diff options
Diffstat (limited to 'src/backend/access/gist')
-rw-r--r-- | src/backend/access/gist/Makefile | 2 | ||||
-rw-r--r-- | src/backend/access/gist/README | 135 | ||||
-rw-r--r-- | src/backend/access/gist/gist.c | 211 | ||||
-rw-r--r-- | src/backend/access/gist/gistbuild.c | 1068 | ||||
-rw-r--r-- | src/backend/access/gist/gistbuildbuffers.c | 787 | ||||
-rw-r--r-- | src/backend/access/gist/gistutil.c | 27 | ||||
-rw-r--r-- | src/backend/access/gist/gistxlog.c | 6 |
7 files changed, 2052 insertions, 184 deletions
diff --git a/src/backend/access/gist/Makefile b/src/backend/access/gist/Makefile index f8051a2b45c..cc9468ffb19 100644 --- a/src/backend/access/gist/Makefile +++ b/src/backend/access/gist/Makefile @@ -13,6 +13,6 @@ top_builddir = ../../../.. include $(top_builddir)/src/Makefile.global OBJS = gist.o gistutil.o gistxlog.o gistvacuum.o gistget.o gistscan.o \ - gistproc.o gistsplit.o + gistproc.o gistsplit.o gistbuild.o gistbuildbuffers.o include $(top_srcdir)/src/backend/common.mk diff --git a/src/backend/access/gist/README b/src/backend/access/gist/README index 2d78dcb0dfa..4bcac1f2c79 100644 --- a/src/backend/access/gist/README +++ b/src/backend/access/gist/README @@ -24,6 +24,7 @@ The current implementation of GiST supports: * provides NULL-safe interface to GiST core * Concurrency * Recovery support via WAL logging + * Buffering build algorithm The support for concurrency implemented in PostgreSQL was developed based on the paper "Access Methods for Next-Generation Database Systems" by @@ -31,6 +32,12 @@ Marcel Kornaker: http://www.sai.msu.su/~megera/postgres/gist/papers/concurrency/access-methods-for-next-generation.pdf.gz +Buffering build algorithm for GiST was developed based on the paper "Efficient +Bulk Operations on Dynamic R-trees" by Lars Arge, Klaus Hinrichs, Jan Vahrenhold +and Jeffrey Scott Vitter. + + http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.9894&rep=rep1&type=pdf + The original algorithms were modified in several ways: * They had to be adapted to PostgreSQL conventions. For example, the SEARCH @@ -278,6 +285,134 @@ would complicate the insertion algorithm. So when an insertion sees a page with F_FOLLOW_RIGHT set, it immediately tries to bring the split that crashed in the middle to completion by adding the downlink in the parent. +Buffering build algorithm +------------------------- + +In the buffering index build algorithm, some or all internal nodes have a +buffer attached to them. When a tuple is inserted at the top, the descend down +the tree is stopped as soon as a buffer is reached, and the tuple is pushed to +the buffer. When a buffer gets too full, all the tuples in it are flushed to +the lower level, where they again hit lower level buffers or leaf pages. This +makes the insertions happen in more of a breadth-first than depth-first order, +which greatly reduces the amount of random I/O required. + +In the algorithm, levels are numbered so that leaf pages have level zero, +and internal node levels count up from 1. This numbering ensures that a page's +level number never changes, even when the root page is split. + +Level Tree + +3 * + / \ +2 * * + / | \ / | \ +1 * * * * * * + / \ / \ / \ / \ / \ / \ +0 o o o o o o o o o o o o + +* - internal page +o - leaf page + +Internal pages that belong to certain levels have buffers associated with +them. Leaf pages never have buffers. Which levels have buffers is controlled +by "level step" parameter: level numbers that are multiples of level_step +have buffers, while others do not. For example, if level_step = 2, then +pages on levels 2, 4, 6, ... have buffers. If level_step = 1 then every +internal page has a buffer. + +Level Tree (level_step = 1) Tree (level_step = 2) + +3 * * + / \ / \ +2 *(b) *(b) *(b) *(b) + / | \ / | \ / | \ / | \ +1 *(b) *(b) *(b) *(b) *(b) *(b) * * * * * * + / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ +0 o o o o o o o o o o o o o o o o o o o o o o o o + +(b) - buffer + +Logically, a buffer is just bunch of tuples. Physically, it is divided in +pages, backed by a temporary file. Each buffer can be in one of two states: +a) Last page of the buffer is kept in main memory. A node buffer is +automatically switched to this state when a new index tuple is added to it, +or a tuple is removed from it. +b) All pages of the buffer are swapped out to disk. When a buffer becomes too +full, and we start to flush it, all other buffers are switched to this state. + +When an index tuple is inserted, its initial processing can end in one of the +following points: +1) Leaf page, if the depth of the index <= level_step, meaning that + none of the internal pages have buffers associated with them. +2) Buffer of topmost level page that has buffers. + +New index tuples are processed until one of the buffers in the topmost +buffered level becomes half-full. When a buffer becomes half-full, it's added +to the emptying queue, and will be emptied before a new tuple is processed. + +Buffer emptying process means that index tuples from the buffer are moved +into buffers at a lower level, or leaf pages. First, all the other buffers are +swapped to disk to free up the memory. Then tuples are popped from the buffer +one by one, and cascaded down the tree to the next buffer or leaf page below +the buffered node. + +Emptying a buffer has the interesting dynamic property that any intermediate +pages between the buffer being emptied, and the next buffered or leaf level +below it, become cached. If there are no more buffers below the node, the leaf +pages where the tuples finally land on get cached too. If there are, the last +buffer page of each buffer below is kept in memory. This is illustrated in +the figures below: + + Buffer being emptied to + lower-level buffers Buffer being emptied to leaf pages + + +(fb) +(fb) + / \ / \ + + + + + + / \ / \ / \ / \ + *(ab) *(ab) *(ab) *(ab) x x x x + ++ - cached internal page +x - cached leaf page +* - non-cached internal page +(fb) - buffer being emptied +(ab) - buffers being appended to, with last page in memory + +In the beginning of the index build, the level-step is chosen so that all those +pages involved in emptying one buffer fit in cache, so after each of those +pages have been accessed once and cached, emptying a buffer doesn't involve +any more I/O. This locality is where the speedup of the buffering algorithm +comes from. + +Emptying one buffer can fill up one or more of the lower-level buffers, +triggering emptying of them as well. Whenever a buffer becomes too full, it's +added to the emptying queue, and will be emptied after the current buffer has +been processed. + +To keep the size of each buffer limited even in the worst case, buffer emptying +is scheduled as soon as a buffer becomes half-full, and emptying it continues +until 1/2 of the nominal buffer size worth of tuples has been emptied. This +guarantees that when buffer emptying begins, all the lower-level buffers +are at most half-full. In the worst case that all the tuples are cascaded down +to the same lower-level buffer, that buffer therefore has enough space to +accommodate all the tuples emptied from the upper-level buffer. There is no +hard size limit in any of the data structures used, though, so this only needs +to be approximate; small overfilling of some buffers doesn't matter. + +If an internal page that has a buffer associated with it is split, the buffer +needs to be split too. All tuples in the buffer are scanned through and +relocated to the correct sibling buffers, using the penalty function to decide +which buffer each tuple should go to. + +After all tuples from the heap have been processed, there are still some index +tuples in the buffers. At this point, final buffer emptying starts. All buffers +are emptied in top-down order. This is slightly complicated by the fact that +new buffers can be allocated during the emptying, due to page splits. However, +the new buffers will always be siblings of buffers that haven't been fully +emptied yet; tuples never move upwards in the tree. The final emptying loops +through buffers at a given level until all buffers at that level have been +emptied, and then moves down to the next level. + Authors: Teodor Sigaev <teodor@sigaev.ru> diff --git a/src/backend/access/gist/gist.c b/src/backend/access/gist/gist.c index 4fc7a213b6d..24f30099a1c 100644 --- a/src/backend/access/gist/gist.c +++ b/src/backend/access/gist/gist.c @@ -24,33 +24,7 @@ #include "utils/memutils.h" #include "utils/rel.h" -/* Working state for gistbuild and its callback */ -typedef struct -{ - GISTSTATE giststate; - int numindexattrs; - double indtuples; - MemoryContext tmpCtx; -} GISTBuildState; - -/* A List of these is used represent a split-in-progress. */ -typedef struct -{ - Buffer buf; /* the split page "half" */ - IndexTuple downlink; /* downlink for this half. */ -} GISTPageSplitInfo; - /* non-export function prototypes */ -static void gistbuildCallback(Relation index, - HeapTuple htup, - Datum *values, - bool *isnull, - bool tupleIsAlive, - void *state); -static void gistdoinsert(Relation r, - IndexTuple itup, - Size freespace, - GISTSTATE *GISTstate); static void gistfixsplit(GISTInsertState *state, GISTSTATE *giststate); static bool gistinserttuples(GISTInsertState *state, GISTInsertStack *stack, GISTSTATE *giststate, @@ -89,138 +63,6 @@ createTempGistContext(void) } /* - * Routine to build an index. Basically calls insert over and over. - * - * XXX: it would be nice to implement some sort of bulk-loading - * algorithm, but it is not clear how to do that. - */ -Datum -gistbuild(PG_FUNCTION_ARGS) -{ - Relation heap = (Relation) PG_GETARG_POINTER(0); - Relation index = (Relation) PG_GETARG_POINTER(1); - IndexInfo *indexInfo = (IndexInfo *) PG_GETARG_POINTER(2); - IndexBuildResult *result; - double reltuples; - GISTBuildState buildstate; - Buffer buffer; - Page page; - - /* - * We expect to be called exactly once for any index relation. If that's - * not the case, big trouble's what we have. - */ - if (RelationGetNumberOfBlocks(index) != 0) - elog(ERROR, "index \"%s\" already contains data", - RelationGetRelationName(index)); - - /* no locking is needed */ - initGISTstate(&buildstate.giststate, index); - - /* initialize the root page */ - buffer = gistNewBuffer(index); - Assert(BufferGetBlockNumber(buffer) == GIST_ROOT_BLKNO); - page = BufferGetPage(buffer); - - START_CRIT_SECTION(); - - GISTInitBuffer(buffer, F_LEAF); - - MarkBufferDirty(buffer); - - if (RelationNeedsWAL(index)) - { - XLogRecPtr recptr; - XLogRecData rdata; - - rdata.data = (char *) &(index->rd_node); - rdata.len = sizeof(RelFileNode); - rdata.buffer = InvalidBuffer; - rdata.next = NULL; - - recptr = XLogInsert(RM_GIST_ID, XLOG_GIST_CREATE_INDEX, &rdata); - PageSetLSN(page, recptr); - PageSetTLI(page, ThisTimeLineID); - } - else - PageSetLSN(page, GetXLogRecPtrForTemp()); - - UnlockReleaseBuffer(buffer); - - END_CRIT_SECTION(); - - /* build the index */ - buildstate.numindexattrs = indexInfo->ii_NumIndexAttrs; - buildstate.indtuples = 0; - - /* - * create a temporary memory context that is reset once for each tuple - * inserted into the index - */ - buildstate.tmpCtx = createTempGistContext(); - - /* do the heap scan */ - reltuples = IndexBuildHeapScan(heap, index, indexInfo, true, - gistbuildCallback, (void *) &buildstate); - - /* okay, all heap tuples are indexed */ - MemoryContextDelete(buildstate.tmpCtx); - - freeGISTstate(&buildstate.giststate); - - /* - * Return statistics - */ - result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult)); - - result->heap_tuples = reltuples; - result->index_tuples = buildstate.indtuples; - - PG_RETURN_POINTER(result); -} - -/* - * Per-tuple callback from IndexBuildHeapScan - */ -static void -gistbuildCallback(Relation index, - HeapTuple htup, - Datum *values, - bool *isnull, - bool tupleIsAlive, - void *state) -{ - GISTBuildState *buildstate = (GISTBuildState *) state; - IndexTuple itup; - MemoryContext oldCtx; - - oldCtx = MemoryContextSwitchTo(buildstate->tmpCtx); - - /* form an index tuple and point it at the heap tuple */ - itup = gistFormTuple(&buildstate->giststate, index, - values, isnull, true /* size is currently bogus */ ); - itup->t_tid = htup->t_self; - - /* - * Since we already have the index relation locked, we call gistdoinsert - * directly. Normal access method calls dispatch through gistinsert, - * which locks the relation for write. This is the right thing to do if - * you're inserting single tups, but not when you're initializing the - * whole index at once. - * - * In this path we respect the fillfactor setting, whereas insertions - * after initial build do not. - */ - gistdoinsert(index, itup, - RelationGetTargetPageFreeSpace(index, GIST_DEFAULT_FILLFACTOR), - &buildstate->giststate); - - buildstate->indtuples += 1; - MemoryContextSwitchTo(oldCtx); - MemoryContextReset(buildstate->tmpCtx); -} - -/* * gistbuildempty() -- build an empty gist index in the initialization fork */ Datum @@ -285,6 +127,11 @@ gistinsert(PG_FUNCTION_ARGS) * to the right of 'leftchildbuf', or updating the downlink for 'leftchildbuf'. * F_FOLLOW_RIGHT flag on 'leftchildbuf' is cleared and NSN is set. * + * If 'markfollowright' is true and the page is split, the left child is + * marked with F_FOLLOW_RIGHT flag. That is the normal case. During buffered + * index build, however, there is no concurrent access and the page splitting + * is done in a slightly simpler fashion, and false is passed. + * * If there is not enough room on the page, it is split. All the split * pages are kept pinned and locked and returned in *splitinfo, the caller * is responsible for inserting the downlinks for them. However, if @@ -293,13 +140,16 @@ gistinsert(PG_FUNCTION_ARGS) * In that case, we continue to hold the root page locked, and the child * pages are released; note that new tuple(s) are *not* on the root page * but in one of the new child pages. + * + * Returns 'true' if the page was split, 'false' otherwise. */ -static bool -gistplacetopage(GISTInsertState *state, GISTSTATE *giststate, +bool +gistplacetopage(Relation rel, Size freespace, GISTSTATE *giststate, Buffer buffer, IndexTuple *itup, int ntup, OffsetNumber oldoffnum, Buffer leftchildbuf, - List **splitinfo) + List **splitinfo, + bool markfollowright) { Page page = BufferGetPage(buffer); bool is_leaf = (GistPageIsLeaf(page)) ? true : false; @@ -331,7 +181,7 @@ gistplacetopage(GISTInsertState *state, GISTSTATE *giststate, * one-element todelete array; in the split case, it's handled implicitly * because the tuple vector passed to gistSplit won't include this tuple. */ - is_split = gistnospace(page, itup, ntup, oldoffnum, state->freespace); + is_split = gistnospace(page, itup, ntup, oldoffnum, freespace); if (is_split) { /* no space for insertion */ @@ -362,7 +212,7 @@ gistplacetopage(GISTInsertState *state, GISTSTATE *giststate, memmove(itvec + pos, itvec + pos + 1, sizeof(IndexTuple) * (tlen - pos)); } itvec = gistjoinvector(itvec, &tlen, itup, ntup); - dist = gistSplit(state->r, page, itvec, tlen, giststate); + dist = gistSplit(rel, page, itvec, tlen, giststate); /* * Set up pages to work with. Allocate new buffers for all but the @@ -392,7 +242,7 @@ gistplacetopage(GISTInsertState *state, GISTSTATE *giststate, for (; ptr; ptr = ptr->next) { /* Allocate new page */ - ptr->buffer = gistNewBuffer(state->r); + ptr->buffer = gistNewBuffer(rel); GISTInitBuffer(ptr->buffer, (is_leaf) ? F_LEAF : 0); ptr->page = BufferGetPage(ptr->buffer); ptr->block.blkno = BufferGetBlockNumber(ptr->buffer); @@ -463,7 +313,7 @@ gistplacetopage(GISTInsertState *state, GISTSTATE *giststate, for (i = 0; i < ptr->block.num; i++) { if (PageAddItem(ptr->page, (Item) data, IndexTupleSize((IndexTuple) data), i + FirstOffsetNumber, false, false) == InvalidOffsetNumber) - elog(ERROR, "failed to add item to index page in \"%s\"", RelationGetRelationName(state->r)); + elog(ERROR, "failed to add item to index page in \"%s\"", RelationGetRelationName(rel)); data += IndexTupleSize((IndexTuple) data); } @@ -474,7 +324,15 @@ gistplacetopage(GISTInsertState *state, GISTSTATE *giststate, else GistPageGetOpaque(ptr->page)->rightlink = oldrlink; - if (ptr->next && !is_rootsplit) + /* + * Mark the all but the right-most page with the follow-right + * flag. It will be cleared as soon as the downlink is inserted + * into the parent, but this ensures that if we error out before + * that, the index is still consistent. (in buffering build mode, + * any error will abort the index build anyway, so this is not + * needed.) + */ + if (ptr->next && !is_rootsplit && markfollowright) GistMarkFollowRight(ptr->page); else GistClearFollowRight(ptr->page); @@ -506,9 +364,10 @@ gistplacetopage(GISTInsertState *state, GISTSTATE *giststate, dist->page = BufferGetPage(dist->buffer); /* Write the WAL record */ - if (RelationNeedsWAL(state->r)) - recptr = gistXLogSplit(state->r->rd_node, blkno, is_leaf, - dist, oldrlink, oldnsn, leftchildbuf); + if (RelationNeedsWAL(rel)) + recptr = gistXLogSplit(rel->rd_node, blkno, is_leaf, + dist, oldrlink, oldnsn, leftchildbuf, + markfollowright); else recptr = GetXLogRecPtrForTemp(); @@ -547,7 +406,7 @@ gistplacetopage(GISTInsertState *state, GISTSTATE *giststate, if (BufferIsValid(leftchildbuf)) MarkBufferDirty(leftchildbuf); - if (RelationNeedsWAL(state->r)) + if (RelationNeedsWAL(rel)) { OffsetNumber ndeloffs = 0, deloffs[1]; @@ -558,7 +417,7 @@ gistplacetopage(GISTInsertState *state, GISTSTATE *giststate, ndeloffs = 1; } - recptr = gistXLogUpdate(state->r->rd_node, buffer, + recptr = gistXLogUpdate(rel->rd_node, buffer, deloffs, ndeloffs, itup, ntup, leftchildbuf); @@ -570,8 +429,6 @@ gistplacetopage(GISTInsertState *state, GISTSTATE *giststate, recptr = GetXLogRecPtrForTemp(); PageSetLSN(page, recptr); } - - *splitinfo = NIL; } /* @@ -608,7 +465,7 @@ gistplacetopage(GISTInsertState *state, GISTSTATE *giststate, * this routine assumes it is invoked in a short-lived memory context, * so it does not bother releasing palloc'd allocations. */ -static void +void gistdoinsert(Relation r, IndexTuple itup, Size freespace, GISTSTATE *giststate) { ItemId iid; @@ -1192,10 +1049,12 @@ gistinserttuples(GISTInsertState *state, GISTInsertStack *stack, List *splitinfo; bool is_split; - is_split = gistplacetopage(state, giststate, stack->buffer, + is_split = gistplacetopage(state->r, state->freespace, giststate, + stack->buffer, tuples, ntup, oldoffnum, leftchild, - &splitinfo); + &splitinfo, + true); if (splitinfo) gistfinishsplit(state, stack, giststate, splitinfo); diff --git a/src/backend/access/gist/gistbuild.c b/src/backend/access/gist/gistbuild.c new file mode 100644 index 00000000000..83192385106 --- /dev/null +++ b/src/backend/access/gist/gistbuild.c @@ -0,0 +1,1068 @@ +/*------------------------------------------------------------------------- + * + * gistbuild.c + * build algorithm for GiST indexes implementation. + * + * + * Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * IDENTIFICATION + * src/backend/access/gist/gistbuild.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include "access/genam.h" +#include "access/gist_private.h" +#include "catalog/index.h" +#include "miscadmin.h" +#include "optimizer/cost.h" +#include "storage/bufmgr.h" +#include "storage/smgr.h" +#include "utils/memutils.h" +#include "utils/rel.h" + +/* Step of index tuples for check whether to switch to buffering build mode */ +#define BUFFERING_MODE_SWITCH_CHECK_STEP 256 + +/* + * Number of tuples to process in the slow way before switching to buffering + * mode, when buffering is explicitly turned on. Also, the number of tuples + * to process between readjusting the buffer size parameter, while in + * buffering mode. + */ +#define BUFFERING_MODE_TUPLE_SIZE_STATS_TARGET 4096 + +typedef enum +{ + GIST_BUFFERING_DISABLED, /* in regular build mode and aren't going to + * switch */ + GIST_BUFFERING_AUTO, /* in regular build mode, but will switch to + * buffering build mode if the index grows too + * big */ + GIST_BUFFERING_STATS, /* gathering statistics of index tuple size + * before switching to the buffering build + * mode */ + GIST_BUFFERING_ACTIVE /* in buffering build mode */ +} GistBufferingMode; + +/* Working state for gistbuild and its callback */ +typedef struct +{ + Relation indexrel; + GISTSTATE giststate; + GISTBuildBuffers *gfbb; + + int64 indtuples; /* number of tuples indexed */ + int64 indtuplesSize; /* total size of all indexed tuples */ + + Size freespace; /* amount of free space to leave on pages */ + + GistBufferingMode bufferingMode; + MemoryContext tmpCtx; +} GISTBuildState; + +static void gistInitBuffering(GISTBuildState *buildstate); +static int calculatePagesPerBuffer(GISTBuildState *buildstate, int levelStep); +static void gistBuildCallback(Relation index, + HeapTuple htup, + Datum *values, + bool *isnull, + bool tupleIsAlive, + void *state); +static void gistBufferingBuildInsert(GISTBuildState *buildstate, + IndexTuple itup); +static bool gistProcessItup(GISTBuildState *buildstate, IndexTuple itup, + GISTBufferingInsertStack *startparent); +static void gistbufferinginserttuples(GISTBuildState *buildstate, + Buffer buffer, + IndexTuple *itup, int ntup, OffsetNumber oldoffnum, + GISTBufferingInsertStack *path); +static void gistBufferingFindCorrectParent(GISTBuildState *buildstate, + GISTBufferingInsertStack *child); +static void gistProcessEmptyingQueue(GISTBuildState *buildstate); +static void gistEmptyAllBuffers(GISTBuildState *buildstate); +static void gistFreeUnreferencedPath(GISTBufferingInsertStack *path); +static int gistGetMaxLevel(Relation index); + + +/* + * Main entry point to GiST index build. Initially calls insert over and over, + * but switches to more efficient buffering build algorithm after a certain + * number of tuples (unless buffering mode is disabled). + */ +Datum +gistbuild(PG_FUNCTION_ARGS) +{ + Relation heap = (Relation) PG_GETARG_POINTER(0); + Relation index = (Relation) PG_GETARG_POINTER(1); + IndexInfo *indexInfo = (IndexInfo *) PG_GETARG_POINTER(2); + IndexBuildResult *result; + double reltuples; + GISTBuildState buildstate; + Buffer buffer; + Page page; + MemoryContext oldcxt = CurrentMemoryContext; + int fillfactor; + + buildstate.indexrel = index; + if (index->rd_options) + { + /* Get buffering mode from the options string */ + GiSTOptions *options = (GiSTOptions *) index->rd_options; + char *bufferingMode = (char *) options + options->bufferingModeOffset; + + if (strcmp(bufferingMode, "on") == 0) + buildstate.bufferingMode = GIST_BUFFERING_STATS; + else if (strcmp(bufferingMode, "off") == 0) + buildstate.bufferingMode = GIST_BUFFERING_DISABLED; + else + buildstate.bufferingMode = GIST_BUFFERING_AUTO; + + fillfactor = options->fillfactor; + } + else + { + /* + * By default, switch to buffering mode when the index grows too large + * to fit in cache. + */ + buildstate.bufferingMode = GIST_BUFFERING_AUTO; + fillfactor = GIST_DEFAULT_FILLFACTOR; + } + /* Calculate target amount of free space to leave on pages */ + buildstate.freespace = BLCKSZ * (100 - fillfactor) / 100; + + /* + * We expect to be called exactly once for any index relation. If that's + * not the case, big trouble's what we have. + */ + if (RelationGetNumberOfBlocks(index) != 0) + elog(ERROR, "index \"%s\" already contains data", + RelationGetRelationName(index)); + + /* no locking is needed */ + initGISTstate(&buildstate.giststate, index); + + /* initialize the root page */ + buffer = gistNewBuffer(index); + Assert(BufferGetBlockNumber(buffer) == GIST_ROOT_BLKNO); + page = BufferGetPage(buffer); + + START_CRIT_SECTION(); + + GISTInitBuffer(buffer, F_LEAF); + + MarkBufferDirty(buffer); + + if (RelationNeedsWAL(index)) + { + XLogRecPtr recptr; + XLogRecData rdata; + + rdata.data = (char *) &(index->rd_node); + rdata.len = sizeof(RelFileNode); + rdata.buffer = InvalidBuffer; + rdata.next = NULL; + + recptr = XLogInsert(RM_GIST_ID, XLOG_GIST_CREATE_INDEX, &rdata); + PageSetLSN(page, recptr); + PageSetTLI(page, ThisTimeLineID); + } + else + PageSetLSN(page, GetXLogRecPtrForTemp()); + + UnlockReleaseBuffer(buffer); + + END_CRIT_SECTION(); + + /* build the index */ + buildstate.indtuples = 0; + buildstate.indtuplesSize = 0; + + /* + * create a temporary memory context that is reset once for each tuple + * processed. + */ + buildstate.tmpCtx = createTempGistContext(); + + /* + * Do the heap scan. + */ + reltuples = IndexBuildHeapScan(heap, index, indexInfo, true, + gistBuildCallback, (void *) &buildstate); + + /* + * If buffering was used, flush out all the tuples that are still in the + * buffers. + */ + if (buildstate.bufferingMode == GIST_BUFFERING_ACTIVE) + { + elog(DEBUG1, "all tuples processed, emptying buffers"); + gistEmptyAllBuffers(&buildstate); + } + + /* okay, all heap tuples are indexed */ + MemoryContextSwitchTo(oldcxt); + MemoryContextDelete(buildstate.tmpCtx); + + freeGISTstate(&buildstate.giststate); + + /* + * Return statistics + */ + result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult)); + + result->heap_tuples = reltuples; + result->index_tuples = (double) buildstate.indtuples; + + PG_RETURN_POINTER(result); +} + +/* + * Validator for "buffering" reloption on GiST indexes. Allows "on", "off" + * and "auto" values. + */ +void +gistValidateBufferingOption(char *value) +{ + if (value == NULL || + (strcmp(value, "on") != 0 && + strcmp(value, "off") != 0 && + strcmp(value, "auto") != 0)) + { + ereport(ERROR, + (errcode(ERRCODE_INVALID_PARAMETER_VALUE), + errmsg("invalid value for \"buffering\" option"), + errdetail("Valid values are \"on\", \"off\" and \"auto\"."))); + } +} + +/* + * Attempt to switch to buffering mode. + * + * If there is not enough memory for buffering build, sets bufferingMode + * to GIST_BUFFERING_DISABLED, so that we don't bother to try the switch + * anymore. Otherwise initializes the build buffers, and sets bufferingMode to + * GIST_BUFFERING_ACTIVE. + */ +static void +gistInitBuffering(GISTBuildState *buildstate) +{ + Relation index = buildstate->indexrel; + int pagesPerBuffer; + Size pageFreeSpace; + Size itupAvgSize, + itupMinSize; + double avgIndexTuplesPerPage, + maxIndexTuplesPerPage; + int i; + int levelStep; + + /* Calc space of index page which is available for index tuples */ + pageFreeSpace = BLCKSZ - SizeOfPageHeaderData - sizeof(GISTPageOpaqueData) + - sizeof(ItemIdData) + - buildstate->freespace; + + /* + * Calculate average size of already inserted index tuples using gathered + * statistics. + */ + itupAvgSize = (double) buildstate->indtuplesSize / + (double) buildstate->indtuples; + + /* + * Calculate minimal possible size of index tuple by index metadata. + * Minimal possible size of varlena is VARHDRSZ. + * + * XXX: that's not actually true, as a short varlen can be just 2 bytes. + * And we should take padding into account here. + */ + itupMinSize = (Size) MAXALIGN(sizeof(IndexTupleData)); + for (i = 0; i < index->rd_att->natts; i++) + { + if (index->rd_att->attrs[i]->attlen < 0) + itupMinSize += VARHDRSZ; + else + itupMinSize += index->rd_att->attrs[i]->attlen; + } + + /* Calculate average and maximal number of index tuples which fit to page */ + avgIndexTuplesPerPage = pageFreeSpace / itupAvgSize; + maxIndexTuplesPerPage = pageFreeSpace / itupMinSize; + + /* + * We need to calculate two parameters for the buffering algorithm: + * levelStep and pagesPerBuffer. + * + * levelStep determines the size of subtree that we operate on, while + * emptying a buffer. A higher value is better, as you need fewer buffer + * emptying steps to build the index. However, if you set it too high, the + * subtree doesn't fit in cache anymore, and you quickly lose the benefit + * of the buffers. + * + * In Arge et al's paper, levelStep is chosen as logB(M/4B), where B is + * the number of tuples on page (ie. fanout), and M is the amount of + * internal memory available. Curiously, they doesn't explain *why* that + * setting is optimal. We calculate it by taking the highest levelStep so + * that a subtree still fits in cache. For a small B, our way of + * calculating levelStep is very close to Arge et al's formula. For a + * large B, our formula gives a value that is 2x higher. + * + * The average size of a subtree of depth n can be calculated as a + * geometric series: + * + * B^0 + B^1 + B^2 + ... + B^n = (1 - B^(n + 1)) / (1 - B) + * + * where B is the average number of index tuples on page. The subtree is + * cached in the shared buffer cache and the OS cache, so we choose + * levelStep so that the subtree size is comfortably smaller than + * effective_cache_size, with a safety factor of 4. + * + * The estimate on the average number of index tuples on page is based on + * average tuple sizes observed before switching to buffered build, so the + * real subtree size can be somewhat larger. Also, it would selfish to + * gobble the whole cache for our index build. The safety factor of 4 + * should account for those effects. + * + * The other limiting factor for setting levelStep is that while + * processing a subtree, we need to hold one page for each buffer at the + * next lower buffered level. The max. number of buffers needed for that + * is maxIndexTuplesPerPage^levelStep. This is very conservative, but + * hopefully maintenance_work_mem is set high enough that you're + * constrained by effective_cache_size rather than maintenance_work_mem. + * + * XXX: the buffer hash table consumes a fair amount of memory too per + * buffer, but that is not currently taken into account. That scales on + * the total number of buffers used, ie. the index size and on levelStep. + * Note that a higher levelStep *reduces* the amount of memory needed for + * the hash table. + */ + levelStep = 1; + while ( + /* subtree must fit in cache (with safety factor of 4) */ + (1 - pow(avgIndexTuplesPerPage, (double) (levelStep + 1))) / (1 - avgIndexTuplesPerPage) < effective_cache_size / 4 + && + /* each node in the lowest level of a subtree has one page in memory */ + (pow(maxIndexTuplesPerPage, (double) levelStep) < (maintenance_work_mem * 1024) / BLCKSZ) + ) + { + levelStep++; + } + + /* + * We just reached an unacceptable value of levelStep in previous loop. + * So, decrease levelStep to get last acceptable value. + */ + levelStep--; + + /* + * If there's not enough cache or maintenance_work_mem, fall back to plain + * inserts. + */ + if (levelStep <= 0) + { + elog(DEBUG1, "failed to switch to buffered GiST build"); + buildstate->bufferingMode = GIST_BUFFERING_DISABLED; + return; + } + + /* + * The second parameter to set is pagesPerBuffer, which determines the + * size of each buffer. We adjust pagesPerBuffer also during the build, + * which is why this calculation is in a separate function. + */ + pagesPerBuffer = calculatePagesPerBuffer(buildstate, levelStep); + + /* Initialize GISTBuildBuffers with these parameters */ + buildstate->gfbb = gistInitBuildBuffers(pagesPerBuffer, levelStep, + gistGetMaxLevel(index)); + + buildstate->bufferingMode = GIST_BUFFERING_ACTIVE; + + elog(DEBUG1, "switched to buffered GiST build; level step = %d, pagesPerBuffer = %d", + levelStep, pagesPerBuffer); +} + +/* + * Calculate pagesPerBuffer parameter for the buffering algorithm. + * + * Buffer size is chosen so that assuming that tuples are distributed + * randomly, emptying half a buffer fills on average one page in every buffer + * at the next lower level. + */ +static int +calculatePagesPerBuffer(GISTBuildState *buildstate, int levelStep) +{ + double pagesPerBuffer; + double avgIndexTuplesPerPage; + double itupAvgSize; + Size pageFreeSpace; + + /* Calc space of index page which is available for index tuples */ + pageFreeSpace = BLCKSZ - SizeOfPageHeaderData - sizeof(GISTPageOpaqueData) + - sizeof(ItemIdData) + - buildstate->freespace; + + /* + * Calculate average size of already inserted index tuples using gathered + * statistics. + */ + itupAvgSize = (double) buildstate->indtuplesSize / + (double) buildstate->indtuples; + + avgIndexTuplesPerPage = pageFreeSpace / itupAvgSize; + + /* + * Recalculate required size of buffers. + */ + pagesPerBuffer = 2 * pow(avgIndexTuplesPerPage, levelStep); + + return round(pagesPerBuffer); +} + +/* + * Per-tuple callback from IndexBuildHeapScan. + */ +static void +gistBuildCallback(Relation index, + HeapTuple htup, + Datum *values, + bool *isnull, + bool tupleIsAlive, + void *state) +{ + GISTBuildState *buildstate = (GISTBuildState *) state; + IndexTuple itup; + MemoryContext oldCtx; + + oldCtx = MemoryContextSwitchTo(buildstate->tmpCtx); + + /* form an index tuple and point it at the heap tuple */ + itup = gistFormTuple(&buildstate->giststate, index, values, isnull, true); + itup->t_tid = htup->t_self; + + if (buildstate->bufferingMode == GIST_BUFFERING_ACTIVE) + { + /* We have buffers, so use them. */ + gistBufferingBuildInsert(buildstate, itup); + } + else + { + /* + * There's no buffers (yet). Since we already have the index relation + * locked, we call gistdoinsert directly. + */ + gistdoinsert(index, itup, buildstate->freespace, + &buildstate->giststate); + } + + /* Update tuple count and total size. */ + buildstate->indtuples += 1; + buildstate->indtuplesSize += IndexTupleSize(itup); + + MemoryContextSwitchTo(oldCtx); + MemoryContextReset(buildstate->tmpCtx); + + if (buildstate->bufferingMode == GIST_BUFFERING_ACTIVE && + buildstate->indtuples % BUFFERING_MODE_TUPLE_SIZE_STATS_TARGET == 0) + { + /* Adjust the target buffer size now */ + buildstate->gfbb->pagesPerBuffer = + calculatePagesPerBuffer(buildstate, buildstate->gfbb->levelStep); + } + + /* + * In 'auto' mode, check if the index has grown too large to fit in cache, + * and switch to buffering mode if it has. + * + * To avoid excessive calls to smgrnblocks(), only check this every + * BUFFERING_MODE_SWITCH_CHECK_STEP index tuples + */ + if ((buildstate->bufferingMode == GIST_BUFFERING_AUTO && + buildstate->indtuples % BUFFERING_MODE_SWITCH_CHECK_STEP == 0 && + effective_cache_size < smgrnblocks(index->rd_smgr, MAIN_FORKNUM)) || + (buildstate->bufferingMode == GIST_BUFFERING_STATS && + buildstate->indtuples >= BUFFERING_MODE_TUPLE_SIZE_STATS_TARGET)) + { + /* + * Index doesn't fit in effective cache anymore. Try to switch to + * buffering build mode. + */ + gistInitBuffering(buildstate); + } +} + +/* + * Insert function for buffering index build. + */ +static void +gistBufferingBuildInsert(GISTBuildState *buildstate, IndexTuple itup) +{ + /* Insert the tuple to buffers. */ + gistProcessItup(buildstate, itup, NULL); + + /* If we filled up (half of a) buffer, process buffer emptying. */ + gistProcessEmptyingQueue(buildstate); +} + +/* + * Process an index tuple. Runs the tuple down the tree until we reach a leaf + * page or node buffer, and inserts the tuple there. Returns true if we have + * to stop buffer emptying process (because one of child buffers can't take + * index tuples anymore). + */ +static bool +gistProcessItup(GISTBuildState *buildstate, IndexTuple itup, + GISTBufferingInsertStack *startparent) +{ + GISTSTATE *giststate = &buildstate->giststate; + GISTBuildBuffers *gfbb = buildstate->gfbb; + Relation indexrel = buildstate->indexrel; + GISTBufferingInsertStack *path; + BlockNumber childblkno; + Buffer buffer; + bool result = false; + + /* + * NULL passed in startparent means that we start index tuple processing + * from the root. + */ + if (!startparent) + path = gfbb->rootitem; + else + path = startparent; + + /* + * Loop until we reach a leaf page (level == 0) or a level with buffers + * (not including the level we start at, because we would otherwise make + * no progress). + */ + for (;;) + { + ItemId iid; + IndexTuple idxtuple, + newtup; + Page page; + OffsetNumber childoffnum; + GISTBufferingInsertStack *parent; + + /* Have we reached a level with buffers? */ + if (LEVEL_HAS_BUFFERS(path->level, gfbb) && path != startparent) + break; + + /* Have we reached a leaf page? */ + if (path->level == 0) + break; + + /* + * Nope. Descend down to the next level then. Choose a child to + * descend down to. + */ + buffer = ReadBuffer(indexrel, path->blkno); + LockBuffer(buffer, GIST_EXCLUSIVE); + + page = (Page) BufferGetPage(buffer); + childoffnum = gistchoose(indexrel, page, itup, giststate); + iid = PageGetItemId(page, childoffnum); + idxtuple = (IndexTuple) PageGetItem(page, iid); + childblkno = ItemPointerGetBlockNumber(&(idxtuple->t_tid)); + + /* + * Check that the key representing the target child node is consistent + * with the key we're inserting. Update it if it's not. + */ + newtup = gistgetadjusted(indexrel, idxtuple, itup, giststate); + if (newtup) + gistbufferinginserttuples(buildstate, buffer, &newtup, 1, + childoffnum, path); + UnlockReleaseBuffer(buffer); + + /* Create new path item representing current page */ + parent = path; + path = (GISTBufferingInsertStack *) MemoryContextAlloc(gfbb->context, + sizeof(GISTBufferingInsertStack)); + path->parent = parent; + path->level = parent->level - 1; + path->blkno = childblkno; + path->downlinkoffnum = childoffnum; + path->refCount = 0; /* it's unreferenced for now */ + + /* Adjust reference count of parent */ + if (parent) + parent->refCount++; + } + + if (LEVEL_HAS_BUFFERS(path->level, gfbb)) + { + /* + * We've reached level with buffers. Place the index tuple to the + * buffer, and add the buffer to the emptying queue if it overflows. + */ + GISTNodeBuffer *childNodeBuffer; + + /* Find the buffer or create a new one */ + childNodeBuffer = gistGetNodeBuffer(gfbb, giststate, path->blkno, + path->downlinkoffnum, path->parent); + + /* Add index tuple to it */ + gistPushItupToNodeBuffer(gfbb, childNodeBuffer, itup); + + if (BUFFER_OVERFLOWED(childNodeBuffer, gfbb)) + result = true; + } + else + { + /* + * We've reached a leaf page. Place the tuple here. + */ + buffer = ReadBuffer(indexrel, path->blkno); + LockBuffer(buffer, GIST_EXCLUSIVE); + gistbufferinginserttuples(buildstate, buffer, &itup, 1, + InvalidOffsetNumber, path); + UnlockReleaseBuffer(buffer); + } + + /* + * Free unreferenced path items, if any. Path item may be referenced by + * node buffer. + */ + gistFreeUnreferencedPath(path); + + return result; +} + +/* + * Insert tuples to a given page. + * + * This is analogous with gistinserttuples() in the regular insertion code. + */ +static void +gistbufferinginserttuples(GISTBuildState *buildstate, Buffer buffer, + IndexTuple *itup, int ntup, OffsetNumber oldoffnum, + GISTBufferingInsertStack *path) +{ + GISTBuildBuffers *gfbb = buildstate->gfbb; + List *splitinfo; + bool is_split; + + is_split = gistplacetopage(buildstate->indexrel, + buildstate->freespace, + &buildstate->giststate, + buffer, + itup, ntup, oldoffnum, + InvalidBuffer, + &splitinfo, + false); + + /* + * If this is a root split, update the root path item kept in memory. This + * ensures that all path stacks are always complete, including all parent + * nodes up to the root. That simplifies the algorithm to re-find correct + * parent. + */ + if (is_split && BufferGetBlockNumber(buffer) == GIST_ROOT_BLKNO) + { + GISTBufferingInsertStack *oldroot = gfbb->rootitem; + Page page = BufferGetPage(buffer); + ItemId iid; + IndexTuple idxtuple; + BlockNumber leftmostchild; + + gfbb->rootitem = (GISTBufferingInsertStack *) MemoryContextAlloc( + gfbb->context, sizeof(GISTBufferingInsertStack)); + gfbb->rootitem->parent = NULL; + gfbb->rootitem->blkno = GIST_ROOT_BLKNO; + gfbb->rootitem->downlinkoffnum = InvalidOffsetNumber; + gfbb->rootitem->level = oldroot->level + 1; + gfbb->rootitem->refCount = 1; + + /* + * All the downlinks on the old root page are now on one of the child + * pages. Change the block number of the old root entry in the stack + * to point to the leftmost child. The other child pages will be + * accessible from there by walking right. + */ + iid = PageGetItemId(page, FirstOffsetNumber); + idxtuple = (IndexTuple) PageGetItem(page, iid); + leftmostchild = ItemPointerGetBlockNumber(&(idxtuple->t_tid)); + + oldroot->parent = gfbb->rootitem; + oldroot->blkno = leftmostchild; + oldroot->downlinkoffnum = InvalidOffsetNumber; + } + + if (splitinfo) + { + /* + * Insert the downlinks to the parent. This is analogous with + * gistfinishsplit() in the regular insertion code, but the locking is + * simpler, and we have to maintain the buffers. + */ + IndexTuple *downlinks; + int ndownlinks, + i; + Buffer parentBuffer; + ListCell *lc; + + /* Parent may have changed since we memorized this path. */ + gistBufferingFindCorrectParent(buildstate, path); + + /* + * If there's a buffer associated with this page, that needs to be + * split too. gistRelocateBuildBuffersOnSplit() will also adjust the + * downlinks in 'splitinfo', to make sure they're consistent not only + * with the tuples already on the pages, but also the tuples in the + * buffers that will eventually be inserted to them. + */ + gistRelocateBuildBuffersOnSplit(gfbb, + &buildstate->giststate, + buildstate->indexrel, + path, buffer, splitinfo); + + /* Create an array of all the downlink tuples */ + ndownlinks = list_length(splitinfo); + downlinks = (IndexTuple *) palloc(sizeof(IndexTuple) * ndownlinks); + i = 0; + foreach(lc, splitinfo) + { + GISTPageSplitInfo *splitinfo = lfirst(lc); + + /* + * Since there's no concurrent access, we can release the lower + * level buffers immediately. Don't release the buffer for the + * original page, though, because the caller will release that. + */ + if (splitinfo->buf != buffer) + UnlockReleaseBuffer(splitinfo->buf); + downlinks[i++] = splitinfo->downlink; + } + + /* Insert them into parent. */ + parentBuffer = ReadBuffer(buildstate->indexrel, path->parent->blkno); + LockBuffer(parentBuffer, GIST_EXCLUSIVE); + gistbufferinginserttuples(buildstate, parentBuffer, + downlinks, ndownlinks, + path->downlinkoffnum, path->parent); + UnlockReleaseBuffer(parentBuffer); + + list_free_deep(splitinfo); /* we don't need this anymore */ + } +} + +/* + * Find correct parent by following rightlinks in buffering index build. This + * method of parent searching is possible because no concurrent activity is + * possible while index builds. + */ +static void +gistBufferingFindCorrectParent(GISTBuildState *buildstate, + GISTBufferingInsertStack *child) +{ + GISTBuildBuffers *gfbb = buildstate->gfbb; + Relation indexrel = buildstate->indexrel; + GISTBufferingInsertStack *parent = child->parent; + OffsetNumber i, + maxoff; + ItemId iid; + IndexTuple idxtuple; + Buffer buffer; + Page page; + bool copied = false; + + buffer = ReadBuffer(indexrel, parent->blkno); + page = BufferGetPage(buffer); + LockBuffer(buffer, GIST_EXCLUSIVE); + gistcheckpage(indexrel, buffer); + + /* Check if it was not moved */ + if (child->downlinkoffnum != InvalidOffsetNumber && + child->downlinkoffnum <= PageGetMaxOffsetNumber(page)) + { + iid = PageGetItemId(page, child->downlinkoffnum); + idxtuple = (IndexTuple) PageGetItem(page, iid); + if (ItemPointerGetBlockNumber(&(idxtuple->t_tid)) == child->blkno) + { + /* Still there */ + UnlockReleaseBuffer(buffer); + return; + } + } + + /* parent has changed, look child in right links until found */ + while (true) + { + /* Search for relevant downlink in the current page */ + maxoff = PageGetMaxOffsetNumber(page); + for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) + { + iid = PageGetItemId(page, i); + idxtuple = (IndexTuple) PageGetItem(page, iid); + if (ItemPointerGetBlockNumber(&(idxtuple->t_tid)) == child->blkno) + { + /* yes!!, found */ + child->downlinkoffnum = i; + UnlockReleaseBuffer(buffer); + return; + } + } + + /* + * We should copy parent path item because some other path items can + * refer to it. + */ + if (!copied) + { + parent = (GISTBufferingInsertStack *) MemoryContextAlloc(gfbb->context, + sizeof(GISTBufferingInsertStack)); + memcpy(parent, child->parent, sizeof(GISTBufferingInsertStack)); + if (parent->parent) + parent->parent->refCount++; + gistDecreasePathRefcount(child->parent); + child->parent = parent; + parent->refCount = 1; + copied = true; + } + + /* + * Not found in current page. Move towards rightlink. + */ + parent->blkno = GistPageGetOpaque(page)->rightlink; + UnlockReleaseBuffer(buffer); + + if (parent->blkno == InvalidBlockNumber) + { + /* + * End of chain and still didn't find parent. Should not happen + * during index build. + */ + break; + } + + /* Get the next page */ + buffer = ReadBuffer(indexrel, parent->blkno); + page = BufferGetPage(buffer); + LockBuffer(buffer, GIST_EXCLUSIVE); + gistcheckpage(indexrel, buffer); + } + + elog(ERROR, "failed to re-find parent for block %u", child->blkno); +} + +/* + * Process buffers emptying stack. Emptying of one buffer can cause emptying + * of other buffers. This function iterates until this cascading emptying + * process finished, e.g. until buffers emptying stack is empty. + */ +static void +gistProcessEmptyingQueue(GISTBuildState *buildstate) +{ + GISTBuildBuffers *gfbb = buildstate->gfbb; + + /* Iterate while we have elements in buffers emptying stack. */ + while (gfbb->bufferEmptyingQueue != NIL) + { + GISTNodeBuffer *emptyingNodeBuffer; + + /* Get node buffer from emptying stack. */ + emptyingNodeBuffer = (GISTNodeBuffer *) linitial(gfbb->bufferEmptyingQueue); + gfbb->bufferEmptyingQueue = list_delete_first(gfbb->bufferEmptyingQueue); + emptyingNodeBuffer->queuedForEmptying = false; + + /* + * We are going to load last pages of buffers where emptying will be + * to. So let's unload any previously loaded buffers. + */ + gistUnloadNodeBuffers(gfbb); + + /* + * Pop tuples from the buffer and run them down to the buffers at + * lower level, or leaf pages. We continue until one of the lower + * level buffers fills up, or this buffer runs empty. + * + * In Arge et al's paper, the buffer emptying is stopped after + * processing 1/2 node buffer worth of tuples, to avoid overfilling + * any of the lower level buffers. However, it's more efficient to + * keep going until one of the lower level buffers actually fills up, + * so that's what we do. This doesn't need to be exact, if a buffer + * overfills by a few tuples, there's no harm done. + */ + while (true) + { + IndexTuple itup; + + /* Get next index tuple from the buffer */ + if (!gistPopItupFromNodeBuffer(gfbb, emptyingNodeBuffer, &itup)) + break; + + /* + * Run it down to the underlying node buffer or leaf page. + * + * Note: it's possible that the buffer we're emptying splits as a + * result of this call. If that happens, our emptyingNodeBuffer + * points to the left half of the split. After split, it's very + * likely that the new left buffer is no longer over the half-full + * threshold, but we might as well keep flushing tuples from it + * until we fill a lower-level buffer. + */ + if (gistProcessItup(buildstate, itup, emptyingNodeBuffer->path)) + { + /* + * A lower level buffer filled up. Stop emptying this buffer, + * to avoid overflowing the lower level buffer. + */ + break; + } + + /* Free all the memory allocated during index tuple processing */ + MemoryContextReset(CurrentMemoryContext); + } + } +} + +/* + * Empty all node buffers, from top to bottom. This is done at the end of + * index build to flush all remaining tuples to the index. + * + * Note: This destroys the buffersOnLevels lists, so the buffers should not + * be inserted to after this call. + */ +static void +gistEmptyAllBuffers(GISTBuildState *buildstate) +{ + GISTBuildBuffers *gfbb = buildstate->gfbb; + MemoryContext oldCtx; + int i; + + oldCtx = MemoryContextSwitchTo(buildstate->tmpCtx); + + /* + * Iterate through the levels from top to bottom. + */ + for (i = gfbb->buffersOnLevelsLen - 1; i >= 0; i--) + { + /* + * Empty all buffers on this level. Note that new buffers can pop up + * in the list during the processing, as a result of page splits, so a + * simple walk through the list won't work. We remove buffers from the + * list when we see them empty; a buffer can't become non-empty once + * it's been fully emptied. + */ + while (gfbb->buffersOnLevels[i] != NIL) + { + GISTNodeBuffer *nodeBuffer; + + nodeBuffer = (GISTNodeBuffer *) linitial(gfbb->buffersOnLevels[i]); + + if (nodeBuffer->blocksCount != 0) + { + /* + * Add this buffer to the emptying queue, and proceed to empty + * the queue. + */ + MemoryContextSwitchTo(gfbb->context); + gfbb->bufferEmptyingQueue = + lcons(nodeBuffer, gfbb->bufferEmptyingQueue); + MemoryContextSwitchTo(buildstate->tmpCtx); + gistProcessEmptyingQueue(buildstate); + } + else + gfbb->buffersOnLevels[i] = + list_delete_first(gfbb->buffersOnLevels[i]); + } + } + MemoryContextSwitchTo(oldCtx); +} + +/* + * Free unreferenced parts of a path stack. + */ +static void +gistFreeUnreferencedPath(GISTBufferingInsertStack *path) +{ + while (path->refCount == 0) + { + /* + * Path part is unreferenced. We can free it and decrease reference + * count of parent. If parent becomes unreferenced too procedure + * should be repeated for it. + */ + GISTBufferingInsertStack *tmp = path->parent; + + pfree(path); + path = tmp; + if (path) + path->refCount--; + else + break; + } +} + +/* + * Decrease reference count of a path part, and free any unreferenced parts of + * the path stack. + */ +void +gistDecreasePathRefcount(GISTBufferingInsertStack *path) +{ + path->refCount--; + gistFreeUnreferencedPath(path); +} + +/* + * Get the depth of the GiST index. + */ +static int +gistGetMaxLevel(Relation index) +{ + int maxLevel; + BlockNumber blkno; + + /* + * Traverse down the tree, starting from the root, until we hit the leaf + * level. + */ + maxLevel = 0; + blkno = GIST_ROOT_BLKNO; + while (true) + { + Buffer buffer; + Page page; + IndexTuple itup; + + buffer = ReadBuffer(index, blkno); + + /* + * There's no concurrent access during index build, so locking is just + * pro forma. + */ + LockBuffer(buffer, GIST_SHARE); + page = (Page) BufferGetPage(buffer); + + if (GistPageIsLeaf(page)) + { + /* We hit the bottom, so we're done. */ + UnlockReleaseBuffer(buffer); + break; + } + + /* + * Pick the first downlink on the page, and follow it. It doesn't + * matter which downlink we choose, the tree has the same depth + * everywhere, so we just pick the first one. + */ + itup = (IndexTuple) PageGetItem(page, + PageGetItemId(page, FirstOffsetNumber)); + blkno = ItemPointerGetBlockNumber(&(itup->t_tid)); + UnlockReleaseBuffer(buffer); + + /* + * We're going down on the tree. It means that there is yet one more + * level is the tree. + */ + maxLevel++; + } + return maxLevel; +} diff --git a/src/backend/access/gist/gistbuildbuffers.c b/src/backend/access/gist/gistbuildbuffers.c new file mode 100644 index 00000000000..1c11fb39b02 --- /dev/null +++ b/src/backend/access/gist/gistbuildbuffers.c @@ -0,0 +1,787 @@ +/*------------------------------------------------------------------------- + * + * gistbuildbuffers.c + * node buffer management functions for GiST buffering build algorithm. + * + * + * Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * IDENTIFICATION + * src/backend/access/gist/gistbuildbuffers.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include "access/genam.h" +#include "access/gist_private.h" +#include "catalog/index.h" +#include "miscadmin.h" +#include "storage/buffile.h" +#include "storage/bufmgr.h" +#include "utils/memutils.h" +#include "utils/rel.h" + +static GISTNodeBufferPage *gistAllocateNewPageBuffer(GISTBuildBuffers *gfbb); +static void gistAddLoadedBuffer(GISTBuildBuffers *gfbb, + GISTNodeBuffer *nodeBuffer); +static void gistLoadNodeBuffer(GISTBuildBuffers *gfbb, + GISTNodeBuffer *nodeBuffer); +static void gistUnloadNodeBuffer(GISTBuildBuffers *gfbb, + GISTNodeBuffer *nodeBuffer); +static void gistPlaceItupToPage(GISTNodeBufferPage *pageBuffer, + IndexTuple item); +static void gistGetItupFromPage(GISTNodeBufferPage *pageBuffer, + IndexTuple *item); +static long gistBuffersGetFreeBlock(GISTBuildBuffers *gfbb); +static void gistBuffersReleaseBlock(GISTBuildBuffers *gfbb, long blocknum); + +static void ReadTempFileBlock(BufFile *file, long blknum, void *ptr); +static void WriteTempFileBlock(BufFile *file, long blknum, void *ptr); + + +/* + * Initialize GiST build buffers. + */ +GISTBuildBuffers * +gistInitBuildBuffers(int pagesPerBuffer, int levelStep, int maxLevel) +{ + GISTBuildBuffers *gfbb; + HASHCTL hashCtl; + + gfbb = palloc(sizeof(GISTBuildBuffers)); + gfbb->pagesPerBuffer = pagesPerBuffer; + gfbb->levelStep = levelStep; + + /* + * Create a temporary file to hold buffer pages that are swapped out of + * memory. + */ + gfbb->pfile = BufFileCreateTemp(true); + gfbb->nFileBlocks = 0; + + /* Initialize free page management. */ + gfbb->nFreeBlocks = 0; + gfbb->freeBlocksLen = 32; + gfbb->freeBlocks = (long *) palloc(gfbb->freeBlocksLen * sizeof(long)); + + /* + * Current memory context will be used for all in-memory data structures + * of buffers which are persistent during buffering build. + */ + gfbb->context = CurrentMemoryContext; + + /* + * nodeBuffersTab hash is association between index blocks and it's + * buffers. + */ + hashCtl.keysize = sizeof(BlockNumber); + hashCtl.entrysize = sizeof(GISTNodeBuffer); + hashCtl.hcxt = CurrentMemoryContext; + hashCtl.hash = tag_hash; + hashCtl.match = memcmp; + gfbb->nodeBuffersTab = hash_create("gistbuildbuffers", + 1024, + &hashCtl, + HASH_ELEM | HASH_CONTEXT + | HASH_FUNCTION | HASH_COMPARE); + + gfbb->bufferEmptyingQueue = NIL; + + /* + * Per-level node buffers lists for final buffers emptying process. Node + * buffers are inserted here when they are created. + */ + gfbb->buffersOnLevelsLen = 1; + gfbb->buffersOnLevels = (List **) palloc(sizeof(List *) * + gfbb->buffersOnLevelsLen); + gfbb->buffersOnLevels[0] = NIL; + + /* + * Block numbers of node buffers which last pages are currently loaded + * into main memory. + */ + gfbb->loadedBuffersLen = 32; + gfbb->loadedBuffers = (GISTNodeBuffer **) palloc(gfbb->loadedBuffersLen * + sizeof(GISTNodeBuffer *)); + gfbb->loadedBuffersCount = 0; + + /* + * Root path item of the tree. Updated on each root node split. + */ + gfbb->rootitem = (GISTBufferingInsertStack *) MemoryContextAlloc( + gfbb->context, sizeof(GISTBufferingInsertStack)); + gfbb->rootitem->parent = NULL; + gfbb->rootitem->blkno = GIST_ROOT_BLKNO; + gfbb->rootitem->downlinkoffnum = InvalidOffsetNumber; + gfbb->rootitem->level = maxLevel; + gfbb->rootitem->refCount = 1; + + return gfbb; +} + +/* + * Returns a node buffer for given block. The buffer is created if it + * doesn't exist yet. + */ +GISTNodeBuffer * +gistGetNodeBuffer(GISTBuildBuffers *gfbb, GISTSTATE *giststate, + BlockNumber nodeBlocknum, + OffsetNumber downlinkoffnum, + GISTBufferingInsertStack *parent) +{ + GISTNodeBuffer *nodeBuffer; + bool found; + + /* Find node buffer in hash table */ + nodeBuffer = (GISTNodeBuffer *) hash_search(gfbb->nodeBuffersTab, + (const void *) &nodeBlocknum, + HASH_ENTER, + &found); + if (!found) + { + /* + * Node buffer wasn't found. Initialize the new buffer as empty. + */ + GISTBufferingInsertStack *path; + int level; + MemoryContext oldcxt = MemoryContextSwitchTo(gfbb->context); + + nodeBuffer->pageBuffer = NULL; + nodeBuffer->blocksCount = 0; + nodeBuffer->queuedForEmptying = false; + + /* + * Create a path stack for the page. + */ + if (nodeBlocknum != GIST_ROOT_BLKNO) + { + path = (GISTBufferingInsertStack *) palloc( + sizeof(GISTBufferingInsertStack)); + path->parent = parent; + path->blkno = nodeBlocknum; + path->downlinkoffnum = downlinkoffnum; + path->level = parent->level - 1; + path->refCount = 0; /* initially unreferenced */ + parent->refCount++; /* this path references its parent */ + Assert(path->level > 0); + } + else + path = gfbb->rootitem; + + nodeBuffer->path = path; + path->refCount++; + + /* + * Add this buffer to the list of buffers on this level. Enlarge + * buffersOnLevels array if needed. + */ + level = path->level; + if (level >= gfbb->buffersOnLevelsLen) + { + int i; + + gfbb->buffersOnLevels = + (List **) repalloc(gfbb->buffersOnLevels, + (level + 1) * sizeof(List *)); + + /* initialize the enlarged portion */ + for (i = gfbb->buffersOnLevelsLen; i <= level; i++) + gfbb->buffersOnLevels[i] = NIL; + gfbb->buffersOnLevelsLen = level + 1; + } + + /* + * Prepend the new buffer to the list of buffers on this level. It's + * not arbitrary that the new buffer is put to the beginning of the + * list: in the final emptying phase we loop through all buffers at + * each level, and flush them. If a page is split during the emptying, + * it's more efficient to flush the new splitted pages first, before + * moving on to pre-existing pages on the level. The buffers just + * created during the page split are likely still in cache, so + * flushing them immediately is more efficient than putting them to + * the end of the queue. + */ + gfbb->buffersOnLevels[level] = lcons(nodeBuffer, + gfbb->buffersOnLevels[level]); + + MemoryContextSwitchTo(oldcxt); + } + else + { + if (parent != nodeBuffer->path->parent) + { + /* + * A different parent path item was provided than we've + * remembered. We trust caller to provide more correct parent than + * we have. Previous parent may be outdated by page split. + */ + gistDecreasePathRefcount(nodeBuffer->path->parent); + nodeBuffer->path->parent = parent; + parent->refCount++; + } + } + + return nodeBuffer; +} + +/* + * Allocate memory for a buffer page. + */ +static GISTNodeBufferPage * +gistAllocateNewPageBuffer(GISTBuildBuffers *gfbb) +{ + GISTNodeBufferPage *pageBuffer; + + pageBuffer = (GISTNodeBufferPage *) MemoryContextAlloc(gfbb->context, + BLCKSZ); + pageBuffer->prev = InvalidBlockNumber; + + /* Set page free space */ + PAGE_FREE_SPACE(pageBuffer) = BLCKSZ - BUFFER_PAGE_DATA_OFFSET; + return pageBuffer; +} + +/* + * Add specified block number into loadedBuffers array. + */ +static void +gistAddLoadedBuffer(GISTBuildBuffers *gfbb, GISTNodeBuffer *nodeBuffer) +{ + /* Enlarge the array if needed */ + if (gfbb->loadedBuffersCount >= gfbb->loadedBuffersLen) + { + gfbb->loadedBuffersLen *= 2; + gfbb->loadedBuffers = (GISTNodeBuffer **) + repalloc(gfbb->loadedBuffers, + gfbb->loadedBuffersLen * sizeof(GISTNodeBuffer *)); + } + + gfbb->loadedBuffers[gfbb->loadedBuffersCount] = nodeBuffer; + gfbb->loadedBuffersCount++; +} + +/* + * Load last page of node buffer into main memory. + */ +static void +gistLoadNodeBuffer(GISTBuildBuffers *gfbb, GISTNodeBuffer *nodeBuffer) +{ + /* Check if we really should load something */ + if (!nodeBuffer->pageBuffer && nodeBuffer->blocksCount > 0) + { + /* Allocate memory for page */ + nodeBuffer->pageBuffer = gistAllocateNewPageBuffer(gfbb); + + /* Read block from temporary file */ + ReadTempFileBlock(gfbb->pfile, nodeBuffer->pageBlocknum, + nodeBuffer->pageBuffer); + + /* Mark file block as free */ + gistBuffersReleaseBlock(gfbb, nodeBuffer->pageBlocknum); + + /* Mark node buffer as loaded */ + gistAddLoadedBuffer(gfbb, nodeBuffer); + nodeBuffer->pageBlocknum = InvalidBlockNumber; + } +} + +/* + * Write last page of node buffer to the disk. + */ +static void +gistUnloadNodeBuffer(GISTBuildBuffers *gfbb, GISTNodeBuffer *nodeBuffer) +{ + /* Check if we have something to write */ + if (nodeBuffer->pageBuffer) + { + BlockNumber blkno; + + /* Get free file block */ + blkno = gistBuffersGetFreeBlock(gfbb); + + /* Write block to the temporary file */ + WriteTempFileBlock(gfbb->pfile, blkno, nodeBuffer->pageBuffer); + + /* Free memory of that page */ + pfree(nodeBuffer->pageBuffer); + nodeBuffer->pageBuffer = NULL; + + /* Save block number */ + nodeBuffer->pageBlocknum = blkno; + } +} + +/* + * Write last pages of all node buffers to the disk. + */ +void +gistUnloadNodeBuffers(GISTBuildBuffers *gfbb) +{ + int i; + + /* Unload all the buffers that have a page loaded in memory. */ + for (i = 0; i < gfbb->loadedBuffersCount; i++) + gistUnloadNodeBuffer(gfbb, gfbb->loadedBuffers[i]); + + /* Now there are no node buffers with loaded last page */ + gfbb->loadedBuffersCount = 0; +} + +/* + * Add index tuple to buffer page. + */ +static void +gistPlaceItupToPage(GISTNodeBufferPage *pageBuffer, IndexTuple itup) +{ + Size itupsz = IndexTupleSize(itup); + char *ptr; + + /* There should be enough of space. */ + Assert(PAGE_FREE_SPACE(pageBuffer) >= MAXALIGN(itupsz)); + + /* Reduce free space value of page to reserve a spot for the tuple. */ + PAGE_FREE_SPACE(pageBuffer) -= MAXALIGN(itupsz); + + /* Get pointer to the spot we reserved (ie. end of free space). */ + ptr = (char *) pageBuffer + BUFFER_PAGE_DATA_OFFSET + + PAGE_FREE_SPACE(pageBuffer); + + /* Copy the index tuple there. */ + memcpy(ptr, itup, itupsz); +} + +/* + * Get last item from buffer page and remove it from page. + */ +static void +gistGetItupFromPage(GISTNodeBufferPage *pageBuffer, IndexTuple *itup) +{ + IndexTuple ptr; + Size itupsz; + + Assert(!PAGE_IS_EMPTY(pageBuffer)); /* Page shouldn't be empty */ + + /* Get pointer to last index tuple */ + ptr = (IndexTuple) ((char *) pageBuffer + + BUFFER_PAGE_DATA_OFFSET + + PAGE_FREE_SPACE(pageBuffer)); + itupsz = IndexTupleSize(ptr); + + /* Make a copy of the tuple */ + *itup = (IndexTuple) palloc(itupsz); + memcpy(*itup, ptr, itupsz); + + /* Mark the space used by the tuple as free */ + PAGE_FREE_SPACE(pageBuffer) += MAXALIGN(itupsz); +} + +/* + * Push an index tuple to node buffer. + */ +void +gistPushItupToNodeBuffer(GISTBuildBuffers *gfbb, GISTNodeBuffer *nodeBuffer, + IndexTuple itup) +{ + /* + * Most part of memory operations will be in buffering build persistent + * context. So, let's switch to it. + */ + MemoryContext oldcxt = MemoryContextSwitchTo(gfbb->context); + + /* + * If the buffer is currently empty, create the first page. + */ + if (nodeBuffer->blocksCount == 0) + { + nodeBuffer->pageBuffer = gistAllocateNewPageBuffer(gfbb); + nodeBuffer->blocksCount = 1; + gistAddLoadedBuffer(gfbb, nodeBuffer); + } + + /* Load last page of node buffer if it wasn't in memory already */ + if (!nodeBuffer->pageBuffer) + gistLoadNodeBuffer(gfbb, nodeBuffer); + + /* + * Check if there is enough space on the last page for the tuple. + */ + if (PAGE_NO_SPACE(nodeBuffer->pageBuffer, itup)) + { + /* + * Nope. Swap previous block to disk and allocate a new one. + */ + BlockNumber blkno; + + /* Write filled page to the disk */ + blkno = gistBuffersGetFreeBlock(gfbb); + WriteTempFileBlock(gfbb->pfile, blkno, nodeBuffer->pageBuffer); + + /* + * Reset the in-memory page as empty, and link the previous block to + * the new page by storing its block number in the prev-link. + */ + PAGE_FREE_SPACE(nodeBuffer->pageBuffer) = + BLCKSZ - MAXALIGN(offsetof(GISTNodeBufferPage, tupledata)); + nodeBuffer->pageBuffer->prev = blkno; + + /* We've just added one more page */ + nodeBuffer->blocksCount++; + } + + gistPlaceItupToPage(nodeBuffer->pageBuffer, itup); + + /* + * If the buffer just overflowed, add it to the emptying queue. + */ + if (BUFFER_HALF_FILLED(nodeBuffer, gfbb) && !nodeBuffer->queuedForEmptying) + { + gfbb->bufferEmptyingQueue = lcons(nodeBuffer, + gfbb->bufferEmptyingQueue); + nodeBuffer->queuedForEmptying = true; + } + + /* Restore memory context */ + MemoryContextSwitchTo(oldcxt); +} + +/* + * Removes one index tuple from node buffer. Returns true if success and false + * if node buffer is empty. + */ +bool +gistPopItupFromNodeBuffer(GISTBuildBuffers *gfbb, GISTNodeBuffer *nodeBuffer, + IndexTuple *itup) +{ + /* + * If node buffer is empty then return false. + */ + if (nodeBuffer->blocksCount <= 0) + return false; + + /* Load last page of node buffer if needed */ + if (!nodeBuffer->pageBuffer) + gistLoadNodeBuffer(gfbb, nodeBuffer); + + /* + * Get index tuple from last non-empty page. + */ + gistGetItupFromPage(nodeBuffer->pageBuffer, itup); + + /* + * If we just removed the last tuple from the page, fetch previous page on + * this node buffer (if any). + */ + if (PAGE_IS_EMPTY(nodeBuffer->pageBuffer)) + { + BlockNumber prevblkno; + + /* + * blocksCount includes the page in pageBuffer, so decrease it now. + */ + nodeBuffer->blocksCount--; + + /* + * If there's more pages, fetch previous one. + */ + prevblkno = nodeBuffer->pageBuffer->prev; + if (prevblkno != InvalidBlockNumber) + { + /* There is a previous page. Fetch it. */ + Assert(nodeBuffer->blocksCount > 0); + ReadTempFileBlock(gfbb->pfile, prevblkno, nodeBuffer->pageBuffer); + + /* + * Now that we've read the block in memory, we can release its + * on-disk block for reuse. + */ + gistBuffersReleaseBlock(gfbb, prevblkno); + } + else + { + /* No more pages. Free memory. */ + Assert(nodeBuffer->blocksCount == 0); + pfree(nodeBuffer->pageBuffer); + nodeBuffer->pageBuffer = NULL; + } + } + return true; +} + +/* + * Select a currently unused block for writing to. + */ +static long +gistBuffersGetFreeBlock(GISTBuildBuffers *gfbb) +{ + /* + * If there are multiple free blocks, we select the one appearing last in + * freeBlocks[]. If there are none, assign the next block at the end of + * the file (causing the file to be extended). + */ + if (gfbb->nFreeBlocks > 0) + return gfbb->freeBlocks[--gfbb->nFreeBlocks]; + else + return gfbb->nFileBlocks++; +} + +/* + * Return a block# to the freelist. + */ +static void +gistBuffersReleaseBlock(GISTBuildBuffers *gfbb, long blocknum) +{ + int ndx; + + /* Enlarge freeBlocks array if full. */ + if (gfbb->nFreeBlocks >= gfbb->freeBlocksLen) + { + gfbb->freeBlocksLen *= 2; + gfbb->freeBlocks = (long *) repalloc(gfbb->freeBlocks, + gfbb->freeBlocksLen * + sizeof(long)); + } + + /* Add blocknum to array */ + ndx = gfbb->nFreeBlocks++; + gfbb->freeBlocks[ndx] = blocknum; +} + +/* + * Free buffering build data structure. + */ +void +gistFreeBuildBuffers(GISTBuildBuffers *gfbb) +{ + /* Close buffers file. */ + BufFileClose(gfbb->pfile); + + /* All other things will be freed on memory context release */ +} + +/* + * Data structure representing information about node buffer for index tuples + * relocation from splitted node buffer. + */ +typedef struct +{ + GISTENTRY entry[INDEX_MAX_KEYS]; + bool isnull[INDEX_MAX_KEYS]; + GISTPageSplitInfo *splitinfo; + GISTNodeBuffer *nodeBuffer; +} RelocationBufferInfo; + +/* + * At page split, distribute tuples from the buffer of the split page to + * new buffers for the created page halves. This also adjusts the downlinks + * in 'splitinfo' to include the tuples in the buffers. + */ +void +gistRelocateBuildBuffersOnSplit(GISTBuildBuffers *gfbb, GISTSTATE *giststate, + Relation r, GISTBufferingInsertStack *path, + Buffer buffer, List *splitinfo) +{ + RelocationBufferInfo *relocationBuffersInfos; + bool found; + GISTNodeBuffer *nodeBuffer; + BlockNumber blocknum; + IndexTuple itup; + int splitPagesCount = 0, + i; + GISTENTRY entry[INDEX_MAX_KEYS]; + bool isnull[INDEX_MAX_KEYS]; + GISTNodeBuffer nodebuf; + ListCell *lc; + + /* If the splitted page doesn't have buffers, we have nothing to do. */ + if (!LEVEL_HAS_BUFFERS(path->level, gfbb)) + return; + + /* + * Get the node buffer of the splitted page. + */ + blocknum = BufferGetBlockNumber(buffer); + nodeBuffer = hash_search(gfbb->nodeBuffersTab, &blocknum, + HASH_FIND, &found); + if (!found) + { + /* + * Node buffer should exist at this point. If it didn't exist before, + * the insertion that caused the page to split should've created it. + */ + elog(ERROR, "node buffer of page being split (%u) does not exist", + blocknum); + } + + /* + * Make a copy of the old buffer, as we're going reuse it as the buffer + * for the new left page, which is on the same block as the old page. + * That's not true for the root page, but that's fine because we never + * have a buffer on the root page anyway. The original algorithm as + * described by Arge et al did, but it's of no use, as you might as well + * read the tuples straight from the heap instead of the root buffer. + */ + Assert(blocknum != GIST_ROOT_BLKNO); + memcpy(&nodebuf, nodeBuffer, sizeof(GISTNodeBuffer)); + + /* Reset the old buffer, used for the new left page from now on */ + nodeBuffer->blocksCount = 0; + nodeBuffer->pageBuffer = NULL; + nodeBuffer->pageBlocknum = InvalidBlockNumber; + + /* Reassign pointer to the saved copy. */ + nodeBuffer = &nodebuf; + + /* + * Allocate memory for information about relocation buffers. + */ + splitPagesCount = list_length(splitinfo); + relocationBuffersInfos = + (RelocationBufferInfo *) palloc(sizeof(RelocationBufferInfo) * + splitPagesCount); + + /* + * Fill relocation buffers information for node buffers of pages produced + * by split. + */ + i = 0; + foreach(lc, splitinfo) + { + GISTPageSplitInfo *si = (GISTPageSplitInfo *) lfirst(lc); + GISTNodeBuffer *newNodeBuffer; + + /* Decompress parent index tuple of node buffer page. */ + gistDeCompressAtt(giststate, r, + si->downlink, NULL, (OffsetNumber) 0, + relocationBuffersInfos[i].entry, + relocationBuffersInfos[i].isnull); + + /* + * Create a node buffer for the page. The leftmost half is on the same + * block as the old page before split, so for the leftmost half this + * will return the original buffer, which was emptied earlier in this + * function. + */ + newNodeBuffer = gistGetNodeBuffer(gfbb, + giststate, + BufferGetBlockNumber(si->buf), + path->downlinkoffnum, + path->parent); + + relocationBuffersInfos[i].nodeBuffer = newNodeBuffer; + relocationBuffersInfos[i].splitinfo = si; + + i++; + } + + /* + * Loop through all index tuples on the buffer on the splitted page, + * moving them to buffers on the new pages. + */ + while (gistPopItupFromNodeBuffer(gfbb, nodeBuffer, &itup)) + { + float sum_grow, + which_grow[INDEX_MAX_KEYS]; + int i, + which; + IndexTuple newtup; + RelocationBufferInfo *targetBufferInfo; + + /* + * Choose which page this tuple should go to. + */ + gistDeCompressAtt(giststate, r, + itup, NULL, (OffsetNumber) 0, entry, isnull); + + which = -1; + *which_grow = -1.0f; + sum_grow = 1.0f; + + for (i = 0; i < splitPagesCount && sum_grow; i++) + { + int j; + RelocationBufferInfo *splitPageInfo = &relocationBuffersInfos[i]; + + sum_grow = 0.0f; + for (j = 0; j < r->rd_att->natts; j++) + { + float usize; + + usize = gistpenalty(giststate, j, + &splitPageInfo->entry[j], + splitPageInfo->isnull[j], + &entry[j], isnull[j]); + + if (which_grow[j] < 0 || usize < which_grow[j]) + { + which = i; + which_grow[j] = usize; + if (j < r->rd_att->natts - 1 && i == 0) + which_grow[j + 1] = -1; + sum_grow += which_grow[j]; + } + else if (which_grow[j] == usize) + sum_grow += usize; + else + { + sum_grow = 1; + break; + } + } + } + targetBufferInfo = &relocationBuffersInfos[which]; + + /* Push item to selected node buffer */ + gistPushItupToNodeBuffer(gfbb, targetBufferInfo->nodeBuffer, itup); + + /* Adjust the downlink for this page, if needed. */ + newtup = gistgetadjusted(r, targetBufferInfo->splitinfo->downlink, + itup, giststate); + if (newtup) + { + gistDeCompressAtt(giststate, r, + newtup, NULL, (OffsetNumber) 0, + targetBufferInfo->entry, + targetBufferInfo->isnull); + + targetBufferInfo->splitinfo->downlink = newtup; + } + } + + pfree(relocationBuffersInfos); +} + + +/* + * Wrappers around BufFile operations. The main difference is that these + * wrappers report errors with ereport(), so that the callers don't need + * to check the return code. + */ + +static void +ReadTempFileBlock(BufFile *file, long blknum, void *ptr) +{ + if (BufFileSeekBlock(file, blknum) != 0) + elog(ERROR, "could not seek temporary file: %m"); + if (BufFileRead(file, ptr, BLCKSZ) != BLCKSZ) + elog(ERROR, "could not read temporary file: %m"); +} + +static void +WriteTempFileBlock(BufFile *file, long blknum, void *ptr) +{ + if (BufFileSeekBlock(file, blknum) != 0) + elog(ERROR, "could not seek temporary file: %m"); + if (BufFileWrite(file, ptr, BLCKSZ) != BLCKSZ) + { + /* + * the other errors in Read/WriteTempFileBlock shouldn't happen, but + * an error at write can easily happen if you run out of disk space. + */ + ereport(ERROR, + (errcode_for_file_access(), + errmsg("could not write block %ld of temporary file: %m", + blknum))); + } +} diff --git a/src/backend/access/gist/gistutil.c b/src/backend/access/gist/gistutil.c index 448d8bce05c..d91025dbe7f 100644 --- a/src/backend/access/gist/gistutil.c +++ b/src/backend/access/gist/gistutil.c @@ -667,13 +667,30 @@ gistoptions(PG_FUNCTION_ARGS) { Datum reloptions = PG_GETARG_DATUM(0); bool validate = PG_GETARG_BOOL(1); - bytea *result; + relopt_value *options; + GiSTOptions *rdopts; + int numoptions; + static const relopt_parse_elt tab[] = { + {"fillfactor", RELOPT_TYPE_INT, offsetof(GiSTOptions, fillfactor)}, + {"buffering", RELOPT_TYPE_STRING, offsetof(GiSTOptions, bufferingModeOffset)} + }; - result = default_reloptions(reloptions, validate, RELOPT_KIND_GIST); + options = parseRelOptions(reloptions, validate, RELOPT_KIND_GIST, + &numoptions); + + /* if none set, we're done */ + if (numoptions == 0) + PG_RETURN_NULL(); + + rdopts = allocateReloptStruct(sizeof(GiSTOptions), options, numoptions); + + fillRelOptions((void *) rdopts, sizeof(GiSTOptions), options, numoptions, + validate, tab, lengthof(tab)); + + pfree(options); + + PG_RETURN_BYTEA_P(rdopts); - if (result) - PG_RETURN_BYTEA_P(result); - PG_RETURN_NULL(); } /* diff --git a/src/backend/access/gist/gistxlog.c b/src/backend/access/gist/gistxlog.c index 09b1d489928..8c326462b1d 100644 --- a/src/backend/access/gist/gistxlog.c +++ b/src/backend/access/gist/gistxlog.c @@ -263,7 +263,8 @@ gistRedoPageSplitRecord(XLogRecPtr lsn, XLogRecord *record) else GistPageGetOpaque(page)->rightlink = xldata->origrlink; GistPageGetOpaque(page)->nsn = xldata->orignsn; - if (i < xlrec.data->npage - 1 && !isrootsplit) + if (i < xlrec.data->npage - 1 && !isrootsplit && + xldata->markfollowright) GistMarkFollowRight(page); else GistClearFollowRight(page); @@ -411,7 +412,7 @@ XLogRecPtr gistXLogSplit(RelFileNode node, BlockNumber blkno, bool page_is_leaf, SplitedPageLayout *dist, BlockNumber origrlink, GistNSN orignsn, - Buffer leftchildbuf) + Buffer leftchildbuf, bool markfollowright) { XLogRecData *rdata; gistxlogPageSplit xlrec; @@ -433,6 +434,7 @@ gistXLogSplit(RelFileNode node, BlockNumber blkno, bool page_is_leaf, xlrec.npage = (uint16) npage; xlrec.leftchild = BufferIsValid(leftchildbuf) ? BufferGetBlockNumber(leftchildbuf) : InvalidBlockNumber; + xlrec.markfollowright = markfollowright; rdata[0].data = (char *) &xlrec; rdata[0].len = sizeof(gistxlogPageSplit); |