aboutsummaryrefslogtreecommitdiff
path: root/src/backend/optimizer/prep/prepjointree.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/optimizer/prep/prepjointree.c')
-rw-r--r--src/backend/optimizer/prep/prepjointree.c42
1 files changed, 21 insertions, 21 deletions
diff --git a/src/backend/optimizer/prep/prepjointree.c b/src/backend/optimizer/prep/prepjointree.c
index 812e56d4c19..776fe426c3e 100644
--- a/src/backend/optimizer/prep/prepjointree.c
+++ b/src/backend/optimizer/prep/prepjointree.c
@@ -116,7 +116,7 @@ static Node *find_jointree_node_for_rel(Node *jtnode, int relid);
*
* A clause "foo op ANY (sub-SELECT)" can be processed by pulling the
* sub-SELECT up to become a rangetable entry and treating the implied
- * comparisons as quals of a semijoin. However, this optimization *only*
+ * comparisons as quals of a semijoin. However, this optimization *only*
* works at the top level of WHERE or a JOIN/ON clause, because we cannot
* distinguish whether the ANY ought to return FALSE or NULL in cases
* involving NULL inputs. Also, in an outer join's ON clause we can only
@@ -133,7 +133,7 @@ static Node *find_jointree_node_for_rel(Node *jtnode, int relid);
* transformations if any are found.
*
* This routine has to run before preprocess_expression(), so the quals
- * clauses are not yet reduced to implicit-AND format. That means we need
+ * clauses are not yet reduced to implicit-AND format. That means we need
* to recursively search through explicit AND clauses, which are
* probably only binary ANDs. We stop as soon as we hit a non-AND item.
*/
@@ -287,7 +287,7 @@ pull_up_sublinks_jointree_recurse(PlannerInfo *root, Node *jtnode,
/*
* Although we could include the pulled-up subqueries in the returned
* relids, there's no need since upper quals couldn't refer to their
- * outputs anyway. But we *do* need to include the join's own rtindex
+ * outputs anyway. But we *do* need to include the join's own rtindex
* because we haven't yet collapsed join alias variables, so upper
* levels would mistakenly think they couldn't use references to this
* join.
@@ -609,7 +609,7 @@ pull_up_subqueries(PlannerInfo *root, Node *jtnode)
*
* If this jointree node is within either side of an outer join, then
* lowest_outer_join references the lowest such JoinExpr node; otherwise
- * it is NULL. We use this to constrain the effects of LATERAL subqueries.
+ * it is NULL. We use this to constrain the effects of LATERAL subqueries.
*
* If this jointree node is within the nullable side of an outer join, then
* lowest_nulling_outer_join references the lowest such JoinExpr node;
@@ -759,7 +759,7 @@ pull_up_subqueries_recurse(PlannerInfo *root, Node *jtnode,
* Attempt to pull up a single simple subquery.
*
* jtnode is a RangeTblRef that has been tentatively identified as a simple
- * subquery by pull_up_subqueries. We return the replacement jointree node,
+ * subquery by pull_up_subqueries. We return the replacement jointree node,
* or jtnode itself if we determine that the subquery can't be pulled up after
* all.
*
@@ -792,7 +792,7 @@ pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte,
* Create a PlannerInfo data structure for this subquery.
*
* NOTE: the next few steps should match the first processing in
- * subquery_planner(). Can we refactor to avoid code duplication, or
+ * subquery_planner(). Can we refactor to avoid code duplication, or
* would that just make things uglier?
*/
subroot = makeNode(PlannerInfo);
@@ -842,7 +842,7 @@ pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte,
/*
* Now we must recheck whether the subquery is still simple enough to pull
- * up. If not, abandon processing it.
+ * up. If not, abandon processing it.
*
* We don't really need to recheck all the conditions involved, but it's
* easier just to keep this "if" looking the same as the one in
@@ -859,7 +859,7 @@ pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte,
* Give up, return unmodified RangeTblRef.
*
* Note: The work we just did will be redone when the subquery gets
- * planned on its own. Perhaps we could avoid that by storing the
+ * planned on its own. Perhaps we could avoid that by storing the
* modified subquery back into the rangetable, but I'm not gonna risk
* it now.
*/
@@ -900,7 +900,7 @@ pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte,
* non-nullable items and lateral references may have to be turned into
* PlaceHolderVars. If we are dealing with an appendrel member then
* anything that's not a simple Var has to be turned into a
- * PlaceHolderVar. Set up required context data for pullup_replace_vars.
+ * PlaceHolderVar. Set up required context data for pullup_replace_vars.
*/
rvcontext.root = root;
rvcontext.targetlist = subquery->targetList;
@@ -925,7 +925,7 @@ pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte,
* replace any of the jointree structure. (This'd be a lot cleaner if we
* could use query_tree_mutator.) We have to use PHVs in the targetList,
* returningList, and havingQual, since those are certainly above any
- * outer join. replace_vars_in_jointree tracks its location in the
+ * outer join. replace_vars_in_jointree tracks its location in the
* jointree and uses PHVs or not appropriately.
*/
parse->targetList = (List *)
@@ -1084,7 +1084,7 @@ pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte,
* Pull up a single simple UNION ALL subquery.
*
* jtnode is a RangeTblRef that has been identified as a simple UNION ALL
- * subquery by pull_up_subqueries. We pull up the leaf subqueries and
+ * subquery by pull_up_subqueries. We pull up the leaf subqueries and
* build an "append relation" for the union set. The result value is just
* jtnode, since we don't actually need to change the query jointree.
*/
@@ -1098,7 +1098,7 @@ pull_up_simple_union_all(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte)
/*
* Make a modifiable copy of the subquery's rtable, so we can adjust
- * upper-level Vars in it. There are no such Vars in the setOperations
+ * upper-level Vars in it. There are no such Vars in the setOperations
* tree proper, so fixing the rtable should be sufficient.
*/
rtable = copyObject(subquery->rtable);
@@ -1370,7 +1370,7 @@ is_simple_subquery(Query *subquery, RangeTblEntry *rte,
/*
* Don't pull up a subquery that has any set-returning functions in its
- * targetlist. Otherwise we might well wind up inserting set-returning
+ * targetlist. Otherwise we might well wind up inserting set-returning
* functions into places where they mustn't go, such as quals of higher
* queries.
*/
@@ -1379,7 +1379,7 @@ is_simple_subquery(Query *subquery, RangeTblEntry *rte,
/*
* Don't pull up a subquery that has any volatile functions in its
- * targetlist. Otherwise we might introduce multiple evaluations of these
+ * targetlist. Otherwise we might introduce multiple evaluations of these
* functions, if they get copied to multiple places in the upper query,
* leading to surprising results. (Note: the PlaceHolderVar mechanism
* doesn't quite guarantee single evaluation; else we could pull up anyway
@@ -1609,7 +1609,7 @@ replace_vars_in_jointree(Node *jtnode,
/*
* If the RangeTblRef refers to a LATERAL subquery (that isn't the
* same subquery we're pulling up), it might contain references to the
- * target subquery, which we must replace. We drive this from the
+ * target subquery, which we must replace. We drive this from the
* jointree scan, rather than a scan of the rtable, for a couple of
* reasons: we can avoid processing no-longer-referenced RTEs, and we
* can use the appropriate setting of need_phvs depending on whether
@@ -1770,7 +1770,7 @@ pullup_replace_vars_callback(Var *var,
/*
* Insert PlaceHolderVar if needed. Notice that we are wrapping one
* PlaceHolderVar around the whole RowExpr, rather than putting one
- * around each element of the row. This is because we need the
+ * around each element of the row. This is because we need the
* expression to yield NULL, not ROW(NULL,NULL,...) when it is forced
* to null by an outer join.
*/
@@ -1872,7 +1872,7 @@ pullup_replace_vars_callback(Var *var,
/*
* Cache it if possible (ie, if the attno is in range, which it
- * probably always should be). We can cache the value even if we
+ * probably always should be). We can cache the value even if we
* decided we didn't need a PHV, since this result will be
* suitable for any request that has need_phvs.
*/
@@ -1915,7 +1915,7 @@ pullup_replace_vars_subquery(Query *query,
*
* If a query's setOperations tree consists entirely of simple UNION ALL
* operations, flatten it into an append relation, which we can process more
- * intelligently than the general setops case. Otherwise, do nothing.
+ * intelligently than the general setops case. Otherwise, do nothing.
*
* In most cases, this can succeed only for a top-level query, because for a
* subquery in FROM, the parent query's invocation of pull_up_subqueries would
@@ -2027,7 +2027,7 @@ flatten_simple_union_all(PlannerInfo *root)
* SELECT ... FROM a LEFT JOIN b ON (a.x = b.y) WHERE b.y IS NULL;
* If the join clause is strict for b.y, then only null-extended rows could
* pass the upper WHERE, and we can conclude that what the query is really
- * specifying is an anti-semijoin. We change the join type from JOIN_LEFT
+ * specifying is an anti-semijoin. We change the join type from JOIN_LEFT
* to JOIN_ANTI. The IS NULL clause then becomes redundant, and must be
* removed to prevent bogus selectivity calculations, but we leave it to
* distribute_qual_to_rels to get rid of such clauses.
@@ -2267,7 +2267,7 @@ reduce_outer_joins_pass2(Node *jtnode,
/*
* See if we can reduce JOIN_LEFT to JOIN_ANTI. This is the case if
* the join's own quals are strict for any var that was forced null by
- * higher qual levels. NOTE: there are other ways that we could
+ * higher qual levels. NOTE: there are other ways that we could
* detect an anti-join, in particular if we were to check whether Vars
* coming from the RHS must be non-null because of table constraints.
* That seems complicated and expensive though (in particular, one
@@ -2425,7 +2425,7 @@ reduce_outer_joins_pass2(Node *jtnode,
* pulled-up relid, and change them to reference the replacement relid(s).
*
* NOTE: although this has the form of a walker, we cheat and modify the
- * nodes in-place. This should be OK since the tree was copied by
+ * nodes in-place. This should be OK since the tree was copied by
* pullup_replace_vars earlier. Avoid scribbling on the original values of
* the bitmapsets, though, because expression_tree_mutator doesn't copy those.
*/