aboutsummaryrefslogtreecommitdiff
path: root/src/backend/executor
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/executor')
-rw-r--r--src/backend/executor/execIndexing.c417
-rw-r--r--src/backend/executor/execMain.c53
-rw-r--r--src/backend/executor/nodeLockRows.c12
-rw-r--r--src/backend/executor/nodeModifyTable.c459
4 files changed, 859 insertions, 82 deletions
diff --git a/src/backend/executor/execIndexing.c b/src/backend/executor/execIndexing.c
index a697682b20e..e7cf72b3875 100644
--- a/src/backend/executor/execIndexing.c
+++ b/src/backend/executor/execIndexing.c
@@ -50,6 +50,50 @@
* to the caller. The caller must re-check them later by calling
* check_exclusion_constraint().
*
+ * Speculative insertion
+ * ---------------------
+ *
+ * Speculative insertion is a is a two-phase mechanism, used to implement
+ * INSERT ... ON CONFLICT DO UPDATE/NOTHING. The tuple is first inserted
+ * to the heap and update the indexes as usual, but if a constraint is
+ * violated, we can still back out the insertion without aborting the whole
+ * transaction. In an INSERT ... ON CONFLICT statement, if a conflict is
+ * detected, the inserted tuple is backed out and the ON CONFLICT action is
+ * executed instead.
+ *
+ * Insertion to a unique index works as usual: the index AM checks for
+ * duplicate keys atomically with the insertion. But instead of throwing
+ * an error on a conflict, the speculatively inserted heap tuple is backed
+ * out.
+ *
+ * Exclusion constraints are slightly more complicated. As mentioned
+ * earlier, there is a risk of deadlock when two backends insert the same
+ * key concurrently. That was not a problem for regular insertions, when
+ * one of the transactions has to be aborted anyway, but with a speculative
+ * insertion we cannot let a deadlock happen, because we only want to back
+ * out the speculatively inserted tuple on conflict, not abort the whole
+ * transaction.
+ *
+ * When a backend detects that the speculative insertion conflicts with
+ * another in-progress tuple, it has two options:
+ *
+ * 1. back out the speculatively inserted tuple, then wait for the other
+ * transaction, and retry. Or,
+ * 2. wait for the other transaction, with the speculatively inserted tuple
+ * still in place.
+ *
+ * If two backends insert at the same time, and both try to wait for each
+ * other, they will deadlock. So option 2 is not acceptable. Option 1
+ * avoids the deadlock, but it is prone to a livelock instead. Both
+ * transactions will wake up immediately as the other transaction backs
+ * out. Then they both retry, and conflict with each other again, lather,
+ * rinse, repeat.
+ *
+ * To avoid the livelock, one of the backends must back out first, and then
+ * wait, while the other one waits without backing out. It doesn't matter
+ * which one backs out, so we employ an arbitrary rule that the transaction
+ * with the higher XID backs out.
+ *
*
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
@@ -63,12 +107,30 @@
#include "postgres.h"
#include "access/relscan.h"
+#include "access/xact.h"
#include "catalog/index.h"
#include "executor/executor.h"
#include "nodes/nodeFuncs.h"
#include "storage/lmgr.h"
#include "utils/tqual.h"
+/* waitMode argument to check_exclusion_or_unique_constraint() */
+typedef enum
+{
+ CEOUC_WAIT,
+ CEOUC_NOWAIT,
+ CEOUC_LIVELOCK_PREVENTING_WAIT,
+} CEOUC_WAIT_MODE;
+
+static bool check_exclusion_or_unique_constraint(Relation heap, Relation index,
+ IndexInfo *indexInfo,
+ ItemPointer tupleid,
+ Datum *values, bool *isnull,
+ EState *estate, bool newIndex,
+ CEOUC_WAIT_MODE waitMode,
+ bool errorOK,
+ ItemPointer conflictTid);
+
static bool index_recheck_constraint(Relation index, Oid *constr_procs,
Datum *existing_values, bool *existing_isnull,
Datum *new_values);
@@ -84,7 +146,7 @@ static bool index_recheck_constraint(Relation index, Oid *constr_procs,
* ----------------------------------------------------------------
*/
void
-ExecOpenIndices(ResultRelInfo *resultRelInfo)
+ExecOpenIndices(ResultRelInfo *resultRelInfo, bool speculative)
{
Relation resultRelation = resultRelInfo->ri_RelationDesc;
List *indexoidlist;
@@ -137,6 +199,13 @@ ExecOpenIndices(ResultRelInfo *resultRelInfo)
/* extract index key information from the index's pg_index info */
ii = BuildIndexInfo(indexDesc);
+ /*
+ * If the indexes are to be used for speculative insertion, add extra
+ * information required by unique index entries.
+ */
+ if (speculative && ii->ii_Unique)
+ BuildSpeculativeIndexInfo(indexDesc, ii);
+
relationDescs[i] = indexDesc;
indexInfoArray[i] = ii;
i++;
@@ -186,7 +255,9 @@ ExecCloseIndices(ResultRelInfo *resultRelInfo)
* Unique and exclusion constraints are enforced at the same
* time. This returns a list of index OIDs for any unique or
* exclusion constraints that are deferred and that had
- * potential (unconfirmed) conflicts.
+ * potential (unconfirmed) conflicts. (if noDupErr == true,
+ * the same is done for non-deferred constraints, but report
+ * if conflict was speculative or deferred conflict to caller)
*
* CAUTION: this must not be called for a HOT update.
* We can't defend against that here for lack of info.
@@ -196,7 +267,10 @@ ExecCloseIndices(ResultRelInfo *resultRelInfo)
List *
ExecInsertIndexTuples(TupleTableSlot *slot,
ItemPointer tupleid,
- EState *estate)
+ EState *estate,
+ bool noDupErr,
+ bool *specConflict,
+ List *arbiterIndexes)
{
List *result = NIL;
ResultRelInfo *resultRelInfo;
@@ -236,12 +310,17 @@ ExecInsertIndexTuples(TupleTableSlot *slot,
IndexInfo *indexInfo;
IndexUniqueCheck checkUnique;
bool satisfiesConstraint;
+ bool arbiter;
if (indexRelation == NULL)
continue;
indexInfo = indexInfoArray[i];
+ /* Record if speculative insertion arbiter */
+ arbiter = list_member_oid(arbiterIndexes,
+ indexRelation->rd_index->indexrelid);
+
/* If the index is marked as read-only, ignore it */
if (!indexInfo->ii_ReadyForInserts)
continue;
@@ -288,9 +367,14 @@ ExecInsertIndexTuples(TupleTableSlot *slot,
* For a deferrable unique index, we tell the index AM to just detect
* possible non-uniqueness, and we add the index OID to the result
* list if further checking is needed.
+ *
+ * For a speculative insertion (used by INSERT ... ON CONFLICT), do
+ * the same as for a deferrable unique index.
*/
if (!indexRelation->rd_index->indisunique)
checkUnique = UNIQUE_CHECK_NO;
+ else if (noDupErr && (arbiterIndexes == NIL || arbiter))
+ checkUnique = UNIQUE_CHECK_PARTIAL;
else if (indexRelation->rd_index->indimmediate)
checkUnique = UNIQUE_CHECK_YES;
else
@@ -308,8 +392,11 @@ ExecInsertIndexTuples(TupleTableSlot *slot,
* If the index has an associated exclusion constraint, check that.
* This is simpler than the process for uniqueness checks since we
* always insert first and then check. If the constraint is deferred,
- * we check now anyway, but don't throw error on violation; instead
- * we'll queue a recheck event.
+ * we check now anyway, but don't throw error on violation or wait for
+ * a conclusive outcome from a concurrent insertion; instead we'll
+ * queue a recheck event. Similarly, noDupErr callers (speculative
+ * inserters) will recheck later, and wait for a conclusive outcome
+ * then.
*
* An index for an exclusion constraint can't also be UNIQUE (not an
* essential property, we just don't allow it in the grammar), so no
@@ -317,13 +404,31 @@ ExecInsertIndexTuples(TupleTableSlot *slot,
*/
if (indexInfo->ii_ExclusionOps != NULL)
{
- bool errorOK = !indexRelation->rd_index->indimmediate;
+ bool violationOK;
+ bool waitMode;
+
+ if (noDupErr)
+ {
+ violationOK = true;
+ waitMode = CEOUC_LIVELOCK_PREVENTING_WAIT;
+ }
+ else if (!indexRelation->rd_index->indimmediate)
+ {
+ violationOK = true;
+ waitMode = CEOUC_NOWAIT;
+ }
+ else
+ {
+ violationOK = false;
+ waitMode = CEOUC_WAIT;
+ }
satisfiesConstraint =
- check_exclusion_constraint(heapRelation,
- indexRelation, indexInfo,
- tupleid, values, isnull,
- estate, false, errorOK);
+ check_exclusion_or_unique_constraint(heapRelation,
+ indexRelation, indexInfo,
+ tupleid, values, isnull,
+ estate, false,
+ waitMode, violationOK, NULL);
}
if ((checkUnique == UNIQUE_CHECK_PARTIAL ||
@@ -333,46 +438,213 @@ ExecInsertIndexTuples(TupleTableSlot *slot,
/*
* The tuple potentially violates the uniqueness or exclusion
* constraint, so make a note of the index so that we can re-check
- * it later.
+ * it later. Speculative inserters are told if there was a
+ * speculative conflict, since that always requires a restart.
*/
result = lappend_oid(result, RelationGetRelid(indexRelation));
+ if (indexRelation->rd_index->indimmediate && specConflict)
+ *specConflict = true;
}
}
return result;
}
+/* ----------------------------------------------------------------
+ * ExecCheckIndexConstraints
+ *
+ * This routine checks if a tuple violates any unique or
+ * exclusion constraints. Returns true if there is no no conflict.
+ * Otherwise returns false, and the TID of the conflicting
+ * tuple is returned in *conflictTid.
+ *
+ * If 'arbiterIndexes' is given, only those indexes are checked.
+ * NIL means all indexes.
+ *
+ * Note that this doesn't lock the values in any way, so it's
+ * possible that a conflicting tuple is inserted immediately
+ * after this returns. But this can be used for a pre-check
+ * before insertion.
+ * ----------------------------------------------------------------
+ */
+bool
+ExecCheckIndexConstraints(TupleTableSlot *slot,
+ EState *estate, ItemPointer conflictTid,
+ List *arbiterIndexes)
+{
+ ResultRelInfo *resultRelInfo;
+ int i;
+ int numIndices;
+ RelationPtr relationDescs;
+ Relation heapRelation;
+ IndexInfo **indexInfoArray;
+ ExprContext *econtext;
+ Datum values[INDEX_MAX_KEYS];
+ bool isnull[INDEX_MAX_KEYS];
+ ItemPointerData invalidItemPtr;
+ bool checkedIndex = false;
+
+ ItemPointerSetInvalid(conflictTid);
+ ItemPointerSetInvalid(&invalidItemPtr);
+
+ /*
+ * Get information from the result relation info structure.
+ */
+ resultRelInfo = estate->es_result_relation_info;
+ numIndices = resultRelInfo->ri_NumIndices;
+ relationDescs = resultRelInfo->ri_IndexRelationDescs;
+ indexInfoArray = resultRelInfo->ri_IndexRelationInfo;
+ heapRelation = resultRelInfo->ri_RelationDesc;
+
+ /*
+ * We will use the EState's per-tuple context for evaluating predicates
+ * and index expressions (creating it if it's not already there).
+ */
+ econtext = GetPerTupleExprContext(estate);
+
+ /* Arrange for econtext's scan tuple to be the tuple under test */
+ econtext->ecxt_scantuple = slot;
+
+ /*
+ * For each index, form index tuple and check if it satisfies the
+ * constraint.
+ */
+ for (i = 0; i < numIndices; i++)
+ {
+ Relation indexRelation = relationDescs[i];
+ IndexInfo *indexInfo;
+ bool satisfiesConstraint;
+
+ if (indexRelation == NULL)
+ continue;
+
+ indexInfo = indexInfoArray[i];
+
+ if (!indexInfo->ii_Unique && !indexInfo->ii_ExclusionOps)
+ continue;
+
+ /* If the index is marked as read-only, ignore it */
+ if (!indexInfo->ii_ReadyForInserts)
+ continue;
+
+ /* When specific arbiter indexes requested, only examine them */
+ if (arbiterIndexes != NIL &&
+ !list_member_oid(arbiterIndexes,
+ indexRelation->rd_index->indexrelid))
+ continue;
+
+ if (!indexRelation->rd_index->indimmediate)
+ ereport(ERROR,
+ (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
+ errmsg("ON CONFLICT does not support deferred unique constraints/exclusion constraints as arbiters"),
+ errtableconstraint(heapRelation,
+ RelationGetRelationName(indexRelation))));
+
+ checkedIndex = true;
+
+ /* Check for partial index */
+ if (indexInfo->ii_Predicate != NIL)
+ {
+ List *predicate;
+
+ /*
+ * If predicate state not set up yet, create it (in the estate's
+ * per-query context)
+ */
+ predicate = indexInfo->ii_PredicateState;
+ if (predicate == NIL)
+ {
+ predicate = (List *)
+ ExecPrepareExpr((Expr *) indexInfo->ii_Predicate,
+ estate);
+ indexInfo->ii_PredicateState = predicate;
+ }
+
+ /* Skip this index-update if the predicate isn't satisfied */
+ if (!ExecQual(predicate, econtext, false))
+ continue;
+ }
+
+ /*
+ * FormIndexDatum fills in its values and isnull parameters with the
+ * appropriate values for the column(s) of the index.
+ */
+ FormIndexDatum(indexInfo,
+ slot,
+ estate,
+ values,
+ isnull);
+
+ satisfiesConstraint =
+ check_exclusion_or_unique_constraint(heapRelation, indexRelation,
+ indexInfo, &invalidItemPtr,
+ values, isnull, estate, false,
+ CEOUC_WAIT, true,
+ conflictTid);
+ if (!satisfiesConstraint)
+ return false;
+ }
+
+ if (arbiterIndexes != NIL && !checkedIndex)
+ elog(ERROR, "unexpected failure to find arbiter index");
+
+ return true;
+}
+
/*
- * Check for violation of an exclusion constraint
+ * Check for violation of an exclusion or unique constraint
*
* heap: the table containing the new tuple
- * index: the index supporting the exclusion constraint
+ * index: the index supporting the constraint
* indexInfo: info about the index, including the exclusion properties
- * tupleid: heap TID of the new tuple we have just inserted
+ * tupleid: heap TID of the new tuple we have just inserted (invalid if we
+ * haven't inserted a new tuple yet)
* values, isnull: the *index* column values computed for the new tuple
* estate: an EState we can do evaluation in
* newIndex: if true, we are trying to build a new index (this affects
* only the wording of error messages)
- * errorOK: if true, don't throw error for violation
+ * waitMode: whether to wait for concurrent inserters/deleters
+ * violationOK: if true, don't throw error for violation
+ * conflictTid: if not-NULL, the TID of the conflicting tuple is returned here
*
* Returns true if OK, false if actual or potential violation
*
- * When errorOK is true, we report violation without waiting to see if any
- * concurrent transaction has committed or not; so the violation is only
- * potential, and the caller must recheck sometime later. This behavior
- * is convenient for deferred exclusion checks; we need not bother queuing
- * a deferred event if there is definitely no conflict at insertion time.
+ * 'waitMode' determines what happens if a conflict is detected with a tuple
+ * that was inserted or deleted by a transaction that's still running.
+ * CEOUC_WAIT means that we wait for the transaction to commit, before
+ * throwing an error or returning. CEOUC_NOWAIT means that we report the
+ * violation immediately; so the violation is only potential, and the caller
+ * must recheck sometime later. This behavior is convenient for deferred
+ * exclusion checks; we need not bother queuing a deferred event if there is
+ * definitely no conflict at insertion time.
+ *
+ * CEOUC_LIVELOCK_PREVENTING_WAIT is like CEOUC_NOWAIT, but we will sometimes
+ * wait anyway, to prevent livelocking if two transactions try inserting at
+ * the same time. This is used with speculative insertions, for INSERT ON
+ * CONFLICT statements. (See notes in file header)
*
- * When errorOK is false, we'll throw error on violation, so a false result
- * is impossible.
+ * If violationOK is true, we just report the potential or actual violation to
+ * the caller by returning 'false'. Otherwise we throw a descriptive error
+ * message here. When violationOK is false, a false result is impossible.
+ *
+ * Note: The indexam is normally responsible for checking unique constraints,
+ * so this normally only needs to be used for exclusion constraints. But this
+ * function is also called when doing a "pre-check" for conflicts on a unique
+ * constraint, when doing speculative insertion. Caller may use the returned
+ * conflict TID to take further steps.
*/
-bool
-check_exclusion_constraint(Relation heap, Relation index, IndexInfo *indexInfo,
- ItemPointer tupleid, Datum *values, bool *isnull,
- EState *estate, bool newIndex, bool errorOK)
+static bool
+check_exclusion_or_unique_constraint(Relation heap, Relation index,
+ IndexInfo *indexInfo,
+ ItemPointer tupleid,
+ Datum *values, bool *isnull,
+ EState *estate, bool newIndex,
+ CEOUC_WAIT_MODE waitMode,
+ bool violationOK,
+ ItemPointer conflictTid)
{
- Oid *constr_procs = indexInfo->ii_ExclusionProcs;
- uint16 *constr_strats = indexInfo->ii_ExclusionStrats;
+ Oid *constr_procs;
+ uint16 *constr_strats;
Oid *index_collations = index->rd_indcollation;
int index_natts = index->rd_index->indnatts;
IndexScanDesc index_scan;
@@ -386,6 +658,17 @@ check_exclusion_constraint(Relation heap, Relation index, IndexInfo *indexInfo,
TupleTableSlot *existing_slot;
TupleTableSlot *save_scantuple;
+ if (indexInfo->ii_ExclusionOps)
+ {
+ constr_procs = indexInfo->ii_ExclusionProcs;
+ constr_strats = indexInfo->ii_ExclusionStrats;
+ }
+ else
+ {
+ constr_procs = indexInfo->ii_UniqueProcs;
+ constr_strats = indexInfo->ii_UniqueStrats;
+ }
+
/*
* If any of the input values are NULL, the constraint check is assumed to
* pass (i.e., we assume the operators are strict).
@@ -450,7 +733,8 @@ retry:
/*
* Ignore the entry for the tuple we're trying to check.
*/
- if (ItemPointerEquals(tupleid, &tup->t_self))
+ if (ItemPointerIsValid(tupleid) &&
+ ItemPointerEquals(tupleid, &tup->t_self))
{
if (found_self) /* should not happen */
elog(ERROR, "found self tuple multiple times in index \"%s\"",
@@ -480,39 +764,47 @@ retry:
}
/*
- * At this point we have either a conflict or a potential conflict. If
- * we're not supposed to raise error, just return the fact of the
- * potential conflict without waiting to see if it's real.
- */
- if (errorOK)
- {
- conflict = true;
- break;
- }
-
- /*
+ * At this point we have either a conflict or a potential conflict.
+ *
* If an in-progress transaction is affecting the visibility of this
- * tuple, we need to wait for it to complete and then recheck. For
- * simplicity we do rechecking by just restarting the whole scan ---
- * this case probably doesn't happen often enough to be worth trying
- * harder, and anyway we don't want to hold any index internal locks
- * while waiting.
+ * tuple, we need to wait for it to complete and then recheck (unless
+ * the caller requested not to). For simplicity we do rechecking by
+ * just restarting the whole scan --- this case probably doesn't
+ * happen often enough to be worth trying harder, and anyway we don't
+ * want to hold any index internal locks while waiting.
*/
xwait = TransactionIdIsValid(DirtySnapshot.xmin) ?
DirtySnapshot.xmin : DirtySnapshot.xmax;
- if (TransactionIdIsValid(xwait))
+ if (TransactionIdIsValid(xwait) &&
+ (waitMode == CEOUC_WAIT ||
+ (waitMode == CEOUC_LIVELOCK_PREVENTING_WAIT &&
+ DirtySnapshot.speculativeToken &&
+ TransactionIdPrecedes(GetCurrentTransactionId(), xwait))))
{
ctid_wait = tup->t_data->t_ctid;
index_endscan(index_scan);
- XactLockTableWait(xwait, heap, &ctid_wait,
- XLTW_RecheckExclusionConstr);
+ if (DirtySnapshot.speculativeToken)
+ SpeculativeInsertionWait(DirtySnapshot.xmin,
+ DirtySnapshot.speculativeToken);
+ else
+ XactLockTableWait(xwait, heap, &ctid_wait,
+ XLTW_RecheckExclusionConstr);
goto retry;
}
/*
- * We have a definite conflict. Report it.
+ * We have a definite conflict (or a potential one, but the caller
+ * didn't want to wait). Return it to caller, or report it.
*/
+ if (violationOK)
+ {
+ conflict = true;
+ if (conflictTid)
+ *conflictTid = tup->t_self;
+ break;
+ }
+
error_new = BuildIndexValueDescription(index, values, isnull);
error_existing = BuildIndexValueDescription(index, existing_values,
existing_isnull);
@@ -544,10 +836,10 @@ retry:
/*
* Ordinarily, at this point the search should have found the originally
- * inserted tuple, unless we exited the loop early because of conflict.
- * However, it is possible to define exclusion constraints for which that
- * wouldn't be true --- for instance, if the operator is <>. So we no
- * longer complain if found_self is still false.
+ * inserted tuple (if any), unless we exited the loop early because of
+ * conflict. However, it is possible to define exclusion constraints for
+ * which that wouldn't be true --- for instance, if the operator is <>.
+ * So we no longer complain if found_self is still false.
*/
econtext->ecxt_scantuple = save_scantuple;
@@ -558,6 +850,25 @@ retry:
}
/*
+ * Check for violation of an exclusion constraint
+ *
+ * This is a dumbed down version of check_exclusion_or_unique_constraint
+ * for external callers. They don't need all the special modes.
+ */
+void
+check_exclusion_constraint(Relation heap, Relation index,
+ IndexInfo *indexInfo,
+ ItemPointer tupleid,
+ Datum *values, bool *isnull,
+ EState *estate, bool newIndex)
+{
+ (void) check_exclusion_or_unique_constraint(heap, index, indexInfo, tupleid,
+ values, isnull,
+ estate, newIndex,
+ CEOUC_WAIT, false, NULL);
+}
+
+/*
* Check existing tuple's index values to see if it really matches the
* exclusion condition against the new_values. Returns true if conflict.
*/
diff --git a/src/backend/executor/execMain.c b/src/backend/executor/execMain.c
index 4272d9bc155..0dee9491788 100644
--- a/src/backend/executor/execMain.c
+++ b/src/backend/executor/execMain.c
@@ -1813,6 +1813,12 @@ ExecWithCheckOptions(WCOKind kind, ResultRelInfo *resultRelInfo,
errmsg("new row violates row level security policy for \"%s\"",
wco->relname)));
break;
+ case WCO_RLS_CONFLICT_CHECK:
+ ereport(ERROR,
+ (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
+ errmsg("new row violates row level security policy (USING expression) for \"%s\"",
+ wco->relname)));
+ break;
default:
elog(ERROR, "unrecognized WCO kind: %u", wco->kind);
break;
@@ -1973,6 +1979,31 @@ ExecBuildSlotValueDescription(Oid reloid,
/*
+ * ExecUpdateLockMode -- find the appropriate UPDATE tuple lock mode for a
+ * given ResultRelInfo
+ */
+LockTupleMode
+ExecUpdateLockMode(EState *estate, ResultRelInfo *relinfo)
+{
+ Bitmapset *keyCols;
+ Bitmapset *updatedCols;
+
+ /*
+ * Compute lock mode to use. If columns that are part of the key have not
+ * been modified, then we can use a weaker lock, allowing for better
+ * concurrency.
+ */
+ updatedCols = GetUpdatedColumns(relinfo, estate);
+ keyCols = RelationGetIndexAttrBitmap(relinfo->ri_RelationDesc,
+ INDEX_ATTR_BITMAP_KEY);
+
+ if (bms_overlap(keyCols, updatedCols))
+ return LockTupleExclusive;
+
+ return LockTupleNoKeyExclusive;
+}
+
+/*
* ExecFindRowMark -- find the ExecRowMark struct for given rangetable index
*/
ExecRowMark *
@@ -2186,8 +2217,9 @@ EvalPlanQualFetch(EState *estate, Relation relation, int lockmode,
* recycled and reused for an unrelated tuple. This implies that
* the latest version of the row was deleted, so we need do
* nothing. (Should be safe to examine xmin without getting
- * buffer's content lock, since xmin never changes in an existing
- * tuple.)
+ * buffer's content lock. We assume reading a TransactionId to be
+ * atomic, and Xmin never changes in an existing tuple, except to
+ * invalid or frozen, and neither of those can match priorXmax.)
*/
if (!TransactionIdEquals(HeapTupleHeaderGetXmin(tuple.t_data),
priorXmax))
@@ -2268,11 +2300,12 @@ EvalPlanQualFetch(EState *estate, Relation relation, int lockmode,
* case, so as to avoid the "Halloween problem" of
* repeated update attempts. In the latter case it might
* be sensible to fetch the updated tuple instead, but
- * doing so would require changing heap_lock_tuple as well
- * as heap_update and heap_delete to not complain about
- * updating "invisible" tuples, which seems pretty scary.
- * So for now, treat the tuple as deleted and do not
- * process.
+ * doing so would require changing heap_update and
+ * heap_delete to not complain about updating "invisible"
+ * tuples, which seems pretty scary (heap_lock_tuple will
+ * not complain, but few callers expect HeapTupleInvisible,
+ * and we're not one of them). So for now, treat the tuple
+ * as deleted and do not process.
*/
ReleaseBuffer(buffer);
return NULL;
@@ -2287,6 +2320,9 @@ EvalPlanQualFetch(EState *estate, Relation relation, int lockmode,
ereport(ERROR,
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
errmsg("could not serialize access due to concurrent update")));
+
+ /* Should not encounter speculative tuple on recheck */
+ Assert(!HeapTupleHeaderIsSpeculative(tuple.t_data));
if (!ItemPointerEquals(&hufd.ctid, &tuple.t_self))
{
/* it was updated, so look at the updated version */
@@ -2302,6 +2338,9 @@ EvalPlanQualFetch(EState *estate, Relation relation, int lockmode,
ReleaseBuffer(buffer);
return NULL;
+ case HeapTupleInvisible:
+ elog(ERROR, "attempted to lock invisible tuple");
+
default:
ReleaseBuffer(buffer);
elog(ERROR, "unrecognized heap_lock_tuple status: %u",
diff --git a/src/backend/executor/nodeLockRows.c b/src/backend/executor/nodeLockRows.c
index bb6df47a95d..5ae106c06ad 100644
--- a/src/backend/executor/nodeLockRows.c
+++ b/src/backend/executor/nodeLockRows.c
@@ -152,10 +152,11 @@ lnext:
* case, so as to avoid the "Halloween problem" of repeated
* update attempts. In the latter case it might be sensible
* to fetch the updated tuple instead, but doing so would
- * require changing heap_lock_tuple as well as heap_update and
- * heap_delete to not complain about updating "invisible"
- * tuples, which seems pretty scary. So for now, treat the
- * tuple as deleted and do not process.
+ * require changing heap_update and heap_delete to not complain
+ * about updating "invisible" tuples, which seems pretty scary
+ * (heap_lock_tuple will not complain, but few callers expect
+ * HeapTupleInvisible, and we're not one of them). So for now,
+ * treat the tuple as deleted and do not process.
*/
goto lnext;
@@ -228,6 +229,9 @@ lnext:
/* Continue loop until we have all target tuples */
break;
+ case HeapTupleInvisible:
+ elog(ERROR, "attempted to lock invisible tuple");
+
default:
elog(ERROR, "unrecognized heap_lock_tuple status: %u",
test);
diff --git a/src/backend/executor/nodeModifyTable.c b/src/backend/executor/nodeModifyTable.c
index 31666edfa8a..34435c7e50a 100644
--- a/src/backend/executor/nodeModifyTable.c
+++ b/src/backend/executor/nodeModifyTable.c
@@ -46,12 +46,22 @@
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "storage/bufmgr.h"
+#include "storage/lmgr.h"
#include "utils/builtins.h"
#include "utils/memutils.h"
#include "utils/rel.h"
#include "utils/tqual.h"
+static bool ExecOnConflictUpdate(ModifyTableState *mtstate,
+ ResultRelInfo *resultRelInfo,
+ ItemPointer conflictTid,
+ TupleTableSlot *planSlot,
+ TupleTableSlot *excludedSlot,
+ EState *estate,
+ bool canSetTag,
+ TupleTableSlot **returning);
+
/*
* Verify that the tuples to be produced by INSERT or UPDATE match the
* target relation's rowtype
@@ -151,6 +161,51 @@ ExecProcessReturning(ProjectionInfo *projectReturning,
return ExecProject(projectReturning, NULL);
}
+/*
+ * ExecCheckHeapTupleVisible -- verify heap tuple is visible
+ *
+ * It would not be consistent with guarantees of the higher isolation levels to
+ * proceed with avoiding insertion (taking speculative insertion's alternative
+ * path) on the basis of another tuple that is not visible to MVCC snapshot.
+ * Check for the need to raise a serialization failure, and do so as necessary.
+ */
+static void
+ExecCheckHeapTupleVisible(EState *estate,
+ HeapTuple tuple,
+ Buffer buffer)
+{
+ if (!IsolationUsesXactSnapshot())
+ return;
+
+ if (!HeapTupleSatisfiesVisibility(tuple, estate->es_snapshot, buffer))
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to concurrent update")));
+}
+
+/*
+ * ExecCheckTIDVisible -- convenience variant of ExecCheckHeapTupleVisible()
+ */
+static void
+ExecCheckTIDVisible(EState *estate,
+ ResultRelInfo *relinfo,
+ ItemPointer tid)
+{
+ Relation rel = relinfo->ri_RelationDesc;
+ Buffer buffer;
+ HeapTupleData tuple;
+
+ /* Redundantly check isolation level */
+ if (!IsolationUsesXactSnapshot())
+ return;
+
+ tuple.t_self = *tid;
+ if (!heap_fetch(rel, SnapshotAny, &tuple, &buffer, false, NULL))
+ elog(ERROR, "failed to fetch conflicting tuple for ON CONFLICT");
+ ExecCheckHeapTupleVisible(estate, &tuple, buffer);
+ ReleaseBuffer(buffer);
+}
+
/* ----------------------------------------------------------------
* ExecInsert
*
@@ -161,8 +216,11 @@ ExecProcessReturning(ProjectionInfo *projectReturning,
* ----------------------------------------------------------------
*/
static TupleTableSlot *
-ExecInsert(TupleTableSlot *slot,
+ExecInsert(ModifyTableState *mtstate,
+ TupleTableSlot *slot,
TupleTableSlot *planSlot,
+ List *arbiterIndexes,
+ OnConflictAction onconflict,
EState *estate,
bool canSetTag)
{
@@ -199,7 +257,15 @@ ExecInsert(TupleTableSlot *slot,
if (resultRelationDesc->rd_rel->relhasoids)
HeapTupleSetOid(tuple, InvalidOid);
- /* BEFORE ROW INSERT Triggers */
+ /*
+ * BEFORE ROW INSERT Triggers.
+ *
+ * Note: We fire BEFORE ROW TRIGGERS for every attempted insertion in an
+ * INSERT ... ON CONFLICT statement. We cannot check for constraint
+ * violations before firing these triggers, because they can change the
+ * values to insert. Also, they can run arbitrary user-defined code with
+ * side-effects that we can't cancel by just not inserting the tuple.
+ */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_insert_before_row)
{
@@ -268,21 +334,132 @@ ExecInsert(TupleTableSlot *slot,
if (resultRelationDesc->rd_att->constr)
ExecConstraints(resultRelInfo, slot, estate);
- /*
- * insert the tuple
- *
- * Note: heap_insert returns the tid (location) of the new tuple in
- * the t_self field.
- */
- newId = heap_insert(resultRelationDesc, tuple,
- estate->es_output_cid, 0, NULL);
+ if (onconflict != ONCONFLICT_NONE && resultRelInfo->ri_NumIndices > 0)
+ {
+ /* Perform a speculative insertion. */
+ uint32 specToken;
+ ItemPointerData conflictTid;
+ bool specConflict;
- /*
- * insert index entries for tuple
- */
- if (resultRelInfo->ri_NumIndices > 0)
+ /*
+ * Do a non-conclusive check for conflicts first.
+ *
+ * We're not holding any locks yet, so this doesn't guarantee that
+ * the later insert won't conflict. But it avoids leaving behind
+ * a lot of canceled speculative insertions, if you run a lot of
+ * INSERT ON CONFLICT statements that do conflict.
+ *
+ * We loop back here if we find a conflict below, either during
+ * the pre-check, or when we re-check after inserting the tuple
+ * speculatively. See the executor README for a full discussion
+ * of speculative insertion.
+ */
+ vlock:
+ specConflict = false;
+ if (!ExecCheckIndexConstraints(slot, estate, &conflictTid,
+ arbiterIndexes))
+ {
+ /* committed conflict tuple found */
+ if (onconflict == ONCONFLICT_UPDATE)
+ {
+ /*
+ * In case of ON CONFLICT DO UPDATE, execute the UPDATE
+ * part. Be prepared to retry if the UPDATE fails because
+ * of another concurrent UPDATE/DELETE to the conflict
+ * tuple.
+ */
+ TupleTableSlot *returning = NULL;
+
+ if (ExecOnConflictUpdate(mtstate, resultRelInfo,
+ &conflictTid, planSlot, slot,
+ estate, canSetTag, &returning))
+ {
+ InstrCountFiltered2(&mtstate->ps, 1);
+ return returning;
+ }
+ else
+ goto vlock;
+ }
+ else
+ {
+ /*
+ * In case of ON CONFLICT DO NOTHING, do nothing.
+ * However, verify that the tuple is visible to the
+ * executor's MVCC snapshot at higher isolation levels.
+ */
+ Assert(onconflict == ONCONFLICT_NOTHING);
+ ExecCheckTIDVisible(estate, resultRelInfo, &conflictTid);
+ InstrCountFiltered2(&mtstate->ps, 1);
+ return NULL;
+ }
+ }
+
+ /*
+ * Before we start insertion proper, acquire our "speculative
+ * insertion lock". Others can use that to wait for us to decide
+ * if we're going to go ahead with the insertion, instead of
+ * waiting for the whole transaction to complete.
+ */
+ specToken = SpeculativeInsertionLockAcquire(GetCurrentTransactionId());
+ HeapTupleHeaderSetSpeculativeToken(tuple->t_data, specToken);
+
+ /* insert the tuple, with the speculative token */
+ newId = heap_insert(resultRelationDesc, tuple,
+ estate->es_output_cid,
+ HEAP_INSERT_SPECULATIVE,
+ NULL);
+
+ /* insert index entries for tuple */
recheckIndexes = ExecInsertIndexTuples(slot, &(tuple->t_self),
- estate);
+ estate, true, &specConflict,
+ arbiterIndexes);
+
+ /* adjust the tuple's state accordingly */
+ if (!specConflict)
+ heap_finish_speculative(resultRelationDesc, tuple);
+ else
+ heap_abort_speculative(resultRelationDesc, tuple);
+
+ /*
+ * Wake up anyone waiting for our decision. They will re-check
+ * the tuple, see that it's no longer speculative, and wait on our
+ * XID as if this was a regularly inserted tuple all along. Or if
+ * we killed the tuple, they will see it's dead, and proceed as if
+ * the tuple never existed.
+ */
+ SpeculativeInsertionLockRelease(GetCurrentTransactionId());
+
+ /*
+ * If there was a conflict, start from the beginning. We'll do
+ * the pre-check again, which will now find the conflicting tuple
+ * (unless it aborts before we get there).
+ */
+ if (specConflict)
+ {
+ list_free(recheckIndexes);
+ goto vlock;
+ }
+
+ /* Since there was no insertion conflict, we're done */
+ }
+ else
+ {
+ /*
+ * insert the tuple normally.
+ *
+ * Note: heap_insert returns the tid (location) of the new tuple
+ * in the t_self field.
+ */
+ newId = heap_insert(resultRelationDesc, tuple,
+ estate->es_output_cid,
+ 0, NULL);
+
+ /* insert index entries for tuple */
+ if (resultRelInfo->ri_NumIndices > 0)
+ recheckIndexes = ExecInsertIndexTuples(slot, &(tuple->t_self),
+ estate, false, NULL,
+ arbiterIndexes);
+ }
}
if (canSetTag)
@@ -800,7 +977,7 @@ lreplace:;
*/
if (resultRelInfo->ri_NumIndices > 0 && !HeapTupleIsHeapOnly(tuple))
recheckIndexes = ExecInsertIndexTuples(slot, &(tuple->t_self),
- estate);
+ estate, false, NULL, NIL);
}
if (canSetTag)
@@ -832,6 +1009,190 @@ lreplace:;
return NULL;
}
+/*
+ * ExecOnConflictUpdate --- execute UPDATE of INSERT ON CONFLICT DO UPDATE
+ *
+ * Try to lock tuple for update as part of speculative insertion. If
+ * a qual originating from ON CONFLICT DO UPDATE is satisfied, update
+ * (but still lock row, even though it may not satisfy estate's
+ * snapshot).
+ *
+ * Returns true if if we're done (with or without an update), or false if
+ * the caller must retry the INSERT from scratch.
+ */
+static bool
+ExecOnConflictUpdate(ModifyTableState *mtstate,
+ ResultRelInfo *resultRelInfo,
+ ItemPointer conflictTid,
+ TupleTableSlot *planSlot,
+ TupleTableSlot *excludedSlot,
+ EState *estate,
+ bool canSetTag,
+ TupleTableSlot **returning)
+{
+ ExprContext *econtext = mtstate->ps.ps_ExprContext;
+ Relation relation = resultRelInfo->ri_RelationDesc;
+ List *onConflictSetWhere = resultRelInfo->ri_onConflictSetWhere;
+ HeapTupleData tuple;
+ HeapUpdateFailureData hufd;
+ LockTupleMode lockmode;
+ HTSU_Result test;
+ Buffer buffer;
+
+ /* Determine lock mode to use */
+ lockmode = ExecUpdateLockMode(estate, resultRelInfo);
+
+ /*
+ * Lock tuple for update. Don't follow updates when tuple cannot be
+ * locked without doing so. A row locking conflict here means our
+ * previous conclusion that the tuple is conclusively committed is not
+ * true anymore.
+ */
+ tuple.t_self = *conflictTid;
+ test = heap_lock_tuple(relation, &tuple, estate->es_output_cid,
+ lockmode, LockWaitBlock, false, &buffer,
+ &hufd);
+ switch (test)
+ {
+ case HeapTupleMayBeUpdated:
+ /* success! */
+ break;
+
+ case HeapTupleInvisible:
+
+ /*
+ * This can occur when a just inserted tuple is updated again in
+ * the same command. E.g. because multiple rows with the same
+ * conflicting key values are inserted.
+ *
+ * This is somewhat similar to the ExecUpdate()
+ * HeapTupleSelfUpdated case. We do not want to proceed because
+ * it would lead to the same row being updated a second time in
+ * some unspecified order, and in contrast to plain UPDATEs
+ * there's no historical behavior to break.
+ *
+ * It is the user's responsibility to prevent this situation from
+ * occurring. These problems are why SQL-2003 similarly specifies
+ * that for SQL MERGE, an exception must be raised in the event of
+ * an attempt to update the same row twice.
+ */
+ if (TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetXmin(tuple.t_data)))
+ ereport(ERROR,
+ (errcode(ERRCODE_CARDINALITY_VIOLATION),
+ errmsg("ON CONFLICT DO UPDATE command cannot affect row a second time"),
+ errhint("Ensure that no rows proposed for insertion within the same command have duplicate constrained values.")));
+
+ /* This shouldn't happen */
+ elog(ERROR, "attempted to lock invisible tuple");
+
+ case HeapTupleSelfUpdated:
+
+ /*
+ * This state should never be reached. As a dirty snapshot is used
+ * to find conflicting tuples, speculative insertion wouldn't have
+ * seen this row to conflict with.
+ */
+ elog(ERROR, "unexpected self-updated tuple");
+
+ case HeapTupleUpdated:
+ if (IsolationUsesXactSnapshot())
+ ereport(ERROR,
+ (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
+ errmsg("could not serialize access due to concurrent update")));
+
+ /*
+ * Tell caller to try again from the very start.
+ *
+ * It does not make sense to use the usual EvalPlanQual() style
+ * loop here, as the new version of the row might not conflict
+ * anymore, or the conflicting tuple has actually been deleted.
+ */
+ ReleaseBuffer(buffer);
+ return false;
+
+ default:
+ elog(ERROR, "unrecognized heap_lock_tuple status: %u", test);
+ }
+
+ /*
+ * Success, the tuple is locked.
+ *
+ * Reset per-tuple memory context to free any expression evaluation
+ * storage allocated in the previous cycle.
+ */
+ ResetExprContext(econtext);
+
+ /*
+ * Verify that the tuple is visible to our MVCC snapshot if the current
+ * isolation level mandates that.
+ *
+ * It's not sufficient to rely on the check within ExecUpdate() as e.g.
+ * CONFLICT ... WHERE clause may prevent us from reaching that.
+ *
+ * This means we only ever continue when a new command in the current
+ * transaction could see the row, even though in READ COMMITTED mode the
+ * tuple will not be visible according to the current statement's
+ * snapshot. This is in line with the way UPDATE deals with newer tuple
+ * versions.
+ */
+ ExecCheckHeapTupleVisible(estate, &tuple, buffer);
+
+ /* Store target's existing tuple in the state's dedicated slot */
+ ExecStoreTuple(&tuple, mtstate->mt_existing, buffer, false);
+
+ /*
+ * Make tuple and any needed join variables available to ExecQual and
+ * ExecProject. The EXCLUDED tuple is installed in ecxt_innertuple, while
+ * the target's existing tuple is installed in the scantuple. EXCLUDED has
+ * been made to reference INNER_VAR in setrefs.c, but there is no other
+ * redirection.
+ */
+ econtext->ecxt_scantuple = mtstate->mt_existing;
+ econtext->ecxt_innertuple = excludedSlot;
+ econtext->ecxt_outertuple = NULL;
+
+ if (!ExecQual(onConflictSetWhere, econtext, false))
+ {
+ ReleaseBuffer(buffer);
+ InstrCountFiltered1(&mtstate->ps, 1);
+ return true; /* done with the tuple */
+ }
+
+ if (resultRelInfo->ri_WithCheckOptions != NIL)
+ {
+ /*
+ * Check target's existing tuple against UPDATE-applicable USING
+ * security barrier quals (if any), enforced here as RLS checks/WCOs.
+ *
+ * The rewriter creates UPDATE RLS checks/WCOs for UPDATE security
+ * quals, and stores them as WCOs of "kind" WCO_RLS_CONFLICT_CHECK,
+ * but that's almost the extent of its special handling for ON
+ * CONFLICT DO UPDATE.
+ *
+ * The rewriter will also have associated UPDATE applicable straight
+ * RLS checks/WCOs for the benefit of the ExecUpdate() call that
+ * follows. INSERTs and UPDATEs naturally have mutually exclusive WCO
+ * kinds, so there is no danger of spurious over-enforcement in the
+ * INSERT or UPDATE path.
+ */
+ ExecWithCheckOptions(WCO_RLS_CONFLICT_CHECK, resultRelInfo,
+ mtstate->mt_existing,
+ mtstate->ps.state);
+ }
+
+ /* Project the new tuple version */
+ ExecProject(resultRelInfo->ri_onConflictSetProj, NULL);
+
+ /* Execute UPDATE with projection */
+ *returning = ExecUpdate(&tuple.t_data->t_ctid, NULL,
+ mtstate->mt_conflproj, planSlot,
+ &mtstate->mt_epqstate, mtstate->ps.state,
+ canSetTag);
+
+ ReleaseBuffer(buffer);
+ return true;
+}
+
/*
* Process BEFORE EACH STATEMENT triggers
@@ -843,6 +1204,9 @@ fireBSTriggers(ModifyTableState *node)
{
case CMD_INSERT:
ExecBSInsertTriggers(node->ps.state, node->resultRelInfo);
+ if (node->mt_onconflict == ONCONFLICT_UPDATE)
+ ExecBSUpdateTriggers(node->ps.state,
+ node->resultRelInfo);
break;
case CMD_UPDATE:
ExecBSUpdateTriggers(node->ps.state, node->resultRelInfo);
@@ -865,6 +1229,9 @@ fireASTriggers(ModifyTableState *node)
switch (node->operation)
{
case CMD_INSERT:
+ if (node->mt_onconflict == ONCONFLICT_UPDATE)
+ ExecASUpdateTriggers(node->ps.state,
+ node->resultRelInfo);
ExecASInsertTriggers(node->ps.state, node->resultRelInfo);
break;
case CMD_UPDATE:
@@ -1062,7 +1429,9 @@ ExecModifyTable(ModifyTableState *node)
switch (operation)
{
case CMD_INSERT:
- slot = ExecInsert(slot, planSlot, estate, node->canSetTag);
+ slot = ExecInsert(node, slot, planSlot,
+ node->mt_arbiterindexes, node->mt_onconflict,
+ estate, node->canSetTag);
break;
case CMD_UPDATE:
slot = ExecUpdate(tupleid, oldtuple, slot, planSlot,
@@ -1137,6 +1506,8 @@ ExecInitModifyTable(ModifyTable *node, EState *estate, int eflags)
mtstate->resultRelInfo = estate->es_result_relations + node->resultRelIndex;
mtstate->mt_arowmarks = (List **) palloc0(sizeof(List *) * nplans);
mtstate->mt_nplans = nplans;
+ mtstate->mt_onconflict = node->onConflictAction;
+ mtstate->mt_arbiterindexes = node->arbiterIndexes;
/* set up epqstate with dummy subplan data for the moment */
EvalPlanQualInit(&mtstate->mt_epqstate, estate, NULL, NIL, node->epqParam);
@@ -1175,7 +1546,7 @@ ExecInitModifyTable(ModifyTable *node, EState *estate, int eflags)
if (resultRelInfo->ri_RelationDesc->rd_rel->relhasindex &&
operation != CMD_DELETE &&
resultRelInfo->ri_IndexRelationDescs == NULL)
- ExecOpenIndices(resultRelInfo);
+ ExecOpenIndices(resultRelInfo, mtstate->mt_onconflict != ONCONFLICT_NONE);
/* Now init the plan for this result rel */
estate->es_result_relation_info = resultRelInfo;
@@ -1280,6 +1651,58 @@ ExecInitModifyTable(ModifyTable *node, EState *estate, int eflags)
}
/*
+ * If needed, Initialize target list, projection and qual for ON CONFLICT
+ * DO UPDATE.
+ */
+ resultRelInfo = mtstate->resultRelInfo;
+ if (node->onConflictAction == ONCONFLICT_UPDATE)
+ {
+ ExprContext *econtext;
+ ExprState *setexpr;
+ TupleDesc tupDesc;
+
+ /* insert may only have one plan, inheritance is not expanded */
+ Assert(nplans == 1);
+
+ /* already exists if created by RETURNING processing above */
+ if (mtstate->ps.ps_ExprContext == NULL)
+ ExecAssignExprContext(estate, &mtstate->ps);
+
+ econtext = mtstate->ps.ps_ExprContext;
+
+ /* initialize slot for the existing tuple */
+ mtstate->mt_existing = ExecInitExtraTupleSlot(mtstate->ps.state);
+ ExecSetSlotDescriptor(mtstate->mt_existing,
+ resultRelInfo->ri_RelationDesc->rd_att);
+
+ mtstate->mt_excludedtlist = node->exclRelTlist;
+
+ /* create target slot for UPDATE SET projection */
+ tupDesc = ExecTypeFromTL((List *) node->onConflictSet,
+ false);
+ mtstate->mt_conflproj = ExecInitExtraTupleSlot(mtstate->ps.state);
+ ExecSetSlotDescriptor(mtstate->mt_conflproj, tupDesc);
+
+ /* build UPDATE SET expression and projection state */
+ setexpr = ExecInitExpr((Expr *) node->onConflictSet, &mtstate->ps);
+ resultRelInfo->ri_onConflictSetProj =
+ ExecBuildProjectionInfo((List *) setexpr, econtext,
+ mtstate->mt_conflproj,
+ resultRelInfo->ri_RelationDesc->rd_att);
+
+ /* build DO UPDATE WHERE clause expression */
+ if (node->onConflictWhere)
+ {
+ ExprState *qualexpr;
+
+ qualexpr = ExecInitExpr((Expr *) node->onConflictWhere,
+ mtstate->mt_plans[0]);
+
+ resultRelInfo->ri_onConflictSetWhere = (List *) qualexpr;
+ }
+ }
+
+ /*
* If we have any secondary relations in an UPDATE or DELETE, they need to
* be treated like non-locked relations in SELECT FOR UPDATE, ie, the
* EvalPlanQual mechanism needs to be told about them. Locate the