diff options
Diffstat (limited to 'src/backend/optimizer/util/predtest.c')
-rw-r--r-- | src/backend/optimizer/util/predtest.c | 22 |
1 files changed, 11 insertions, 11 deletions
diff --git a/src/backend/optimizer/util/predtest.c b/src/backend/optimizer/util/predtest.c index eadd2d5104a..9d61a4d71c2 100644 --- a/src/backend/optimizer/util/predtest.c +++ b/src/backend/optimizer/util/predtest.c @@ -133,7 +133,7 @@ predicate_implied_by(List *predicate_list, List *restrictinfo_list) /* * If either input is a single-element list, replace it with its lone - * member; this avoids one useless level of AND-recursion. We only need + * member; this avoids one useless level of AND-recursion. We only need * to worry about this at top level, since eval_const_expressions should * have gotten rid of any trivial ANDs or ORs below that. */ @@ -191,7 +191,7 @@ predicate_refuted_by(List *predicate_list, List *restrictinfo_list) /* * If either input is a single-element list, replace it with its lone - * member; this avoids one useless level of AND-recursion. We only need + * member; this avoids one useless level of AND-recursion. We only need * to worry about this at top level, since eval_const_expressions should * have gotten rid of any trivial ANDs or ORs below that. */ @@ -225,7 +225,7 @@ predicate_refuted_by(List *predicate_list, List *restrictinfo_list) * OR-expr A => AND-expr B iff: A => each of B's components * OR-expr A => OR-expr B iff: each of A's components => any of B's * - * An "atom" is anything other than an AND or OR node. Notice that we don't + * An "atom" is anything other than an AND or OR node. Notice that we don't * have any special logic to handle NOT nodes; these should have been pushed * down or eliminated where feasible by prepqual.c. * @@ -658,7 +658,7 @@ predicate_refuted_by_recurse(Node *clause, Node *predicate) * We cannot make the stronger conclusion that B is refuted if B * implies A's arg; that would only prove that B is not-TRUE, not * that it's not NULL either. Hence use equal() rather than - * predicate_implied_by_recurse(). We could do the latter if we + * predicate_implied_by_recurse(). We could do the latter if we * ever had a need for the weak form of refutation. */ not_arg = extract_strong_not_arg(clause); @@ -820,7 +820,7 @@ predicate_classify(Node *clause, PredIterInfo info) } /* - * PredIterInfo routines for iterating over regular Lists. The iteration + * PredIterInfo routines for iterating over regular Lists. The iteration * state variable is the next ListCell to visit. */ static void @@ -1014,13 +1014,13 @@ arrayexpr_cleanup_fn(PredIterInfo info) * implies another: * * A simple and general way is to see if they are equal(); this works for any - * kind of expression. (Actually, there is an implied assumption that the + * kind of expression. (Actually, there is an implied assumption that the * functions in the expression are immutable, ie dependent only on their input * arguments --- but this was checked for the predicate by the caller.) * * When the predicate is of the form "foo IS NOT NULL", we can conclude that * the predicate is implied if the clause is a strict operator or function - * that has "foo" as an input. In this case the clause must yield NULL when + * that has "foo" as an input. In this case the clause must yield NULL when * "foo" is NULL, which we can take as equivalent to FALSE because we know * we are within an AND/OR subtree of a WHERE clause. (Again, "foo" is * already known immutable, so the clause will certainly always fail.) @@ -1244,7 +1244,7 @@ list_member_strip(List *list, Expr *datum) * * The strategy numbers defined by btree indexes (see access/skey.h) are: * (1) < (2) <= (3) = (4) >= (5) > - * and in addition we use (6) to represent <>. <> is not a btree-indexable + * and in addition we use (6) to represent <>. <> is not a btree-indexable * operator, but we assume here that if an equality operator of a btree * opfamily has a negator operator, the negator behaves as <> for the opfamily. * (This convention is also known to get_op_btree_interpretation().) @@ -1328,7 +1328,7 @@ static const StrategyNumber BT_refute_table[6][6] = { * if not able to prove it. * * What we look for here is binary boolean opclauses of the form - * "foo op constant", where "foo" is the same in both clauses. The operators + * "foo op constant", where "foo" is the same in both clauses. The operators * and constants can be different but the operators must be in the same btree * operator family. We use the above operator implication tables to * derive implications between nonidentical clauses. (Note: "foo" is known @@ -1418,7 +1418,7 @@ btree_predicate_proof(Expr *predicate, Node *clause, bool refute_it) /* * Check for matching subexpressions on the non-Const sides. We used to * only allow a simple Var, but it's about as easy to allow any - * expression. Remember we already know that the pred expression does not + * expression. Remember we already know that the pred expression does not * contain any non-immutable functions, so identical expressions should * yield identical results. */ @@ -1690,7 +1690,7 @@ get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it) * Last check: test_op must be immutable. * * Note that we require only the test_op to be immutable, not the - * original clause_op. (pred_op is assumed to have been checked + * original clause_op. (pred_op is assumed to have been checked * immutable by the caller.) Essentially we are assuming that the * opfamily is consistent even if it contains operators that are * merely stable. |