aboutsummaryrefslogtreecommitdiff
path: root/src/backend/commands/analyze.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/commands/analyze.c')
-rw-r--r--src/backend/commands/analyze.c1880
1 files changed, 1426 insertions, 454 deletions
diff --git a/src/backend/commands/analyze.c b/src/backend/commands/analyze.c
index 88e56869da5..24cc7a8b254 100644
--- a/src/backend/commands/analyze.c
+++ b/src/backend/commands/analyze.c
@@ -8,19 +8,16 @@
*
*
* IDENTIFICATION
- * $Header: /cvsroot/pgsql/src/backend/commands/analyze.c,v 1.16 2001/03/22 06:16:11 momjian Exp $
+ * $Header: /cvsroot/pgsql/src/backend/commands/analyze.c,v 1.17 2001/05/07 00:43:17 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
-#include <sys/types.h>
-#include <sys/file.h>
-#include <sys/stat.h>
-#include <fcntl.h>
-#include <unistd.h>
+#include <math.h>
#include "access/heapam.h"
+#include "access/tuptoaster.h"
#include "catalog/catname.h"
#include "catalog/indexing.h"
#include "catalog/pg_operator.h"
@@ -29,43 +26,139 @@
#include "commands/vacuum.h"
#include "miscadmin.h"
#include "parser/parse_oper.h"
-#include "tcop/tcopprot.h"
#include "utils/acl.h"
#include "utils/builtins.h"
+#include "utils/datum.h"
#include "utils/fmgroids.h"
-#include "utils/inval.h"
#include "utils/syscache.h"
+#include "utils/tuplesort.h"
-#define swapLong(a,b) {long tmp; tmp=a; a=b; b=tmp;}
-#define swapInt(a,b) {int tmp; tmp=a; a=b; b=tmp;}
-#define swapDatum(a,b) {Datum tmp; tmp=a; a=b; b=tmp;}
-#define VacAttrStatsEqValid(stats) ( stats->f_cmpeq.fn_addr != NULL )
-#define VacAttrStatsLtGtValid(stats) ( stats->f_cmplt.fn_addr != NULL && \
- stats->f_cmpgt.fn_addr != NULL && \
- RegProcedureIsValid(stats->outfunc) )
+/*
+ * Analysis algorithms supported
+ */
+typedef enum {
+ ALG_MINIMAL = 1, /* Compute only most-common-values */
+ ALG_SCALAR /* Compute MCV, histogram, sort correlation */
+} AlgCode;
+
+/*
+ * To avoid consuming too much memory during analysis and/or too much space
+ * in the resulting pg_statistic rows, we ignore varlena datums that are wider
+ * than WIDTH_THRESHOLD (after detoasting!). This is legitimate for MCV
+ * and distinct-value calculations since a wide value is unlikely to be
+ * duplicated at all, much less be a most-common value. For the same reason,
+ * ignoring wide values will not affect our estimates of histogram bin
+ * boundaries very much.
+ */
+#define WIDTH_THRESHOLD 256
+
+/*
+ * We build one of these structs for each attribute (column) that is to be
+ * analyzed. The struct and subsidiary data are in TransactionCommandContext,
+ * so they live until the end of the ANALYZE operation.
+ */
+typedef struct
+{
+ /* These fields are set up by examine_attribute */
+ int attnum; /* attribute number */
+ AlgCode algcode; /* Which algorithm to use for this column */
+ int minrows; /* Minimum # of rows needed for stats */
+ Form_pg_attribute attr; /* copy of pg_attribute row for column */
+ Form_pg_type attrtype; /* copy of pg_type row for column */
+ Oid eqopr; /* '=' operator for datatype, if any */
+ Oid eqfunc; /* and associated function */
+ Oid ltopr; /* '<' operator for datatype, if any */
+
+ /* These fields are filled in by the actual statistics-gathering routine */
+ bool stats_valid;
+ float4 stanullfrac; /* fraction of entries that are NULL */
+ int4 stawidth; /* average width */
+ float4 stadistinct; /* # distinct values */
+ int2 stakind[STATISTIC_NUM_SLOTS];
+ Oid staop[STATISTIC_NUM_SLOTS];
+ int numnumbers[STATISTIC_NUM_SLOTS];
+ float4 *stanumbers[STATISTIC_NUM_SLOTS];
+ int numvalues[STATISTIC_NUM_SLOTS];
+ Datum *stavalues[STATISTIC_NUM_SLOTS];
+} VacAttrStats;
+
+
+typedef struct
+{
+ Datum value; /* a data value */
+ int tupno; /* position index for tuple it came from */
+} ScalarItem;
+
+typedef struct
+{
+ int count; /* # of duplicates */
+ int first; /* values[] index of first occurrence */
+} ScalarMCVItem;
+
+
+#define swapInt(a,b) {int _tmp; _tmp=a; a=b; b=_tmp;}
+#define swapDatum(a,b) {Datum _tmp; _tmp=a; a=b; b=_tmp;}
-static void attr_stats(Relation onerel, int attr_cnt, VacAttrStats *vacattrstats, HeapTuple tuple);
-static void bucketcpy(Form_pg_attribute attr, Datum value, Datum *bucket, int *bucket_len);
-static void update_attstats(Oid relid, int natts, VacAttrStats *vacattrstats);
-static void del_stats(Oid relid, int attcnt, int *attnums);
+
+static int MESSAGE_LEVEL;
+
+/* context information for compare_scalars() */
+static FmgrInfo *datumCmpFn;
+static SortFunctionKind datumCmpFnKind;
+static int *datumCmpTupnoLink;
+
+
+static VacAttrStats *examine_attribute(Relation onerel, int attnum);
+static int acquire_sample_rows(Relation onerel, HeapTuple *rows,
+ int targrows, long *totalrows);
+static double random_fract(void);
+static double init_selection_state(int n);
+static long select_next_random_record(long t, int n, double *stateptr);
+static int compare_rows(const void *a, const void *b);
+static int compare_scalars(const void *a, const void *b);
+static int compare_mcvs(const void *a, const void *b);
+static OffsetNumber get_page_max_offset(Relation relation,
+ BlockNumber blocknumber);
+static void compute_minimal_stats(VacAttrStats *stats,
+ TupleDesc tupDesc, long totalrows,
+ HeapTuple *rows, int numrows);
+static void compute_scalar_stats(VacAttrStats *stats,
+ TupleDesc tupDesc, long totalrows,
+ HeapTuple *rows, int numrows);
+static void update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats);
/*
- * analyze_rel() -- analyze relation
+ * analyze_rel() -- analyze one relation
*/
void
-analyze_rel(Oid relid, List *anal_cols2, int MESSAGE_LEVEL)
+analyze_rel(Oid relid, VacuumStmt *vacstmt)
{
- HeapTuple tuple;
Relation onerel;
- int32 i;
- int attr_cnt,
- *attnums = NULL;
Form_pg_attribute *attr;
- VacAttrStats *vacattrstats;
- HeapScanDesc scan;
+ int attr_cnt,
+ tcnt,
+ i;
+ VacAttrStats **vacattrstats;
+ int targrows,
+ numrows;
+ long totalrows;
+ HeapTuple *rows;
+ HeapTuple tuple;
+
+ if (vacstmt->verbose)
+ MESSAGE_LEVEL = NOTICE;
+ else
+ MESSAGE_LEVEL = DEBUG;
+ /*
+ * Begin a transaction for analyzing this relation.
+ *
+ * Note: All memory allocated during ANALYZE will live in
+ * TransactionCommandContext or a subcontext thereof, so it will
+ * all be released by transaction commit at the end of this routine.
+ */
StartTransactionCommand();
/*
@@ -76,7 +169,7 @@ analyze_rel(Oid relid, List *anal_cols2, int MESSAGE_LEVEL)
/*
* Race condition -- if the pg_class tuple has gone away since the
- * last time we saw it, we don't need to vacuum it.
+ * last time we saw it, we don't need to process it.
*/
tuple = SearchSysCache(RELOID,
ObjectIdGetDatum(relid),
@@ -88,8 +181,7 @@ analyze_rel(Oid relid, List *anal_cols2, int MESSAGE_LEVEL)
}
/*
- * We can VACUUM ANALYZE any table except pg_statistic. see
- * update_relstats
+ * We can ANALYZE any table except pg_statistic. See update_attstats
*/
if (strcmp(NameStr(((Form_pg_class) GETSTRUCT(tuple))->relname),
StatisticRelationName) == 0)
@@ -100,586 +192,1466 @@ analyze_rel(Oid relid, List *anal_cols2, int MESSAGE_LEVEL)
}
ReleaseSysCache(tuple);
+ /*
+ * Open the class, getting only a read lock on it, and check permissions
+ */
onerel = heap_open(relid, AccessShareLock);
if (!pg_ownercheck(GetUserId(), RelationGetRelationName(onerel),
RELNAME))
{
-
- /*
- * we already did an elog during vacuum elog(NOTICE, "Skipping
- * \"%s\" --- only table owner can VACUUM it",
- * RelationGetRelationName(onerel));
- */
+ /* No need for a notice if we already complained during VACUUM */
+ if (!vacstmt->vacuum)
+ elog(NOTICE, "Skipping \"%s\" --- only table owner can ANALYZE it",
+ RelationGetRelationName(onerel));
heap_close(onerel, NoLock);
CommitTransactionCommand();
return;
}
- elog(MESSAGE_LEVEL, "Analyzing...");
+ elog(MESSAGE_LEVEL, "Analyzing %s", RelationGetRelationName(onerel));
- attr_cnt = onerel->rd_att->natts;
+ /*
+ * Determine which columns to analyze
+ *
+ * Note that system attributes are never analyzed.
+ */
attr = onerel->rd_att->attrs;
+ attr_cnt = onerel->rd_att->natts;
- if (anal_cols2 != NIL)
+ if (vacstmt->va_cols != NIL)
{
- int tcnt = 0;
List *le;
- if (length(anal_cols2) > attr_cnt)
- elog(ERROR, "vacuum: too many attributes specified for relation %s",
- RelationGetRelationName(onerel));
- attnums = (int *) palloc(attr_cnt * sizeof(int));
- foreach(le, anal_cols2)
+ vacattrstats = (VacAttrStats **) palloc(length(vacstmt->va_cols) *
+ sizeof(VacAttrStats *));
+ tcnt = 0;
+ foreach(le, vacstmt->va_cols)
{
- char *col = (char *) lfirst(le);
+ char *col = strVal(lfirst(le));
for (i = 0; i < attr_cnt; i++)
{
if (namestrcmp(&(attr[i]->attname), col) == 0)
break;
}
- if (i < attr_cnt) /* found */
- attnums[tcnt++] = i;
- else
- {
- elog(ERROR, "vacuum: there is no attribute %s in %s",
+ if (i >= attr_cnt)
+ elog(ERROR, "ANALYZE: there is no attribute %s in %s",
col, RelationGetRelationName(onerel));
- }
+ vacattrstats[tcnt] = examine_attribute(onerel, i+1);
+ if (vacattrstats[tcnt] != NULL)
+ tcnt++;
+ }
+ attr_cnt = tcnt;
+ }
+ else
+ {
+ vacattrstats = (VacAttrStats **) palloc(attr_cnt *
+ sizeof(VacAttrStats *));
+ tcnt = 0;
+ for (i = 0; i < attr_cnt; i++)
+ {
+ vacattrstats[tcnt] = examine_attribute(onerel, i+1);
+ if (vacattrstats[tcnt] != NULL)
+ tcnt++;
}
attr_cnt = tcnt;
}
- vacattrstats = (VacAttrStats *) palloc(attr_cnt * sizeof(VacAttrStats));
+ /*
+ * Quit if no analyzable columns
+ */
+ if (attr_cnt <= 0)
+ {
+ heap_close(onerel, NoLock);
+ CommitTransactionCommand();
+ return;
+ }
+ /*
+ * Determine how many rows we need to sample, using the worst case
+ * from all analyzable columns. We use a lower bound of 100 rows
+ * to avoid possible overflow in Vitter's algorithm.
+ */
+ targrows = 100;
for (i = 0; i < attr_cnt; i++)
{
- Operator func_operator;
- VacAttrStats *stats;
-
- stats = &vacattrstats[i];
- stats->attr = palloc(ATTRIBUTE_TUPLE_SIZE);
- memcpy(stats->attr, attr[((attnums) ? attnums[i] : i)],
- ATTRIBUTE_TUPLE_SIZE);
- stats->best = stats->guess1 = stats->guess2 = 0;
- stats->max = stats->min = 0;
- stats->best_len = stats->guess1_len = stats->guess2_len = 0;
- stats->max_len = stats->min_len = 0;
- stats->initialized = false;
- stats->best_cnt = stats->guess1_cnt = stats->guess1_hits = stats->guess2_hits = 0;
- stats->max_cnt = stats->min_cnt = stats->null_cnt = stats->nonnull_cnt = 0;
-
- func_operator = compatible_oper("=",
- stats->attr->atttypid,
- stats->attr->atttypid,
- true);
- if (func_operator != NULL)
- {
- fmgr_info(oprfuncid(func_operator), &(stats->f_cmpeq));
- ReleaseSysCache(func_operator);
- }
- else
- stats->f_cmpeq.fn_addr = NULL;
+ if (targrows < vacattrstats[i]->minrows)
+ targrows = vacattrstats[i]->minrows;
+ }
+
+ /*
+ * Acquire the sample rows
+ */
+ rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
+ numrows = acquire_sample_rows(onerel, rows, targrows, &totalrows);
- func_operator = compatible_oper("<",
- stats->attr->atttypid,
- stats->attr->atttypid,
- true);
- if (func_operator != NULL)
+ /*
+ * If we are running a standalone ANALYZE, update pages/tuples stats
+ * in pg_class. We have the accurate page count from heap_beginscan,
+ * but only an approximate number of tuples; therefore, if we are
+ * part of VACUUM ANALYZE do *not* overwrite the accurate count already
+ * inserted by VACUUM.
+ */
+ if (!vacstmt->vacuum)
+ vac_update_relstats(RelationGetRelid(onerel),
+ onerel->rd_nblocks,
+ (double) totalrows,
+ RelationGetForm(onerel)->relhasindex);
+
+ /*
+ * Compute the statistics. Temporary results during the calculations
+ * for each column are stored in a child context. The calc routines
+ * are responsible to make sure that whatever they store into the
+ * VacAttrStats structure is allocated in TransactionCommandContext.
+ */
+ if (numrows > 0)
+ {
+ MemoryContext col_context,
+ old_context;
+
+ col_context = AllocSetContextCreate(CurrentMemoryContext,
+ "Analyze Column",
+ ALLOCSET_DEFAULT_MINSIZE,
+ ALLOCSET_DEFAULT_INITSIZE,
+ ALLOCSET_DEFAULT_MAXSIZE);
+ old_context = MemoryContextSwitchTo(col_context);
+ for (i = 0; i < attr_cnt; i++)
{
- fmgr_info(oprfuncid(func_operator), &(stats->f_cmplt));
- stats->op_cmplt = oprid(func_operator);
- ReleaseSysCache(func_operator);
+ switch (vacattrstats[i]->algcode)
+ {
+ case ALG_MINIMAL:
+ compute_minimal_stats(vacattrstats[i],
+ onerel->rd_att, totalrows,
+ rows, numrows);
+ break;
+ case ALG_SCALAR:
+ compute_scalar_stats(vacattrstats[i],
+ onerel->rd_att, totalrows,
+ rows, numrows);
+ break;
+ }
+ MemoryContextResetAndDeleteChildren(col_context);
}
- else
+ MemoryContextSwitchTo(old_context);
+ MemoryContextDelete(col_context);
+
+ /*
+ * Emit the completed stats rows into pg_statistic, replacing any
+ * previous statistics for the target columns. (If there are stats
+ * in pg_statistic for columns we didn't process, we leave them alone.)
+ */
+ update_attstats(relid, attr_cnt, vacattrstats);
+ }
+
+ /*
+ * Close source relation now, but keep lock so that no one deletes it
+ * before we commit. (If someone did, they'd fail to clean up the
+ * entries we made in pg_statistic.)
+ */
+ heap_close(onerel, NoLock);
+
+ /* Commit and release working memory */
+ CommitTransactionCommand();
+}
+
+/*
+ * examine_attribute -- pre-analysis of a single column
+ *
+ * Determine whether the column is analyzable; if so, create and initialize
+ * a VacAttrStats struct for it. If not, return NULL.
+ */
+static VacAttrStats *
+examine_attribute(Relation onerel, int attnum)
+{
+ Form_pg_attribute attr = onerel->rd_att->attrs[attnum-1];
+ Operator func_operator;
+ Oid oprrest;
+ HeapTuple typtuple;
+ Oid eqopr = InvalidOid;
+ Oid eqfunc = InvalidOid;
+ Oid ltopr = InvalidOid;
+ VacAttrStats *stats;
+
+ /* Don't analyze column if user has specified not to */
+ if (attr->attstattarget <= 0)
+ return NULL;
+
+ /* If column has no "=" operator, we can't do much of anything */
+ func_operator = compatible_oper("=",
+ attr->atttypid,
+ attr->atttypid,
+ true);
+ if (func_operator != NULL)
+ {
+ oprrest = ((Form_pg_operator) GETSTRUCT(func_operator))->oprrest;
+ if (oprrest == F_EQSEL)
{
- stats->f_cmplt.fn_addr = NULL;
- stats->op_cmplt = InvalidOid;
+ eqopr = oprid(func_operator);
+ eqfunc = oprfuncid(func_operator);
}
+ ReleaseSysCache(func_operator);
+ }
+ if (!OidIsValid(eqfunc))
+ return NULL;
- func_operator = compatible_oper(">",
- stats->attr->atttypid,
- stats->attr->atttypid,
- true);
- if (func_operator != NULL)
+ /*
+ * If we have "=" then we're at least able to do the minimal algorithm,
+ * so start filling in a VacAttrStats struct.
+ */
+ stats = (VacAttrStats *) palloc(sizeof(VacAttrStats));
+ MemSet(stats, 0, sizeof(VacAttrStats));
+ stats->attnum = attnum;
+ stats->attr = (Form_pg_attribute) palloc(ATTRIBUTE_TUPLE_SIZE);
+ memcpy(stats->attr, attr, ATTRIBUTE_TUPLE_SIZE);
+ typtuple = SearchSysCache(TYPEOID,
+ ObjectIdGetDatum(attr->atttypid),
+ 0, 0, 0);
+ if (!HeapTupleIsValid(typtuple))
+ elog(ERROR, "cache lookup of type %u failed", attr->atttypid);
+ stats->attrtype = (Form_pg_type) palloc(sizeof(FormData_pg_type));
+ memcpy(stats->attrtype, GETSTRUCT(typtuple), sizeof(FormData_pg_type));
+ ReleaseSysCache(typtuple);
+ stats->eqopr = eqopr;
+ stats->eqfunc = eqfunc;
+
+ /* Is there a "<" operator with suitable semantics? */
+ func_operator = compatible_oper("<",
+ attr->atttypid,
+ attr->atttypid,
+ true);
+ if (func_operator != NULL)
+ {
+ oprrest = ((Form_pg_operator) GETSTRUCT(func_operator))->oprrest;
+ if (oprrest == F_SCALARLTSEL)
{
- fmgr_info(oprfuncid(func_operator), &(stats->f_cmpgt));
- ReleaseSysCache(func_operator);
+ ltopr = oprid(func_operator);
}
- else
- stats->f_cmpgt.fn_addr = NULL;
+ ReleaseSysCache(func_operator);
+ }
+ stats->ltopr = ltopr;
+
+ /*
+ * Determine the algorithm to use (this will get more complicated later)
+ */
+ if (OidIsValid(ltopr))
+ {
+ /* Seems to be a scalar datatype */
+ stats->algcode = ALG_SCALAR;
+ /*--------------------
+ * The following choice of minrows is based on the paper
+ * "Random sampling for histogram construction: how much is enough?"
+ * by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
+ * Proceedings of ACM SIGMOD International Conference on Management
+ * of Data, 1998, Pages 436-447. Their Corollary 1 to Theorem 5
+ * says that for table size n, histogram size k, maximum relative
+ * error in bin size f, and error probability gamma, the minimum
+ * random sample size is
+ * r = 4 * k * ln(2*n/gamma) / f^2
+ * Taking f = 0.5, gamma = 0.01, n = 1 million rows, we obtain
+ * r = 305.82 * k
+ * Note that because of the log function, the dependence on n is
+ * quite weak; even at n = 1 billion, a 300*k sample gives <= 0.59
+ * bin size error with probability 0.99. So there's no real need to
+ * scale for n, which is a good thing because we don't necessarily
+ * know it at this point.
+ *--------------------
+ */
+ stats->minrows = 300 * attr->attstattarget;
+ }
+ else
+ {
+ /* Can't do much but the minimal stuff */
+ stats->algcode = ALG_MINIMAL;
+ /* Might as well use the same minrows as above */
+ stats->minrows = 300 * attr->attstattarget;
+ }
+
+ return stats;
+}
- tuple = SearchSysCache(TYPEOID,
- ObjectIdGetDatum(stats->attr->atttypid),
- 0, 0, 0);
- if (HeapTupleIsValid(tuple))
+/*
+ * acquire_sample_rows -- acquire a random sample of rows from the table
+ *
+ * Up to targrows rows are collected (if there are fewer than that many
+ * rows in the table, all rows are collected). When the table is larger
+ * than targrows, a truly random sample is collected: every row has an
+ * equal chance of ending up in the final sample.
+ *
+ * We also estimate the total number of rows in the table, and return that
+ * into *totalrows.
+ *
+ * The returned list of tuples is in order by physical position in the table.
+ * (We will rely on this later to derive correlation estimates.)
+ */
+static int
+acquire_sample_rows(Relation onerel, HeapTuple *rows, int targrows,
+ long *totalrows)
+{
+ int numrows = 0;
+ HeapScanDesc scan;
+ HeapTuple tuple;
+ ItemPointer lasttuple;
+ BlockNumber lastblock,
+ estblock;
+ OffsetNumber lastoffset;
+ int numest;
+ double tuplesperpage;
+ long t;
+ double rstate;
+
+ Assert(targrows > 1);
+ /*
+ * Do a simple linear scan until we reach the target number of rows.
+ */
+ scan = heap_beginscan(onerel, false, SnapshotNow, 0, NULL);
+ while (HeapTupleIsValid(tuple = heap_getnext(scan, 0)))
+ {
+ rows[numrows++] = heap_copytuple(tuple);
+ if (numrows >= targrows)
+ break;
+ }
+ heap_endscan(scan);
+ /*
+ * If we ran out of tuples then we're done, no matter how few we
+ * collected. No sort is needed, since they're already in order.
+ */
+ if (!HeapTupleIsValid(tuple))
+ {
+ *totalrows = numrows;
+ return numrows;
+ }
+ /*
+ * Otherwise, start replacing tuples in the sample until we reach the
+ * end of the relation. This algorithm is from Jeff Vitter's paper
+ * (see full citation below). It works by repeatedly computing the number
+ * of the next tuple we want to fetch, which will replace a randomly
+ * chosen element of the reservoir (current set of tuples). At all times
+ * the reservoir is a true random sample of the tuples we've passed over
+ * so far, so when we fall off the end of the relation we're done.
+ *
+ * A slight difficulty is that since we don't want to fetch tuples or even
+ * pages that we skip over, it's not possible to fetch *exactly* the N'th
+ * tuple at each step --- we don't know how many valid tuples are on
+ * the skipped pages. We handle this by assuming that the average number
+ * of valid tuples/page on the pages already scanned over holds good for
+ * the rest of the relation as well; this lets us estimate which page
+ * the next tuple should be on and its position in the page. Then we
+ * fetch the first valid tuple at or after that position, being careful
+ * not to use the same tuple twice. This approach should still give a
+ * good random sample, although it's not perfect.
+ */
+ lasttuple = &(rows[numrows-1]->t_self);
+ lastblock = ItemPointerGetBlockNumber(lasttuple);
+ lastoffset = ItemPointerGetOffsetNumber(lasttuple);
+ /*
+ * If possible, estimate tuples/page using only completely-scanned pages.
+ */
+ for (numest = numrows; numest > 0; numest--)
+ {
+ if (ItemPointerGetBlockNumber(&(rows[numest-1]->t_self)) != lastblock)
+ break;
+ }
+ if (numest == 0)
+ {
+ numest = numrows; /* don't have a full page? */
+ estblock = lastblock + 1;
+ }
+ else
+ {
+ estblock = lastblock;
+ }
+ tuplesperpage = (double) numest / (double) estblock;
+
+ t = numrows; /* t is the # of records processed so far */
+ rstate = init_selection_state(targrows);
+ for (;;)
+ {
+ double targpos;
+ BlockNumber targblock;
+ OffsetNumber targoffset,
+ maxoffset;
+
+ t = select_next_random_record(t, targrows, &rstate);
+ /* Try to read the t'th record in the table */
+ targpos = (double) t / tuplesperpage;
+ targblock = (BlockNumber) targpos;
+ targoffset = ((int) (targpos - targblock) * tuplesperpage) +
+ FirstOffsetNumber;
+ /* Make sure we are past the last selected record */
+ if (targblock <= lastblock)
{
- stats->outfunc = ((Form_pg_type) GETSTRUCT(tuple))->typoutput;
- stats->typelem = ((Form_pg_type) GETSTRUCT(tuple))->typelem;
- ReleaseSysCache(tuple);
+ targblock = lastblock;
+ if (targoffset <= lastoffset)
+ targoffset = lastoffset + 1;
}
- else
+ /* Loop to find first valid record at or after given position */
+ pageloop:;
+ /*
+ * Have we fallen off the end of the relation? (We rely on
+ * heap_beginscan to have updated rd_nblocks.)
+ */
+ if (targblock >= onerel->rd_nblocks)
+ break;
+ maxoffset = get_page_max_offset(onerel, targblock);
+ for (;;)
{
- stats->outfunc = InvalidOid;
- stats->typelem = InvalidOid;
+ HeapTupleData targtuple;
+ Buffer targbuffer;
+
+ if (targoffset > maxoffset)
+ {
+ /* Fell off end of this page, try next */
+ targblock++;
+ targoffset = FirstOffsetNumber;
+ goto pageloop;
+ }
+ ItemPointerSet(&targtuple.t_self, targblock, targoffset);
+ heap_fetch(onerel, SnapshotNow, &targtuple, &targbuffer);
+ if (targtuple.t_data != NULL)
+ {
+ /*
+ * Found a suitable tuple, so save it, replacing one old
+ * tuple at random
+ */
+ int k = (int) (targrows * random_fract());
+
+ Assert(k >= 0 && k < targrows);
+ heap_freetuple(rows[k]);
+ rows[k] = heap_copytuple(&targtuple);
+ ReleaseBuffer(targbuffer);
+ lastblock = targblock;
+ lastoffset = targoffset;
+ break;
+ }
+ /* this tuple is dead, so advance to next one on same page */
+ targoffset++;
}
}
- /* delete existing pg_statistic rows for relation */
- del_stats(relid, ((attnums) ? attr_cnt : 0), attnums);
-
- /* scan relation to gather statistics */
- scan = heap_beginscan(onerel, false, SnapshotNow, 0, NULL);
- while (HeapTupleIsValid(tuple = heap_getnext(scan, 0)))
- attr_stats(onerel, attr_cnt, vacattrstats, tuple);
+ /*
+ * Now we need to sort the collected tuples by position (itempointer).
+ */
+ qsort((void *) rows, numrows, sizeof(HeapTuple), compare_rows);
- heap_endscan(scan);
+ /*
+ * Estimate total number of valid rows in relation.
+ */
+ *totalrows = (long) (onerel->rd_nblocks * tuplesperpage + 0.5);
- /* close rel, but keep lock so it doesn't go away before commit */
- heap_close(onerel, NoLock);
+ return numrows;
+}
- /* update statistics in pg_class */
- update_attstats(relid, attr_cnt, vacattrstats);
+/* Select a random value R uniformly distributed in 0 < R < 1 */
+static double
+random_fract(void)
+{
+ long z;
- CommitTransactionCommand();
+ /* random() can produce endpoint values, try again if so */
+ do
+ {
+ z = random();
+ } while (! (z > 0 && z < MAX_RANDOM_VALUE));
+ return (double) z / (double) MAX_RANDOM_VALUE;
}
/*
- * attr_stats() -- compute column statistics used by the planner
+ * These two routines embody Algorithm Z from "Random sampling with a
+ * reservoir" by Jeffrey S. Vitter, in ACM Trans. Math. Softw. 11, 1
+ * (Mar. 1985), Pages 37-57. While Vitter describes his algorithm in terms
+ * of the count S of records to skip before processing another record,
+ * it is convenient to work primarily with t, the index (counting from 1)
+ * of the last record processed and next record to process. The only extra
+ * state needed between calls is W, a random state variable.
*
- * We compute the column min, max, null and non-null counts.
- * Plus we attempt to find the count of the value that occurs most
- * frequently in each column. These figures are used to compute
- * the selectivity of the column.
+ * init_selection_state computes the initial W value.
*
- * We use a three-bucket cache to get the most frequent item.
- * The 'guess' buckets count hits. A cache miss causes guess1
- * to get the most hit 'guess' item in the most recent cycle, and
- * the new item goes into guess2. Whenever the total count of hits
- * of a 'guess' entry is larger than 'best', 'guess' becomes 'best'.
+ * Given that we've already processed t records (t >= n),
+ * select_next_random_record determines the number of the next record to
+ * process.
+ */
+static double
+init_selection_state(int n)
+{
+ /* Initial value of W (for use when Algorithm Z is first applied) */
+ return exp(- log(random_fract())/n);
+}
+
+static long
+select_next_random_record(long t, int n, double *stateptr)
+{
+ /* The magic constant here is T from Vitter's paper */
+ if (t <= (22 * n))
+ {
+ /* Process records using Algorithm X until t is large enough */
+ double V,
+ quot;
+
+ V = random_fract(); /* Generate V */
+ t++;
+ quot = (double) (t - n) / (double) t;
+ /* Find min S satisfying (4.1) */
+ while (quot > V)
+ {
+ t++;
+ quot *= (double) (t - n) / (double) t;
+ }
+ }
+ else
+ {
+ /* Now apply Algorithm Z */
+ double W = *stateptr;
+ long term = t - n + 1;
+ int S;
+
+ for (;;)
+ {
+ long numer,
+ numer_lim,
+ denom;
+ double U,
+ X,
+ lhs,
+ rhs,
+ y,
+ tmp;
+
+ /* Generate U and X */
+ U = random_fract();
+ X = t * (W - 1.0);
+ S = X; /* S is tentatively set to floor(X) */
+ /* Test if U <= h(S)/cg(X) in the manner of (6.3) */
+ tmp = (double) (t + 1) / (double) term;
+ lhs = exp(log(((U * tmp * tmp) * (term + S))/(t + X))/n);
+ rhs = (((t + X)/(term + S)) * term)/t;
+ if (lhs <= rhs)
+ {
+ W = rhs/lhs;
+ break;
+ }
+ /* Test if U <= f(S)/cg(X) */
+ y = (((U * (t + 1))/term) * (t + S + 1))/(t + X);
+ if (n < S)
+ {
+ denom = t;
+ numer_lim = term + S;
+ }
+ else
+ {
+ denom = t - n + S;
+ numer_lim = t + 1;
+ }
+ for (numer = t + S; numer >= numer_lim; numer--)
+ {
+ y *= (double) numer / (double) denom;
+ denom--;
+ }
+ W = exp(- log(random_fract())/n); /* Generate W in advance */
+ if (exp(log(y)/n) <= (t + X)/t)
+ break;
+ }
+ t += S + 1;
+ *stateptr = W;
+ }
+ return t;
+}
+
+/*
+ * qsort comparator for sorting rows[] array
+ */
+static int
+compare_rows(const void *a, const void *b)
+{
+ HeapTuple ha = * (HeapTuple *) a;
+ HeapTuple hb = * (HeapTuple *) b;
+ BlockNumber ba = ItemPointerGetBlockNumber(&ha->t_self);
+ OffsetNumber oa = ItemPointerGetOffsetNumber(&ha->t_self);
+ BlockNumber bb = ItemPointerGetBlockNumber(&hb->t_self);
+ OffsetNumber ob = ItemPointerGetOffsetNumber(&hb->t_self);
+
+ if (ba < bb)
+ return -1;
+ if (ba > bb)
+ return 1;
+ if (oa < ob)
+ return -1;
+ if (oa > ob)
+ return 1;
+ return 0;
+}
+
+/*
+ * Discover the largest valid tuple offset number on the given page
+ *
+ * This code probably ought to live in some other module.
+ */
+static OffsetNumber
+get_page_max_offset(Relation relation, BlockNumber blocknumber)
+{
+ Buffer buffer;
+ Page p;
+ OffsetNumber offnum;
+
+ buffer = ReadBuffer(relation, blocknumber);
+ if (!BufferIsValid(buffer))
+ elog(ERROR, "get_page_max_offset: %s relation: ReadBuffer(%ld) failed",
+ RelationGetRelationName(relation), (long) blocknumber);
+ LockBuffer(buffer, BUFFER_LOCK_SHARE);
+ p = BufferGetPage(buffer);
+ offnum = PageGetMaxOffsetNumber(p);
+ LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
+ ReleaseBuffer(buffer);
+ return offnum;
+}
+
+
+/*
+ * compute_minimal_stats() -- compute minimal column statistics
*
- * This method works perfectly for columns with unique values, and columns
- * with only two unique values, plus nulls.
+ * We use this when we can find only an "=" operator for the datatype.
*
- * It becomes less perfect as the number of unique values increases and
- * their distribution in the table becomes more random.
+ * We determine the fraction of non-null rows, the average width, the
+ * most common values, and the (estimated) number of distinct values.
*
+ * The most common values are determined by brute force: we keep a list
+ * of previously seen values, ordered by number of times seen, as we scan
+ * the samples. A newly seen value is inserted just after the last
+ * multiply-seen value, causing the bottommost (oldest) singly-seen value
+ * to drop off the list. The accuracy of this method, and also its cost,
+ * depend mainly on the length of the list we are willing to keep.
*/
static void
-attr_stats(Relation onerel, int attr_cnt, VacAttrStats *vacattrstats, HeapTuple tuple)
+compute_minimal_stats(VacAttrStats *stats,
+ TupleDesc tupDesc, long totalrows,
+ HeapTuple *rows, int numrows)
{
int i;
- TupleDesc tupDesc = onerel->rd_att;
-
- for (i = 0; i < attr_cnt; i++)
+ int null_cnt = 0;
+ int nonnull_cnt = 0;
+ int toowide_cnt = 0;
+ double total_width = 0;
+ bool is_varlena = (!stats->attr->attbyval &&
+ stats->attr->attlen == -1);
+ FmgrInfo f_cmpeq;
+ typedef struct
+ {
+ Datum value;
+ int count;
+ } TrackItem;
+ TrackItem *track;
+ int track_cnt,
+ track_max;
+ int num_mcv = stats->attr->attstattarget;
+
+ /* We track up to 2*n values for an n-element MCV list; but at least 10 */
+ track_max = 2 * num_mcv;
+ if (track_max < 10)
+ track_max = 10;
+ track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
+ track_cnt = 0;
+
+ fmgr_info(stats->eqfunc, &f_cmpeq);
+
+ for (i = 0; i < numrows; i++)
{
- VacAttrStats *stats = &vacattrstats[i];
- Datum origvalue;
+ HeapTuple tuple = rows[i];
Datum value;
bool isnull;
- bool value_hit;
-
- if (!VacAttrStatsEqValid(stats))
- continue;
-
-#ifdef _DROP_COLUMN_HACK__
- if (COLUMN_IS_DROPPED(stats->attr))
- continue;
-#endif /* _DROP_COLUMN_HACK__ */
+ bool match;
+ int firstcount1,
+ j;
- origvalue = heap_getattr(tuple, stats->attr->attnum,
- tupDesc, &isnull);
+ value = heap_getattr(tuple, stats->attnum, tupDesc, &isnull);
+ /* Check for null/nonnull */
if (isnull)
{
- stats->null_cnt++;
+ null_cnt++;
continue;
}
- stats->nonnull_cnt++;
+ nonnull_cnt++;
/*
- * If the value is toasted, detoast it to avoid repeated
- * detoastings and resultant memory leakage inside the comparison
- * routines.
+ * If it's a varlena field, add up widths for average width
+ * calculation. Note that if the value is toasted, we
+ * use the toasted width. We don't bother with this calculation
+ * if it's a fixed-width type.
*/
- if (!stats->attr->attbyval && stats->attr->attlen == -1)
- value = PointerGetDatum(PG_DETOAST_DATUM(origvalue));
- else
- value = origvalue;
-
- if (!stats->initialized)
+ if (is_varlena)
{
- bucketcpy(stats->attr, value, &stats->best, &stats->best_len);
- /* best_cnt gets incremented below */
- bucketcpy(stats->attr, value, &stats->guess1, &stats->guess1_len);
- stats->guess1_cnt = stats->guess1_hits = 1;
- bucketcpy(stats->attr, value, &stats->guess2, &stats->guess2_len);
- stats->guess2_hits = 1;
- if (VacAttrStatsLtGtValid(stats))
+ total_width += VARSIZE(DatumGetPointer(value));
+ /*
+ * If the value is toasted, we want to detoast it just once to
+ * avoid repeated detoastings and resultant excess memory usage
+ * during the comparisons. Also, check to see if the value is
+ * excessively wide, and if so don't detoast at all --- just
+ * ignore the value.
+ */
+ if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
{
- bucketcpy(stats->attr, value, &stats->max, &stats->max_len);
- bucketcpy(stats->attr, value, &stats->min, &stats->min_len);
- /* min_cnt, max_cnt get incremented below */
+ toowide_cnt++;
+ continue;
}
- stats->initialized = true;
+ value = PointerGetDatum(PG_DETOAST_DATUM(value));
}
- if (VacAttrStatsLtGtValid(stats))
+ /*
+ * See if the value matches anything we're already tracking.
+ */
+ match = false;
+ firstcount1 = track_cnt;
+ for (j = 0; j < track_cnt; j++)
{
- if (DatumGetBool(FunctionCall2(&stats->f_cmplt,
- value, stats->min)))
+ if (DatumGetBool(FunctionCall2(&f_cmpeq, value, track[j].value)))
{
- bucketcpy(stats->attr, value, &stats->min, &stats->min_len);
- stats->min_cnt = 1;
+ match = true;
+ break;
}
- else if (DatumGetBool(FunctionCall2(&stats->f_cmpeq,
- value, stats->min)))
- stats->min_cnt++;
+ if (j < firstcount1 && track[j].count == 1)
+ firstcount1 = j;
+ }
- if (DatumGetBool(FunctionCall2(&stats->f_cmpgt,
- value, stats->max)))
+ if (match)
+ {
+ /* Found a match */
+ track[j].count++;
+ /* This value may now need to "bubble up" in the track list */
+ while (j > 0 && track[j].count > track[j-1].count)
{
- bucketcpy(stats->attr, value, &stats->max, &stats->max_len);
- stats->max_cnt = 1;
+ swapDatum(track[j].value, track[j-1].value);
+ swapInt(track[j].count, track[j-1].count);
+ j--;
}
- else if (DatumGetBool(FunctionCall2(&stats->f_cmpeq,
- value, stats->max)))
- stats->max_cnt++;
}
-
- value_hit = true;
- if (DatumGetBool(FunctionCall2(&stats->f_cmpeq,
- value, stats->best)))
- stats->best_cnt++;
- else if (DatumGetBool(FunctionCall2(&stats->f_cmpeq,
- value, stats->guess1)))
+ else
{
- stats->guess1_cnt++;
- stats->guess1_hits++;
+ /* No match. Insert at head of count-1 list */
+ if (track_cnt < track_max)
+ track_cnt++;
+ for (j = track_cnt-1; j > firstcount1; j--)
+ {
+ track[j].value = track[j-1].value;
+ track[j].count = track[j-1].count;
+ }
+ if (firstcount1 < track_cnt)
+ {
+ track[firstcount1].value = value;
+ track[firstcount1].count = 1;
+ }
}
- else if (DatumGetBool(FunctionCall2(&stats->f_cmpeq,
- value, stats->guess2)))
- stats->guess2_hits++;
+ }
+
+ /* We can only compute valid stats if we found some non-null values. */
+ if (nonnull_cnt > 0)
+ {
+ int nmultiple,
+ summultiple;
+
+ stats->stats_valid = true;
+ /* Do the simple null-frac and width stats */
+ stats->stanullfrac = (double) null_cnt / (double) numrows;
+ if (is_varlena)
+ stats->stawidth = total_width / (double) nonnull_cnt;
else
- value_hit = false;
+ stats->stawidth = stats->attrtype->typlen;
- if (stats->guess2_hits > stats->guess1_hits)
+ /* Count the number of values we found multiple times */
+ summultiple = 0;
+ for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
{
- swapDatum(stats->guess1, stats->guess2);
- swapInt(stats->guess1_len, stats->guess2_len);
- swapLong(stats->guess1_hits, stats->guess2_hits);
- stats->guess1_cnt = stats->guess1_hits;
+ if (track[nmultiple].count == 1)
+ break;
+ summultiple += track[nmultiple].count;
}
- if (stats->guess1_cnt > stats->best_cnt)
+
+ if (nmultiple == 0)
{
- swapDatum(stats->best, stats->guess1);
- swapInt(stats->best_len, stats->guess1_len);
- swapLong(stats->best_cnt, stats->guess1_cnt);
- stats->guess1_hits = 1;
- stats->guess2_hits = 1;
+ /* If we found no repeated values, assume it's a unique column */
+ stats->stadistinct = -1.0;
}
- if (!value_hit)
+ else if (track_cnt < track_max && toowide_cnt == 0 &&
+ nmultiple == track_cnt)
{
- bucketcpy(stats->attr, value, &stats->guess2, &stats->guess2_len);
- stats->guess1_hits = 1;
- stats->guess2_hits = 1;
+ /*
+ * Our track list includes every value in the sample, and every
+ * value appeared more than once. Assume the column has just
+ * these values.
+ */
+ stats->stadistinct = track_cnt;
}
+ else
+ {
+ /*----------
+ * Estimate the number of distinct values using the estimator
+ * proposed by Chaudhuri et al (see citation above). This is
+ * sqrt(n/r) * max(f1,1) + f2 + f3 + ...
+ * where fk is the number of distinct values that occurred
+ * exactly k times in our sample of r rows (from a total of n).
+ * We assume (not very reliably!) that all the multiply-occurring
+ * values are reflected in the final track[] list, and the other
+ * nonnull values all appeared but once.
+ *----------
+ */
+ int f1 = nonnull_cnt - summultiple;
+ double term1;
- /* Clean up detoasted copy, if any */
- if (value != origvalue)
- pfree(DatumGetPointer(value));
- }
-}
+ if (f1 < 1)
+ f1 = 1;
+ term1 = sqrt((double) totalrows / (double) numrows) * f1;
+ stats->stadistinct = floor(term1 + nmultiple + 0.5);
+ }
-/*
- * bucketcpy() -- copy a new value into one of the statistics buckets
- */
-static void
-bucketcpy(Form_pg_attribute attr, Datum value, Datum *bucket, int *bucket_len)
-{
- if (attr->attbyval)
- *bucket = value;
- else
- {
- int len = (attr->attlen != -1 ? attr->attlen : VARSIZE(value));
+ /*
+ * If we estimated the number of distinct values at more than 10%
+ * of the total row count (a very arbitrary limit), then assume
+ * that stadistinct should scale with the row count rather than be
+ * a fixed value.
+ */
+ if (stats->stadistinct > 0.1 * totalrows)
+ stats->stadistinct = - (stats->stadistinct / totalrows);
- /* Avoid unnecessary palloc() traffic... */
- if (len > *bucket_len)
+ /* Generate an MCV slot entry, only if we found multiples */
+ if (nmultiple < num_mcv)
+ num_mcv = nmultiple;
+ if (num_mcv > 0)
{
- if (*bucket_len != 0)
- pfree(DatumGetPointer(*bucket));
- *bucket = PointerGetDatum(palloc(len));
- *bucket_len = len;
+ MemoryContext old_context;
+ Datum *mcv_values;
+ float4 *mcv_freqs;
+
+ /* Must copy the target values into TransactionCommandContext */
+ old_context = MemoryContextSwitchTo(TransactionCommandContext);
+ mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
+ mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
+ for (i = 0; i < num_mcv; i++)
+ {
+ mcv_values[i] = datumCopy(track[i].value,
+ stats->attr->attbyval,
+ stats->attr->attlen);
+ mcv_freqs[i] = (double) track[i].count / (double) numrows;
+ }
+ MemoryContextSwitchTo(old_context);
+
+ stats->stakind[0] = STATISTIC_KIND_MCV;
+ stats->staop[0] = stats->eqopr;
+ stats->stanumbers[0] = mcv_freqs;
+ stats->numnumbers[0] = num_mcv;
+ stats->stavalues[0] = mcv_values;
+ stats->numvalues[0] = num_mcv;
}
- memcpy(DatumGetPointer(*bucket), DatumGetPointer(value), len);
}
+
+ /* We don't need to bother cleaning up any of our temporary palloc's */
}
/*
- * update_attstats() -- update attribute statistics for one relation
+ * compute_scalar_stats() -- compute column statistics
*
- * Statistics are stored in several places: the pg_class row for the
- * relation has stats about the whole relation, the pg_attribute rows
- * for each attribute store "dispersion", and there is a pg_statistic
- * row for each (non-system) attribute. (Dispersion probably ought to
- * be moved to pg_statistic, but it's not worth doing unless there's
- * another reason to have to change pg_attribute.) The pg_class values
- * are updated by VACUUM, not here.
- *
- * We violate no-overwrite semantics here by storing new values for
- * the dispersion column directly into the pg_attribute tuple that's
- * already on the page. The reason for this is that if we updated
- * these tuples in the usual way, vacuuming pg_attribute itself
- * wouldn't work very well --- by the time we got done with a vacuum
- * cycle, most of the tuples in pg_attribute would've been obsoleted.
- * Updating pg_attribute's own statistics would be especially tricky.
- * Of course, this only works for fixed-size never-null columns, but
- * dispersion is.
+ * We use this when we can find "=" and "<" operators for the datatype.
*
- * pg_statistic rows are just added normally. This means that
- * pg_statistic will probably contain some deleted rows at the
- * completion of a vacuum cycle, unless it happens to get vacuumed last.
+ * We determine the fraction of non-null rows, the average width, the
+ * most common values, the (estimated) number of distinct values, the
+ * distribution histogram, and the correlation of physical to logical order.
*
- * To keep things simple, we punt for pg_statistic, and don't try
- * to compute or store rows for pg_statistic itself in pg_statistic.
- * This could possibly be made to work, but it's not worth the trouble.
+ * The desired stats can be determined fairly easily after sorting the
+ * data values into order.
*/
static void
-update_attstats(Oid relid, int natts, VacAttrStats *vacattrstats)
+compute_scalar_stats(VacAttrStats *stats,
+ TupleDesc tupDesc, long totalrows,
+ HeapTuple *rows, int numrows)
{
- Relation ad,
- sd;
- HeapScanDesc scan;
- HeapTuple atup,
- stup;
- ScanKeyData askey;
- Form_pg_attribute attp;
-
- ad = heap_openr(AttributeRelationName, RowExclusiveLock);
- sd = heap_openr(StatisticRelationName, RowExclusiveLock);
-
- /* Find pg_attribute rows for this relation */
- ScanKeyEntryInitialize(&askey, 0, Anum_pg_attribute_attrelid,
- F_INT4EQ, relid);
-
- scan = heap_beginscan(ad, false, SnapshotNow, 1, &askey);
-
- while (HeapTupleIsValid(atup = heap_getnext(scan, 0)))
+ int i;
+ int null_cnt = 0;
+ int nonnull_cnt = 0;
+ int toowide_cnt = 0;
+ double total_width = 0;
+ bool is_varlena = (!stats->attr->attbyval &&
+ stats->attr->attlen == -1);
+ double corr_xysum;
+ RegProcedure cmpFn;
+ SortFunctionKind cmpFnKind;
+ FmgrInfo f_cmpfn;
+ ScalarItem *values;
+ int values_cnt = 0;
+ int *tupnoLink;
+ ScalarMCVItem *track;
+ int track_cnt = 0;
+ int num_mcv = stats->attr->attstattarget;
+
+ values = (ScalarItem *) palloc(numrows * sizeof(ScalarItem));
+ tupnoLink = (int *) palloc(numrows * sizeof(int));
+ track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));
+
+ SelectSortFunction(stats->ltopr, &cmpFn, &cmpFnKind);
+ fmgr_info(cmpFn, &f_cmpfn);
+
+ /* Initial scan to find sortable values */
+ for (i = 0; i < numrows; i++)
{
- int i;
- VacAttrStats *stats;
+ HeapTuple tuple = rows[i];
+ Datum value;
+ bool isnull;
- attp = (Form_pg_attribute) GETSTRUCT(atup);
- if (attp->attnum <= 0) /* skip system attributes for now */
- continue;
+ value = heap_getattr(tuple, stats->attnum, tupDesc, &isnull);
- for (i = 0; i < natts; i++)
+ /* Check for null/nonnull */
+ if (isnull)
{
- if (attp->attnum == vacattrstats[i].attr->attnum)
- break;
+ null_cnt++;
+ continue;
}
- if (i >= natts)
- continue; /* skip attr if no stats collected */
- stats = &(vacattrstats[i]);
+ nonnull_cnt++;
- if (VacAttrStatsEqValid(stats))
+ /*
+ * If it's a varlena field, add up widths for average width
+ * calculation. Note that if the value is toasted, we
+ * use the toasted width. We don't bother with this calculation
+ * if it's a fixed-width type.
+ */
+ if (is_varlena)
{
- float4 selratio; /* average ratio of rows selected
- * for a random constant */
-
- /* Compute dispersion */
- if (stats->nonnull_cnt == 0 && stats->null_cnt == 0)
+ total_width += VARSIZE(DatumGetPointer(value));
+ /*
+ * If the value is toasted, we want to detoast it just once to
+ * avoid repeated detoastings and resultant excess memory usage
+ * during the comparisons. Also, check to see if the value is
+ * excessively wide, and if so don't detoast at all --- just
+ * ignore the value.
+ */
+ if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
{
-
- /*
- * empty relation, so put a dummy value in attdispersion
- */
- selratio = 0;
+ toowide_cnt++;
+ continue;
}
- else if (stats->null_cnt <= 1 && stats->best_cnt == 1)
- {
+ value = PointerGetDatum(PG_DETOAST_DATUM(value));
+ }
- /*
- * looks like we have a unique-key attribute --- flag this
- * with special -1.0 flag value.
- *
- * The correct dispersion is 1.0/numberOfRows, but since the
- * relation row count can get updated without recomputing
- * dispersion, we want to store a "symbolic" value and
- * figure 1.0/numberOfRows on the fly.
- */
- selratio = -1;
- }
- else
+ /* Add it to the list to be sorted */
+ values[values_cnt].value = value;
+ values[values_cnt].tupno = values_cnt;
+ tupnoLink[values_cnt] = values_cnt;
+ values_cnt++;
+ }
+
+ /* We can only compute valid stats if we found some sortable values. */
+ if (values_cnt > 0)
+ {
+ int ndistinct, /* # distinct values in sample */
+ nmultiple, /* # that appear multiple times */
+ num_hist,
+ dups_cnt;
+ int slot_idx = 0;
+
+ /* Sort the collected values */
+ datumCmpFn = &f_cmpfn;
+ datumCmpFnKind = cmpFnKind;
+ datumCmpTupnoLink = tupnoLink;
+ qsort((void *) values, values_cnt,
+ sizeof(ScalarItem), compare_scalars);
+
+ /*
+ * Now scan the values in order, find the most common ones,
+ * and also accumulate ordering-correlation statistics.
+ *
+ * To determine which are most common, we first have to count the
+ * number of duplicates of each value. The duplicates are adjacent
+ * in the sorted list, so a brute-force approach is to compare
+ * successive datum values until we find two that are not equal.
+ * However, that requires N-1 invocations of the datum comparison
+ * routine, which are completely redundant with work that was done
+ * during the sort. (The sort algorithm must at some point have
+ * compared each pair of items that are adjacent in the sorted order;
+ * otherwise it could not know that it's ordered the pair correctly.)
+ * We exploit this by having compare_scalars remember the highest
+ * tupno index that each ScalarItem has been found equal to. At the
+ * end of the sort, a ScalarItem's tupnoLink will still point to
+ * itself if and only if it is the last item of its group of
+ * duplicates (since the group will be ordered by tupno).
+ */
+ corr_xysum = 0;
+ ndistinct = 0;
+ nmultiple = 0;
+ dups_cnt = 0;
+ for (i = 0; i < values_cnt; i++)
+ {
+ int tupno = values[i].tupno;
+
+ corr_xysum += (double) i * (double) tupno;
+ dups_cnt++;
+ if (tupnoLink[tupno] == tupno)
{
- if (VacAttrStatsLtGtValid(stats) &&
- stats->min_cnt + stats->max_cnt == stats->nonnull_cnt)
+ /* Reached end of duplicates of this value */
+ ndistinct++;
+ if (dups_cnt > 1)
{
+ nmultiple++;
+ if (track_cnt < num_mcv ||
+ dups_cnt > track[track_cnt-1].count)
+ {
+ /*
+ * Found a new item for the mcv list; find its
+ * position, bubbling down old items if needed.
+ * Loop invariant is that j points at an empty/
+ * replaceable slot.
+ */
+ int j;
+
+ if (track_cnt < num_mcv)
+ track_cnt++;
+ for (j = track_cnt-1; j > 0; j--)
+ {
+ if (dups_cnt <= track[j-1].count)
+ break;
+ track[j].count = track[j-1].count;
+ track[j].first = track[j-1].first;
+ }
+ track[j].count = dups_cnt;
+ track[j].first = i + 1 - dups_cnt;
+ }
+ }
+ dups_cnt = 0;
+ }
+ }
- /*
- * exact result when there are just 1 or 2 values...
- */
- double min_cnt_d = stats->min_cnt,
- max_cnt_d = stats->max_cnt,
- null_cnt_d = stats->null_cnt;
- double total = ((double) stats->nonnull_cnt) + null_cnt_d;
+ stats->stats_valid = true;
+ /* Do the simple null-frac and width stats */
+ stats->stanullfrac = (double) null_cnt / (double) numrows;
+ if (is_varlena)
+ stats->stawidth = total_width / (double) nonnull_cnt;
+ else
+ stats->stawidth = stats->attrtype->typlen;
- selratio = (min_cnt_d * min_cnt_d + max_cnt_d * max_cnt_d + null_cnt_d * null_cnt_d) / (total * total);
- }
- else
- {
- double most = (double) (stats->best_cnt > stats->null_cnt ? stats->best_cnt : stats->null_cnt);
- double total = ((double) stats->nonnull_cnt) + ((double) stats->null_cnt);
+ if (nmultiple == 0)
+ {
+ /* If we found no repeated values, assume it's a unique column */
+ stats->stadistinct = -1.0;
+ }
+ else if (toowide_cnt == 0 && nmultiple == ndistinct)
+ {
+ /*
+ * Every value in the sample appeared more than once. Assume the
+ * column has just these values.
+ */
+ stats->stadistinct = ndistinct;
+ }
+ else
+ {
+ /*----------
+ * Estimate the number of distinct values using the estimator
+ * proposed by Chaudhuri et al (see citation above). This is
+ * sqrt(n/r) * max(f1,1) + f2 + f3 + ...
+ * where fk is the number of distinct values that occurred
+ * exactly k times in our sample of r rows (from a total of n).
+ * Overwidth values are assumed to have been distinct.
+ *----------
+ */
+ int f1 = ndistinct - nmultiple + toowide_cnt;
+ double term1;
- /*
- * we assume count of other values are 20% of best
- * count in table
- */
- selratio = (most * most + 0.20 * most * (total - most)) / (total * total);
- }
- /* Make sure calculated values are in-range */
- if (selratio < 0.0)
- selratio = 0.0;
- else if (selratio > 1.0)
- selratio = 1.0;
+ if (f1 < 1)
+ f1 = 1;
+ term1 = sqrt((double) totalrows / (double) numrows) * f1;
+ stats->stadistinct = floor(term1 + nmultiple + 0.5);
+ }
+
+ /*
+ * If we estimated the number of distinct values at more than 10%
+ * of the total row count (a very arbitrary limit), then assume
+ * that stadistinct should scale with the row count rather than be
+ * a fixed value.
+ */
+ if (stats->stadistinct > 0.1 * totalrows)
+ stats->stadistinct = - (stats->stadistinct / totalrows);
+
+ /* Generate an MCV slot entry, only if we found multiples */
+ if (nmultiple < num_mcv)
+ num_mcv = nmultiple;
+ Assert(track_cnt >= num_mcv);
+ if (num_mcv > 0)
+ {
+ MemoryContext old_context;
+ Datum *mcv_values;
+ float4 *mcv_freqs;
+
+ /* Must copy the target values into TransactionCommandContext */
+ old_context = MemoryContextSwitchTo(TransactionCommandContext);
+ mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
+ mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
+ for (i = 0; i < num_mcv; i++)
+ {
+ mcv_values[i] = datumCopy(values[track[i].first].value,
+ stats->attr->attbyval,
+ stats->attr->attlen);
+ mcv_freqs[i] = (double) track[i].count / (double) numrows;
}
+ MemoryContextSwitchTo(old_context);
+
+ stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
+ stats->staop[slot_idx] = stats->eqopr;
+ stats->stanumbers[slot_idx] = mcv_freqs;
+ stats->numnumbers[slot_idx] = num_mcv;
+ stats->stavalues[slot_idx] = mcv_values;
+ stats->numvalues[slot_idx] = num_mcv;
+ slot_idx++;
+ }
- /* overwrite the existing statistics in the tuple */
- attp->attdispersion = selratio;
+ /*
+ * Generate a histogram slot entry if there are at least two
+ * distinct values not accounted for in the MCV list. (This
+ * ensures the histogram won't collapse to empty or a singleton.)
+ */
+ num_hist = ndistinct - num_mcv;
+ if (num_hist > stats->attr->attstattarget)
+ num_hist = stats->attr->attstattarget + 1;
+ if (num_hist >= 2)
+ {
+ MemoryContext old_context;
+ Datum *hist_values;
+ int nvals;
- /* invalidate the tuple in the cache and write the buffer */
- RelationInvalidateHeapTuple(ad, atup);
- WriteNoReleaseBuffer(scan->rs_cbuf);
+ /* Sort the MCV items into position order to speed next loop */
+ qsort((void *) track, num_mcv,
+ sizeof(ScalarMCVItem), compare_mcvs);
/*
- * Create pg_statistic tuples for the relation, if we have
- * gathered the right data. del_stats() previously deleted
- * all the pg_statistic tuples for the rel, so we just have to
- * insert new ones here.
+ * Collapse out the MCV items from the values[] array.
*
- * Note analyze_rel() has seen to it that we won't come here when
- * vacuuming pg_statistic itself.
+ * Note we destroy the values[] array here... but we don't need
+ * it for anything more. We do, however, still need values_cnt.
*/
- if (VacAttrStatsLtGtValid(stats) && stats->initialized)
+ if (num_mcv > 0)
{
- float4 nullratio;
- float4 bestratio;
- FmgrInfo out_function;
- char *out_string;
- double best_cnt_d = stats->best_cnt,
- null_cnt_d = stats->null_cnt,
- nonnull_cnt_d = stats->nonnull_cnt; /* prevent overflow */
- Datum values[Natts_pg_statistic];
- char nulls[Natts_pg_statistic];
- Relation irelations[Num_pg_statistic_indices];
+ int src,
+ dest;
+ int j;
- nullratio = null_cnt_d / (nonnull_cnt_d + null_cnt_d);
- bestratio = best_cnt_d / (nonnull_cnt_d + null_cnt_d);
-
- fmgr_info(stats->outfunc, &out_function);
+ src = dest = 0;
+ j = 0; /* index of next interesting MCV item */
+ while (src < values_cnt)
+ {
+ int ncopy;
+
+ if (j < num_mcv)
+ {
+ int first = track[j].first;
+
+ if (src >= first)
+ {
+ /* advance past this MCV item */
+ src = first + track[j].count;
+ j++;
+ continue;
+ }
+ ncopy = first - src;
+ }
+ else
+ {
+ ncopy = values_cnt - src;
+ }
+ memmove(&values[dest], &values[src],
+ ncopy * sizeof(ScalarItem));
+ src += ncopy;
+ dest += ncopy;
+ }
+ nvals = dest;
+ }
+ else
+ nvals = values_cnt;
+ Assert(nvals >= num_hist);
- for (i = 0; i < Natts_pg_statistic; ++i)
- nulls[i] = ' ';
+ /* Must copy the target values into TransactionCommandContext */
+ old_context = MemoryContextSwitchTo(TransactionCommandContext);
+ hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
+ for (i = 0; i < num_hist; i++)
+ {
+ int pos;
- /*
- * initialize values[]
- */
- i = 0;
- values[i++] = ObjectIdGetDatum(relid); /* starelid */
- values[i++] = Int16GetDatum(attp->attnum); /* staattnum */
- values[i++] = ObjectIdGetDatum(stats->op_cmplt); /* staop */
- values[i++] = Float4GetDatum(nullratio); /* stanullfrac */
- values[i++] = Float4GetDatum(bestratio); /* stacommonfrac */
- out_string = DatumGetCString(FunctionCall3(&out_function,
- stats->best,
- ObjectIdGetDatum(stats->typelem),
- Int32GetDatum(stats->attr->atttypmod)));
- values[i++] = DirectFunctionCall1(textin, /* stacommonval */
- CStringGetDatum(out_string));
- pfree(out_string);
- out_string = DatumGetCString(FunctionCall3(&out_function,
- stats->min,
- ObjectIdGetDatum(stats->typelem),
- Int32GetDatum(stats->attr->atttypmod)));
- values[i++] = DirectFunctionCall1(textin, /* staloval */
- CStringGetDatum(out_string));
- pfree(out_string);
- out_string = DatumGetCString(FunctionCall3(&out_function,
- stats->max,
- ObjectIdGetDatum(stats->typelem),
- Int32GetDatum(stats->attr->atttypmod)));
- values[i++] = DirectFunctionCall1(textin, /* stahival */
- CStringGetDatum(out_string));
- pfree(out_string);
-
- stup = heap_formtuple(sd->rd_att, values, nulls);
-
- /* store tuple and update indexes too */
- heap_insert(sd, stup);
-
- CatalogOpenIndices(Num_pg_statistic_indices, Name_pg_statistic_indices, irelations);
- CatalogIndexInsert(irelations, Num_pg_statistic_indices, sd, stup);
- CatalogCloseIndices(Num_pg_statistic_indices, irelations);
-
- /* release allocated space */
- pfree(DatumGetPointer(values[Anum_pg_statistic_stacommonval - 1]));
- pfree(DatumGetPointer(values[Anum_pg_statistic_staloval - 1]));
- pfree(DatumGetPointer(values[Anum_pg_statistic_stahival - 1]));
- heap_freetuple(stup);
+ pos = (i * (nvals - 1)) / (num_hist - 1);
+ hist_values[i] = datumCopy(values[pos].value,
+ stats->attr->attbyval,
+ stats->attr->attlen);
}
+ MemoryContextSwitchTo(old_context);
+
+ stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
+ stats->staop[slot_idx] = stats->ltopr;
+ stats->stavalues[slot_idx] = hist_values;
+ stats->numvalues[slot_idx] = num_hist;
+ slot_idx++;
+ }
+
+ /* Generate a correlation entry if there are multiple values */
+ if (values_cnt > 1)
+ {
+ MemoryContext old_context;
+ float4 *corrs;
+ double corr_xsum,
+ corr_x2sum;
+
+ /* Must copy the target values into TransactionCommandContext */
+ old_context = MemoryContextSwitchTo(TransactionCommandContext);
+ corrs = (float4 *) palloc(sizeof(float4));
+ MemoryContextSwitchTo(old_context);
+
+ /*----------
+ * Since we know the x and y value sets are both
+ * 0, 1, ..., values_cnt-1
+ * we have sum(x) = sum(y) =
+ * (values_cnt-1)*values_cnt / 2
+ * and sum(x^2) = sum(y^2) =
+ * (values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
+ *----------
+ */
+ corr_xsum = (double) (values_cnt-1) * (double) values_cnt / 2.0;
+ corr_x2sum = (double) (values_cnt-1) * (double) values_cnt *
+ (double) (2*values_cnt-1) / 6.0;
+ /* And the correlation coefficient reduces to */
+ corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
+ (values_cnt * corr_x2sum - corr_xsum * corr_xsum);
+
+ stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
+ stats->staop[slot_idx] = stats->ltopr;
+ stats->stanumbers[slot_idx] = corrs;
+ stats->numnumbers[slot_idx] = 1;
+ slot_idx++;
}
}
- heap_endscan(scan);
- /* close rels, but hold locks till upcoming commit */
- heap_close(ad, NoLock);
- heap_close(sd, NoLock);
+
+ /* We don't need to bother cleaning up any of our temporary palloc's */
}
/*
- * del_stats() -- delete pg_statistic rows for a relation
+ * qsort comparator for sorting ScalarItems
*
- * If a list of attribute numbers is given, only zap stats for those attrs.
+ * Aside from sorting the items, we update the datumCmpTupnoLink[] array
+ * whenever two ScalarItems are found to contain equal datums. The array
+ * is indexed by tupno; for each ScalarItem, it contains the highest
+ * tupno that that item's datum has been found to be equal to. This allows
+ * us to avoid additional comparisons in compute_scalar_stats().
*/
-static void
-del_stats(Oid relid, int attcnt, int *attnums)
+static int
+compare_scalars(const void *a, const void *b)
{
- Relation pgstatistic;
- HeapScanDesc scan;
- HeapTuple tuple;
- ScanKeyData key;
+ Datum da = ((ScalarItem *) a)->value;
+ int ta = ((ScalarItem *) a)->tupno;
+ Datum db = ((ScalarItem *) b)->value;
+ int tb = ((ScalarItem *) b)->tupno;
- pgstatistic = heap_openr(StatisticRelationName, RowExclusiveLock);
+ if (datumCmpFnKind == SORTFUNC_LT)
+ {
+ if (DatumGetBool(FunctionCall2(datumCmpFn, da, db)))
+ return -1; /* a < b */
+ if (DatumGetBool(FunctionCall2(datumCmpFn, db, da)))
+ return 1; /* a > b */
+ }
+ else
+ {
+ /* sort function is CMP or REVCMP */
+ int32 compare;
- ScanKeyEntryInitialize(&key, 0x0, Anum_pg_statistic_starelid,
- F_OIDEQ, ObjectIdGetDatum(relid));
- scan = heap_beginscan(pgstatistic, false, SnapshotNow, 1, &key);
+ compare = DatumGetInt32(FunctionCall2(datumCmpFn, da, db));
+ if (compare != 0)
+ {
+ if (datumCmpFnKind == SORTFUNC_REVCMP)
+ compare = -compare;
+ return compare;
+ }
+ }
- while (HeapTupleIsValid(tuple = heap_getnext(scan, 0)))
+ /*
+ * The two datums are equal, so update datumCmpTupnoLink[].
+ */
+ if (datumCmpTupnoLink[ta] < tb)
+ datumCmpTupnoLink[ta] = tb;
+ if (datumCmpTupnoLink[tb] < ta)
+ datumCmpTupnoLink[tb] = ta;
+
+ /*
+ * For equal datums, sort by tupno
+ */
+ return ta - tb;
+}
+
+/*
+ * qsort comparator for sorting ScalarMCVItems by position
+ */
+static int
+compare_mcvs(const void *a, const void *b)
+{
+ int da = ((ScalarMCVItem *) a)->first;
+ int db = ((ScalarMCVItem *) b)->first;
+
+ return da - db;
+}
+
+
+/*
+ * update_attstats() -- update attribute statistics for one relation
+ *
+ * Statistics are stored in several places: the pg_class row for the
+ * relation has stats about the whole relation, and there is a
+ * pg_statistic row for each (non-system) attribute that has ever
+ * been analyzed. The pg_class values are updated by VACUUM, not here.
+ *
+ * pg_statistic rows are just added or updated normally. This means
+ * that pg_statistic will probably contain some deleted rows at the
+ * completion of a vacuum cycle, unless it happens to get vacuumed last.
+ *
+ * To keep things simple, we punt for pg_statistic, and don't try
+ * to compute or store rows for pg_statistic itself in pg_statistic.
+ * This could possibly be made to work, but it's not worth the trouble.
+ * Note analyze_rel() has seen to it that we won't come here when
+ * vacuuming pg_statistic itself.
+ */
+static void
+update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats)
+{
+ Relation sd;
+ int attno;
+
+ /*
+ * We use an ExclusiveLock on pg_statistic to ensure that only one
+ * backend is writing it at a time --- without that, we might have to
+ * deal with concurrent updates here, and it's not worth the trouble.
+ */
+ sd = heap_openr(StatisticRelationName, ExclusiveLock);
+
+ for (attno = 0; attno < natts; attno++)
{
- if (attcnt > 0)
+ VacAttrStats *stats = vacattrstats[attno];
+ FmgrInfo out_function;
+ HeapTuple stup,
+ oldtup;
+ int i, k, n;
+ Datum values[Natts_pg_statistic];
+ char nulls[Natts_pg_statistic];
+ char replaces[Natts_pg_statistic];
+ Relation irelations[Num_pg_statistic_indices];
+
+ /* Ignore attr if we weren't able to collect stats */
+ if (!stats->stats_valid)
+ continue;
+
+ fmgr_info(stats->attrtype->typoutput, &out_function);
+
+ /*
+ * Construct a new pg_statistic tuple
+ */
+ for (i = 0; i < Natts_pg_statistic; ++i)
{
- Form_pg_statistic pgs = (Form_pg_statistic) GETSTRUCT(tuple);
- int i;
+ nulls[i] = ' ';
+ replaces[i] = 'r';
+ }
- for (i = 0; i < attcnt; i++)
+ i = 0;
+ values[i++] = ObjectIdGetDatum(relid); /* starelid */
+ values[i++] = Int16GetDatum(stats->attnum); /* staattnum */
+ values[i++] = Float4GetDatum(stats->stanullfrac); /* stanullfrac */
+ values[i++] = Int32GetDatum(stats->stawidth); /* stawidth */
+ values[i++] = Float4GetDatum(stats->stadistinct); /* stadistinct */
+ for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
+ {
+ values[i++] = Int16GetDatum(stats->stakind[k]); /* stakindN */
+ }
+ for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
+ {
+ values[i++] = ObjectIdGetDatum(stats->staop[k]); /* staopN */
+ }
+ for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
+ {
+ int nnum = stats->numnumbers[k];
+
+ if (nnum > 0)
{
- if (pgs->staattnum == attnums[i] + 1)
- break;
+ Datum *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
+ ArrayType *arry;
+
+ for (n = 0; n < nnum; n++)
+ numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
+ /* XXX knows more than it should about type float4: */
+ arry = construct_array(numdatums, nnum,
+ false, sizeof(float4), 'i');
+ values[i++] = PointerGetDatum(arry); /* stanumbersN */
+ }
+ else
+ {
+ nulls[i] = 'n';
+ values[i++] = (Datum) 0;
}
- if (i >= attcnt)
- continue; /* don't delete it */
}
- simple_heap_delete(pgstatistic, &tuple->t_self);
- }
+ for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
+ {
+ int ntxt = stats->numvalues[k];
- heap_endscan(scan);
+ if (ntxt > 0)
+ {
+ Datum *txtdatums = (Datum *) palloc(ntxt * sizeof(Datum));
+ ArrayType *arry;
- /*
- * Close rel, but *keep* lock; we will need to reacquire it later, so
- * there's a possibility of deadlock against another VACUUM process if
- * we let go now. Keeping the lock shouldn't delay any common
- * operation other than an attempted VACUUM of pg_statistic itself.
- */
- heap_close(pgstatistic, NoLock);
+ for (n = 0; n < ntxt; n++)
+ {
+ /*
+ * Convert data values to a text string to be inserted
+ * into the text array.
+ */
+ Datum stringdatum;
+
+ stringdatum =
+ FunctionCall3(&out_function,
+ stats->stavalues[k][n],
+ ObjectIdGetDatum(stats->attrtype->typelem),
+ Int32GetDatum(stats->attr->atttypmod));
+ txtdatums[n] = DirectFunctionCall1(textin, stringdatum);
+ pfree(DatumGetPointer(stringdatum));
+ }
+ /* XXX knows more than it should about type text: */
+ arry = construct_array(txtdatums, ntxt,
+ false, -1, 'i');
+ values[i++] = PointerGetDatum(arry); /* stavaluesN */
+ }
+ else
+ {
+ nulls[i] = 'n';
+ values[i++] = (Datum) 0;
+ }
+ }
+
+ /* Is there already a pg_statistic tuple for this attribute? */
+ oldtup = SearchSysCache(STATRELATT,
+ ObjectIdGetDatum(relid),
+ Int16GetDatum(stats->attnum),
+ 0, 0);
+
+ if (HeapTupleIsValid(oldtup))
+ {
+ /* Yes, replace it */
+ stup = heap_modifytuple(oldtup,
+ sd,
+ values,
+ nulls,
+ replaces);
+ ReleaseSysCache(oldtup);
+ simple_heap_update(sd, &stup->t_self, stup);
+ }
+ else
+ {
+ /* No, insert new tuple */
+ stup = heap_formtuple(sd->rd_att, values, nulls);
+ heap_insert(sd, stup);
+ }
+
+ /* update indices too */
+ CatalogOpenIndices(Num_pg_statistic_indices, Name_pg_statistic_indices,
+ irelations);
+ CatalogIndexInsert(irelations, Num_pg_statistic_indices, sd, stup);
+ CatalogCloseIndices(Num_pg_statistic_indices, irelations);
+
+ heap_freetuple(stup);
+ }
+
+ /* close rel, but hold lock till upcoming commit */
+ heap_close(sd, NoLock);
}