dim].typlen == -1)
+ {
+ /* varlena */
+ for (i = 0; i < info[dim].nvalues; i++)
+ {
+ /* just point into the array */
+ values[dim][i] = PointerGetDatum(tmp);
+ tmp += VARSIZE_ANY(tmp);
+
+ /* no overflow of input array */
+ Assert(tmp <= start + info[dim].nbytes);
+ }
+ }
+ else if (info[dim].typlen == -2)
+ {
+ /* cstring */
+ for (i = 0; i < info[dim].nvalues; i++)
+ {
+ /* just point into the array */
+ values[dim][i] = PointerGetDatum(tmp);
+ tmp += (strlen(tmp) + 1); /* don't forget the \0 */
+
+ /* no overflow of input array */
+ Assert(tmp <= start + info[dim].nbytes);
+ }
+ }
+ }
+
+ /* check we consumed the serialized data for this dimension exactly */
+ Assert((tmp - start) == info[dim].nbytes);
+ }
+
+ /* we should have exhausted the buffer exactly */
+ Assert((ptr - buff) == bufflen);
+
+ /* allocate space for all the MCV items in a single piece */
+ rbufflen = (sizeof(MCVItem *) + sizeof(MCVItem) +
+ sizeof(Datum) * ndims + sizeof(bool) * ndims) * nitems;
+
+ rbuff = palloc0(rbufflen);
+ rptr = rbuff;
+
+ mcvlist->items = (MCVItem * *) rbuff;
+ rptr += (sizeof(MCVItem *) * nitems);
+
+ /* deserialize the MCV items and translate the indexes to Datums */
+ for (i = 0; i < nitems; i++)
+ {
+ uint16 *indexes = NULL;
+ MCVItem *item = (MCVItem *) rptr;
+
+ rptr += (sizeof(MCVItem));
+
+ item->values = (Datum *) rptr;
+ rptr += (sizeof(Datum) * ndims);
+
+ item->isnull = (bool *) rptr;
+ rptr += (sizeof(bool) * ndims);
+
+ /* just point to the right place */
+ indexes = ITEM_INDEXES(tmp);
+
+ memcpy(item->isnull, ITEM_NULLS(tmp, ndims), sizeof(bool) * ndims);
+ memcpy(&item->frequency, ITEM_FREQUENCY(tmp, ndims), sizeof(double));
+ memcpy(&item->base_frequency, ITEM_BASE_FREQUENCY(tmp, ndims), sizeof(double));
+
+ /* translate the values */
+ for (dim = 0; dim < ndims; dim++)
+ if (!item->isnull[dim])
+ item->values[dim] = values[dim][indexes[dim]];
+
+ mcvlist->items[i] = item;
+
+ tmp += ITEM_SIZE(ndims);
+
+ /* check we're not overflowing the input */
+ Assert(tmp <= (char *) data + VARSIZE_ANY(data));
+ }
+
+ /* check that we processed all the data */
+ Assert(tmp == (char *) data + VARSIZE_ANY(data));
+
+ /* release the temporary buffer */
+ pfree(buff);
+
+ return mcvlist;
+}
+
+/*
+ * SRF with details about buckets of a histogram:
+ *
+ * - item ID (0...nitems)
+ * - values (string array)
+ * - nulls only (boolean array)
+ * - frequency (double precision)
+ * - base_frequency (double precision)
+ *
+ * The input is the OID of the statistics, and there are no rows returned if
+ * the statistics contains no histogram.
+ */
+Datum
+pg_stats_ext_mcvlist_items(PG_FUNCTION_ARGS)
+{
+ FuncCallContext *funcctx;
+ int call_cntr;
+ int max_calls;
+ AttInMetadata *attinmeta;
+
+ /* stuff done only on the first call of the function */
+ if (SRF_IS_FIRSTCALL())
+ {
+ MemoryContext oldcontext;
+ MCVList *mcvlist;
+ TupleDesc tupdesc;
+
+ /* create a function context for cross-call persistence */
+ funcctx = SRF_FIRSTCALL_INIT();
+
+ /* switch to memory context appropriate for multiple function calls */
+ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
+
+ mcvlist = statext_mcv_deserialize(PG_GETARG_BYTEA_P(0));
+
+ funcctx->user_fctx = mcvlist;
+
+ /* total number of tuples to be returned */
+ funcctx->max_calls = 0;
+ if (funcctx->user_fctx != NULL)
+ funcctx->max_calls = mcvlist->nitems;
+
+ /* Build a tuple descriptor for our result type */
+ if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("function returning record called in context "
+ "that cannot accept type record")));
+
+ /*
+ * generate attribute metadata needed later to produce tuples from raw
+ * C strings
+ */
+ attinmeta = TupleDescGetAttInMetadata(tupdesc);
+ funcctx->attinmeta = attinmeta;
+
+ MemoryContextSwitchTo(oldcontext);
+ }
+
+ /* stuff done on every call of the function */
+ funcctx = SRF_PERCALL_SETUP();
+
+ call_cntr = funcctx->call_cntr;
+ max_calls = funcctx->max_calls;
+ attinmeta = funcctx->attinmeta;
+
+ if (call_cntr < max_calls) /* do when there is more left to send */
+ {
+ char **values;
+ HeapTuple tuple;
+ Datum result;
+
+ StringInfoData itemValues;
+ StringInfoData itemNulls;
+
+ int i;
+
+ Oid *outfuncs;
+ FmgrInfo *fmgrinfo;
+
+ MCVList *mcvlist;
+ MCVItem *item;
+
+ mcvlist = (MCVList *) funcctx->user_fctx;
+
+ Assert(call_cntr < mcvlist->nitems);
+
+ item = mcvlist->items[call_cntr];
+
+ /*
+ * Prepare a values array for building the returned tuple. This should
+ * be an array of C strings which will be processed later by the type
+ * input functions.
+ */
+ values = (char **) palloc0(5 * sizeof(char *));
+
+ values[0] = (char *) palloc(64 * sizeof(char)); /* item index */
+ values[3] = (char *) palloc(64 * sizeof(char)); /* frequency */
+ values[4] = (char *) palloc(64 * sizeof(char)); /* base frequency */
+
+ outfuncs = (Oid *) palloc0(sizeof(Oid) * mcvlist->ndimensions);
+ fmgrinfo = (FmgrInfo *) palloc0(sizeof(FmgrInfo) * mcvlist->ndimensions);
+
+ for (i = 0; i < mcvlist->ndimensions; i++)
+ {
+ bool isvarlena;
+
+ getTypeOutputInfo(mcvlist->types[i], &outfuncs[i], &isvarlena);
+
+ fmgr_info(outfuncs[i], &fmgrinfo[i]);
+ }
+
+ /* build the arrays of values / nulls */
+ initStringInfo(&itemValues);
+ initStringInfo(&itemNulls);
+
+ appendStringInfoChar(&itemValues, '{');
+ appendStringInfoChar(&itemNulls, '{');
+
+ for (i = 0; i < mcvlist->ndimensions; i++)
+ {
+ Datum val,
+ valout;
+
+ if (i > 0)
+ {
+ appendStringInfoString(&itemValues, ", ");
+ appendStringInfoString(&itemNulls, ", ");
+ }
+
+ if (item->isnull[i])
+ valout = CStringGetDatum("NULL");
+ else
+ {
+ val = item->values[i];
+ valout = FunctionCall1(&fmgrinfo[i], val);
+ }
+
+ appendStringInfoString(&itemValues, DatumGetCString(valout));
+ appendStringInfoString(&itemNulls, item->isnull[i] ? "t" : "f");
+ }
+
+ appendStringInfoChar(&itemValues, '}');
+ appendStringInfoChar(&itemNulls, '}');
+
+ snprintf(values[0], 64, "%d", call_cntr);
+ snprintf(values[3], 64, "%f", item->frequency);
+ snprintf(values[4], 64, "%f", item->base_frequency);
+
+ values[1] = itemValues.data;
+ values[2] = itemNulls.data;
+
+ /* build a tuple */
+ tuple = BuildTupleFromCStrings(attinmeta, values);
+
+ /* make the tuple into a datum */
+ result = HeapTupleGetDatum(tuple);
+
+ /* clean up (this is not really necessary) */
+ pfree(itemValues.data);
+ pfree(itemNulls.data);
+
+ pfree(values[0]);
+ pfree(values[3]);
+ pfree(values[4]);
+ pfree(values);
+
+ SRF_RETURN_NEXT(funcctx, result);
+ }
+ else /* do when there is no more left */
+ {
+ SRF_RETURN_DONE(funcctx);
+ }
+}
+
+/*
+ * pg_mcv_list_in - input routine for type pg_mcv_list.
+ *
+ * pg_mcv_list is real enough to be a table column, but it has no operations
+ * of its own, and disallows input too
+ */
+Datum
+pg_mcv_list_in(PG_FUNCTION_ARGS)
+{
+ /*
+ * pg_mcv_list stores the data in binary form and parsing text input is
+ * not needed, so disallow this.
+ */
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("cannot accept a value of type %s", "pg_mcv_list")));
+
+ PG_RETURN_VOID(); /* keep compiler quiet */
+}
+
+
+/*
+ * pg_mcv_list_out - output routine for type PG_MCV_LIST.
+ *
+ * MCV lists are serialized into a bytea value, so we simply call byteaout()
+ * to serialize the value into text. But it'd be nice to serialize that into
+ * a meaningful representation (e.g. for inspection by people).
+ *
+ * XXX This should probably return something meaningful, similar to what
+ * pg_dependencies_out does. Not sure how to deal with the deduplicated
+ * values, though - do we want to expand that or not?
+ */
+Datum
+pg_mcv_list_out(PG_FUNCTION_ARGS)
+{
+ return byteaout(fcinfo);
+}
+
+/*
+ * pg_mcv_list_recv - binary input routine for type pg_mcv_list.
+ */
+Datum
+pg_mcv_list_recv(PG_FUNCTION_ARGS)
+{
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("cannot accept a value of type %s", "pg_mcv_list")));
+
+ PG_RETURN_VOID(); /* keep compiler quiet */
+}
+
+/*
+ * pg_mcv_list_send - binary output routine for type pg_mcv_list.
+ *
+ * MCV lists are serialized in a bytea value (although the type is named
+ * differently), so let's just send that.
+ */
+Datum
+pg_mcv_list_send(PG_FUNCTION_ARGS)
+{
+ return byteasend(fcinfo);
+}
+
+/*
+ * mcv_get_match_bitmap
+ * Evaluate clauses using the MCV list, and update the match bitmap.
+ *
+ * A match bitmap keeps match/mismatch status for each MCV item, and we
+ * update it based on additional clauses. We also use it to skip items
+ * that can't possibly match (e.g. item marked as "mismatch" can't change
+ * to "match" when evaluating AND clause list).
+ *
+ * The function also returns a flag indicating whether there was an
+ * equality condition for all attributes, the minimum frequency in the MCV
+ * list, and a total MCV frequency (sum of frequencies for all items).
+ *
+ * XXX Currently the match bitmap uses a bool for each MCV item, which is
+ * somewhat wasteful as we could do with just a single bit, thus reducing
+ * the size to ~1/8. It would also allow us to combine bitmaps simply using
+ * & and |, which should be faster than min/max. The bitmaps are fairly
+ * small, though (as we cap the MCV list size to 8k items).
+ */
+static bool *
+mcv_get_match_bitmap(PlannerInfo *root, List *clauses,
+ Bitmapset *keys, MCVList * mcvlist, bool is_or)
+{
+ int i;
+ ListCell *l;
+ bool *matches;
+
+ /* The bitmap may be partially built. */
+ Assert(clauses != NIL);
+ Assert(list_length(clauses) >= 1);
+ Assert(mcvlist != NULL);
+ Assert(mcvlist->nitems > 0);
+ Assert(mcvlist->nitems <= STATS_MCVLIST_MAX_ITEMS);
+
+ matches = palloc(sizeof(bool) * mcvlist->nitems);
+ memset(matches, (is_or) ? false : true,
+ sizeof(bool) * mcvlist->nitems);
+
+ /*
+ * Loop through the list of clauses, and for each of them evaluate all the
+ * MCV items not yet eliminated by the preceding clauses.
+ */
+ foreach(l, clauses)
+ {
+ Node *clause = (Node *) lfirst(l);
+
+ /* if it's a RestrictInfo, then extract the clause */
+ if (IsA(clause, RestrictInfo))
+ clause = (Node *) ((RestrictInfo *) clause)->clause;
+
+ /*
+ * Handle the various types of clauses - OpClause, NullTest and
+ * AND/OR/NOT
+ */
+ if (is_opclause(clause))
+ {
+ OpExpr *expr = (OpExpr *) clause;
+ bool varonleft = true;
+ bool ok;
+ FmgrInfo opproc;
+
+ /* get procedure computing operator selectivity */
+ RegProcedure oprrest = get_oprrest(expr->opno);
+
+ fmgr_info(get_opcode(expr->opno), &opproc);
+
+ ok = (NumRelids(clause) == 1) &&
+ (is_pseudo_constant_clause(lsecond(expr->args)) ||
+ (varonleft = false,
+ is_pseudo_constant_clause(linitial(expr->args))));
+
+ if (ok)
+ {
+ TypeCacheEntry *typecache;
+ FmgrInfo gtproc;
+ Var *var;
+ Const *cst;
+ bool isgt;
+ int idx;
+
+ /* extract the var and const from the expression */
+ var = (varonleft) ? linitial(expr->args) : lsecond(expr->args);
+ cst = (varonleft) ? lsecond(expr->args) : linitial(expr->args);
+ isgt = (!varonleft);
+
+ /* strip binary-compatible relabeling */
+ if (IsA(var, RelabelType))
+ var = (Var *) ((RelabelType *) var)->arg;
+
+ /* match the attribute to a dimension of the statistic */
+ idx = bms_member_index(keys, var->varattno);
+
+ /* get information about the >= procedure */
+ typecache = lookup_type_cache(var->vartype, TYPECACHE_GT_OPR);
+ fmgr_info(get_opcode(typecache->gt_opr), &gtproc);
+
+ /*
+ * Walk through the MCV items and evaluate the current clause.
+ * We can skip items that were already ruled out, and
+ * terminate if there are no remaining MCV items that might
+ * possibly match.
+ */
+ for (i = 0; i < mcvlist->nitems; i++)
+ {
+ bool mismatch = false;
+ MCVItem *item = mcvlist->items[i];
+
+ /*
+ * For AND-lists, we can also mark NULL items as 'no
+ * match' (and then skip them). For OR-lists this is not
+ * possible.
+ */
+ if ((!is_or) && item->isnull[idx])
+ matches[i] = false;
+
+ /* skip MCV items that were already ruled out */
+ if ((!is_or) && (matches[i] == false))
+ continue;
+ else if (is_or && (matches[i] == true))
+ continue;
+
+ switch (oprrest)
+ {
+ case F_EQSEL:
+ case F_NEQSEL:
+
+ /*
+ * We don't care about isgt in equality, because
+ * it does not matter whether it's (var op const)
+ * or (const op var).
+ */
+ mismatch = !DatumGetBool(FunctionCall2Coll(&opproc,
+ DEFAULT_COLLATION_OID,
+ cst->constvalue,
+ item->values[idx]));
+
+ break;
+
+ case F_SCALARLTSEL: /* column < constant */
+ case F_SCALARLESEL: /* column <= constant */
+ case F_SCALARGTSEL: /* column > constant */
+ case F_SCALARGESEL: /* column >= constant */
+
+ /*
+ * First check whether the constant is below the
+ * lower boundary (in that case we can skip the
+ * bucket, because there's no overlap).
+ */
+ if (isgt)
+ mismatch = !DatumGetBool(FunctionCall2Coll(&opproc,
+ DEFAULT_COLLATION_OID,
+ cst->constvalue,
+ item->values[idx]));
+ else
+ mismatch = !DatumGetBool(FunctionCall2Coll(&opproc,
+ DEFAULT_COLLATION_OID,
+ item->values[idx],
+ cst->constvalue));
+
+ break;
+ }
+
+ /*
+ * XXX The conditions on matches[i] are not needed, as we
+ * skip MCV items that can't become true/false, depending
+ * on the current flag. See beginning of the loop over MCV
+ * items.
+ */
+
+ if ((is_or) && (!mismatch))
+ {
+ /* OR - was not a match before, matches now */
+ matches[i] = true;
+ continue;
+ }
+ else if ((!is_or) && mismatch)
+ {
+ /* AND - was a match before, does not match anymore */
+ matches[i] = false;
+ continue;
+ }
+
+ }
+ }
+ }
+ else if (IsA(clause, NullTest))
+ {
+ NullTest *expr = (NullTest *) clause;
+ Var *var = (Var *) (expr->arg);
+
+ /* match the attribute to a dimension of the statistic */
+ int idx = bms_member_index(keys, var->varattno);
+
+ /*
+ * Walk through the MCV items and evaluate the current clause. We
+ * can skip items that were already ruled out, and terminate if
+ * there are no remaining MCV items that might possibly match.
+ */
+ for (i = 0; i < mcvlist->nitems; i++)
+ {
+ bool match = false; /* assume mismatch */
+ MCVItem *item = mcvlist->items[i];
+
+ /* if the clause mismatches the MCV item, update the bitmap */
+ switch (expr->nulltesttype)
+ {
+ case IS_NULL:
+ match = (item->isnull[idx]) ? true : match;
+ break;
+
+ case IS_NOT_NULL:
+ match = (!item->isnull[idx]) ? true : match;
+ break;
+ }
+
+ /* now, update the match bitmap, depending on OR/AND type */
+ if (is_or)
+ matches[i] = Max(matches[i], match);
+ else
+ matches[i] = Min(matches[i], match);
+ }
+ }
+ else if (is_orclause(clause) || is_andclause(clause))
+ {
+ /* AND/OR clause, with all subclauses being compatible */
+
+ int i;
+ BoolExpr *bool_clause = ((BoolExpr *) clause);
+ List *bool_clauses = bool_clause->args;
+
+ /* match/mismatch bitmap for each MCV item */
+ bool *bool_matches = NULL;
+
+ Assert(bool_clauses != NIL);
+ Assert(list_length(bool_clauses) >= 2);
+
+ /* build the match bitmap for the OR-clauses */
+ bool_matches = mcv_get_match_bitmap(root, bool_clauses, keys,
+ mcvlist, is_orclause(clause));
+
+ /*
+ * Merge the bitmap produced by mcv_get_match_bitmap into the
+ * current one. We need to consider if we're evaluating AND or OR
+ * condition when merging the results.
+ */
+ for (i = 0; i < mcvlist->nitems; i++)
+ {
+ /* Is this OR or AND clause? */
+ if (is_or)
+ matches[i] = Max(matches[i], bool_matches[i]);
+ else
+ matches[i] = Min(matches[i], bool_matches[i]);
+ }
+
+ pfree(bool_matches);
+ }
+ else if (is_notclause(clause))
+ {
+ /* NOT clause, with all subclauses compatible */
+
+ int i;
+ BoolExpr *not_clause = ((BoolExpr *) clause);
+ List *not_args = not_clause->args;
+
+ /* match/mismatch bitmap for each MCV item */
+ bool *not_matches = NULL;
+
+ Assert(not_args != NIL);
+ Assert(list_length(not_args) == 1);
+
+ /* build the match bitmap for the NOT-clause */
+ not_matches = mcv_get_match_bitmap(root, not_args, keys,
+ mcvlist, false);
+
+ /*
+ * Merge the bitmap produced by mcv_get_match_bitmap into the
+ * current one.
+ */
+ for (i = 0; i < mcvlist->nitems; i++)
+ {
+ /*
+ * When handling a NOT clause, we need to invert the result
+ * before merging it into the global result.
+ */
+ if (not_matches[i] == false)
+ not_matches[i] = true;
+ else
+ not_matches[i] = false;
+
+ /* Is this OR or AND clause? */
+ if (is_or)
+ matches[i] = Max(matches[i], not_matches[i]);
+ else
+ matches[i] = Min(matches[i], not_matches[i]);
+ }
+
+ pfree(not_matches);
+ }
+ else if (IsA(clause, Var))
+ {
+ /* Var (has to be a boolean Var, possibly from below NOT) */
+
+ Var *var = (Var *) (clause);
+
+ /* match the attribute to a dimension of the statistic */
+ int idx = bms_member_index(keys, var->varattno);
+
+ Assert(var->vartype == BOOLOID);
+
+ /*
+ * Walk through the MCV items and evaluate the current clause. We
+ * can skip items that were already ruled out, and terminate if
+ * there are no remaining MCV items that might possibly match.
+ */
+ for (i = 0; i < mcvlist->nitems; i++)
+ {
+ MCVItem *item = mcvlist->items[i];
+ bool match = false;
+
+ /* if the item is NULL, it's a mismatch */
+ if (!item->isnull[idx] && DatumGetBool(item->values[idx]))
+ match = true;
+
+ /* now, update the match bitmap, depending on OR/AND type */
+ if (is_or)
+ matches[i] = Max(matches[i], match);
+ else
+ matches[i] = Min(matches[i], match);
+ }
+ }
+ else
+ {
+ elog(ERROR, "unknown clause type: %d", clause->type);
+ }
+ }
+
+ return matches;
+}
+
+
+/*
+ * mcv_clauselist_selectivity
+ * Return the selectivity estimate computed using an MCV list.
+ *
+ * First builds a bitmap of MCV items matching the clauses, and then sums
+ * the frequencies of matching items.
+ *
+ * It also produces two additional interesting selectivities - total
+ * selectivity of all the MCV items (not just the matching ones), and the
+ * base frequency computed on the assumption of independence.
+ */
+Selectivity
+mcv_clauselist_selectivity(PlannerInfo *root, StatisticExtInfo *stat,
+ List *clauses, int varRelid,
+ JoinType jointype, SpecialJoinInfo *sjinfo,
+ RelOptInfo *rel,
+ Selectivity *basesel, Selectivity *totalsel)
+{
+ int i;
+ MCVList *mcv;
+ Selectivity s = 0.0;
+
+ /* match/mismatch bitmap for each MCV item */
+ bool *matches = NULL;
+
+ /* load the MCV list stored in the statistics object */
+ mcv = statext_mcv_load(stat->statOid);
+
+ /* build a match bitmap for the clauses */
+ matches = mcv_get_match_bitmap(root, clauses, stat->keys, mcv, false);
+
+ /* sum frequencies for all the matching MCV items */
+ *basesel = 0.0;
+ *totalsel = 0.0;
+ for (i = 0; i < mcv->nitems; i++)
+ {
+ *totalsel += mcv->items[i]->frequency;
+
+ if (matches[i] != false)
+ {
+ /* XXX Shouldn't the basesel be outside the if condition? */
+ *basesel += mcv->items[i]->base_frequency;
+ s += mcv->items[i]->frequency;
+ }
+ }
+
+ return s;
+}