diff options
author | Tom Lane <tgl@sss.pgh.pa.us> | 2020-07-22 19:19:44 -0400 |
---|---|---|
committer | Tom Lane <tgl@sss.pgh.pa.us> | 2020-07-22 19:19:44 -0400 |
commit | a57d312a7706321d850faa048a562a0c0c01b835 (patch) | |
tree | a70d8fb04fb1ab59b7cc76072e59dd2be02e1021 /src/backend/utils/adt/numeric.c | |
parent | 9e108984fb35d8f9e2c2bffa10c0034f9161e802 (diff) | |
download | postgresql-a57d312a7706321d850faa048a562a0c0c01b835.tar.gz postgresql-a57d312a7706321d850faa048a562a0c0c01b835.zip |
Support infinity and -infinity in the numeric data type.
Add infinities that behave the same as they do in the floating-point
data types. Aside from any intrinsic usefulness these may have,
this closes an important gap in our ability to convert floating
values to numeric and/or replace float-based APIs with numeric.
The new values are represented by bit patterns that were formerly
not used (although old code probably would take them for NaNs).
So there shouldn't be any pg_upgrade hazard.
Patch by me, reviewed by Dean Rasheed and Andrew Gierth
Discussion: https://postgr.es/m/606717.1591924582@sss.pgh.pa.us
Diffstat (limited to 'src/backend/utils/adt/numeric.c')
-rw-r--r-- | src/backend/utils/adt/numeric.c | 1474 |
1 files changed, 1169 insertions, 305 deletions
diff --git a/src/backend/utils/adt/numeric.c b/src/backend/utils/adt/numeric.c index 1773fa292e4..ed825a1fddf 100644 --- a/src/backend/utils/adt/numeric.c +++ b/src/backend/utils/adt/numeric.c @@ -109,14 +109,13 @@ typedef int16 NumericDigit; * If the high bits of the first word of a NumericChoice (n_header, or * n_short.n_header, or n_long.n_sign_dscale) are NUMERIC_SHORT, then the * numeric follows the NumericShort format; if they are NUMERIC_POS or - * NUMERIC_NEG, it follows the NumericLong format. If they are NUMERIC_NAN, - * it is a NaN. We currently always store a NaN using just two bytes (i.e. - * only n_header), but previous releases used only the NumericLong format, - * so we might find 4-byte NaNs on disk if a database has been migrated using - * pg_upgrade. In either case, when the high bits indicate a NaN, the - * remaining bits are never examined. Currently, we always initialize these - * to zero, but it might be possible to use them for some other purpose in - * the future. + * NUMERIC_NEG, it follows the NumericLong format. If they are NUMERIC_SPECIAL, + * the value is a NaN or Infinity. We currently always store SPECIAL values + * using just two bytes (i.e. only n_header), but previous releases used only + * the NumericLong format, so we might find 4-byte NaNs (though not infinities) + * on disk if a database has been migrated using pg_upgrade. In either case, + * the low-order bits of a special value's header are reserved and currently + * should always be set to zero. * * In the NumericShort format, the remaining 14 bits of the header word * (n_short.n_header) are allocated as follows: 1 for sign (positive or @@ -168,19 +167,19 @@ struct NumericData #define NUMERIC_POS 0x0000 #define NUMERIC_NEG 0x4000 #define NUMERIC_SHORT 0x8000 -#define NUMERIC_NAN 0xC000 +#define NUMERIC_SPECIAL 0xC000 #define NUMERIC_FLAGBITS(n) ((n)->choice.n_header & NUMERIC_SIGN_MASK) -#define NUMERIC_IS_NAN(n) (NUMERIC_FLAGBITS(n) == NUMERIC_NAN) #define NUMERIC_IS_SHORT(n) (NUMERIC_FLAGBITS(n) == NUMERIC_SHORT) +#define NUMERIC_IS_SPECIAL(n) (NUMERIC_FLAGBITS(n) == NUMERIC_SPECIAL) #define NUMERIC_HDRSZ (VARHDRSZ + sizeof(uint16) + sizeof(int16)) #define NUMERIC_HDRSZ_SHORT (VARHDRSZ + sizeof(uint16)) /* - * If the flag bits are NUMERIC_SHORT or NUMERIC_NAN, we want the short header; - * otherwise, we want the long one. Instead of testing against each value, we - * can just look at the high bit, for a slight efficiency gain. + * If the flag bits are NUMERIC_SHORT or NUMERIC_SPECIAL, we want the short + * header; otherwise, we want the long one. Instead of testing against each + * value, we can just look at the high bit, for a slight efficiency gain. */ #define NUMERIC_HEADER_IS_SHORT(n) (((n)->choice.n_header & 0x8000) != 0) #define NUMERIC_HEADER_SIZE(n) \ @@ -188,6 +187,28 @@ struct NumericData (NUMERIC_HEADER_IS_SHORT(n) ? 0 : sizeof(int16))) /* + * Definitions for special values (NaN, positive infinity, negative infinity). + * + * The two bits after the NUMERIC_SPECIAL bits are 00 for NaN, 01 for positive + * infinity, 11 for negative infinity. (This makes the sign bit match where + * it is in a short-format value, though we make no use of that at present.) + * We could mask off the remaining bits before testing the active bits, but + * currently those bits must be zeroes, so masking would just add cycles. + */ +#define NUMERIC_EXT_SIGN_MASK 0xF000 /* high bits plus NaN/Inf flag bits */ +#define NUMERIC_NAN 0xC000 +#define NUMERIC_PINF 0xD000 +#define NUMERIC_NINF 0xF000 +#define NUMERIC_INF_SIGN_MASK 0x2000 + +#define NUMERIC_EXT_FLAGBITS(n) ((n)->choice.n_header & NUMERIC_EXT_SIGN_MASK) +#define NUMERIC_IS_NAN(n) ((n)->choice.n_header == NUMERIC_NAN) +#define NUMERIC_IS_PINF(n) ((n)->choice.n_header == NUMERIC_PINF) +#define NUMERIC_IS_NINF(n) ((n)->choice.n_header == NUMERIC_NINF) +#define NUMERIC_IS_INF(n) \ + (((n)->choice.n_header & ~NUMERIC_INF_SIGN_MASK) == NUMERIC_PINF) + +/* * Short format definitions. */ @@ -202,7 +223,13 @@ struct NumericData #define NUMERIC_SHORT_WEIGHT_MIN (-(NUMERIC_SHORT_WEIGHT_MASK+1)) /* - * Extract sign, display scale, weight. + * Extract sign, display scale, weight. These macros extract field values + * suitable for the NumericVar format from the Numeric (on-disk) format. + * + * Note that we don't trouble to ensure that dscale and weight read as zero + * for an infinity; however, that doesn't matter since we never convert + * "special" numerics to NumericVar form. Only the constants defined below + * (const_nan, etc) ever represent a non-finite value as a NumericVar. */ #define NUMERIC_DSCALE_MASK 0x3FFF @@ -210,7 +237,9 @@ struct NumericData #define NUMERIC_SIGN(n) \ (NUMERIC_IS_SHORT(n) ? \ (((n)->choice.n_short.n_header & NUMERIC_SHORT_SIGN_MASK) ? \ - NUMERIC_NEG : NUMERIC_POS) : NUMERIC_FLAGBITS(n)) + NUMERIC_NEG : NUMERIC_POS) : \ + (NUMERIC_IS_SPECIAL(n) ? \ + NUMERIC_EXT_FLAGBITS(n) : NUMERIC_FLAGBITS(n))) #define NUMERIC_DSCALE(n) (NUMERIC_HEADER_IS_SHORT((n)) ? \ ((n)->choice.n_short.n_header & NUMERIC_SHORT_DSCALE_MASK) \ >> NUMERIC_SHORT_DSCALE_SHIFT \ @@ -227,7 +256,9 @@ struct NumericData * complex. * * The value represented by a NumericVar is determined by the sign, weight, - * ndigits, and digits[] array. + * ndigits, and digits[] array. If it is a "special" value (NaN or Inf) + * then only the sign field matters; ndigits should be zero, and the weight + * and dscale fields are ignored. * * Note: the first digit of a NumericVar's value is assumed to be multiplied * by NBASE ** weight. Another way to say it is that there are weight+1 @@ -274,7 +305,7 @@ typedef struct NumericVar { int ndigits; /* # of digits in digits[] - can be 0! */ int weight; /* weight of first digit */ - int sign; /* NUMERIC_POS, NUMERIC_NEG, or NUMERIC_NAN */ + int sign; /* NUMERIC_POS, _NEG, _NAN, _PINF, or _NINF */ int dscale; /* display scale */ NumericDigit *buf; /* start of palloc'd space for digits[] */ NumericDigit *digits; /* base-NBASE digits */ @@ -354,16 +385,26 @@ typedef struct NumericSumAccum * representations for numeric values in order to avoid depending on * USE_FLOAT8_BYVAL. The type of abbreviation we use is based only on * the size of a datum, not the argument-passing convention for float8. + * + * The range of abbreviations for finite values is from +PG_INT64/32_MAX + * to -PG_INT64/32_MAX. NaN has the abbreviation PG_INT64/32_MIN, and we + * define the sort ordering to make that work out properly (see further + * comments below). PINF and NINF share the abbreviations of the largest + * and smallest finite abbreviation classes. */ #define NUMERIC_ABBREV_BITS (SIZEOF_DATUM * BITS_PER_BYTE) #if SIZEOF_DATUM == 8 #define NumericAbbrevGetDatum(X) ((Datum) (X)) #define DatumGetNumericAbbrev(X) ((int64) (X)) #define NUMERIC_ABBREV_NAN NumericAbbrevGetDatum(PG_INT64_MIN) +#define NUMERIC_ABBREV_PINF NumericAbbrevGetDatum(-PG_INT64_MAX) +#define NUMERIC_ABBREV_NINF NumericAbbrevGetDatum(PG_INT64_MAX) #else #define NumericAbbrevGetDatum(X) ((Datum) (X)) #define DatumGetNumericAbbrev(X) ((int32) (X)) #define NUMERIC_ABBREV_NAN NumericAbbrevGetDatum(PG_INT32_MIN) +#define NUMERIC_ABBREV_PINF NumericAbbrevGetDatum(-PG_INT32_MAX) +#define NUMERIC_ABBREV_NINF NumericAbbrevGetDatum(PG_INT32_MAX) #endif @@ -379,6 +420,9 @@ static const NumericDigit const_one_data[1] = {1}; static const NumericVar const_one = {1, 0, NUMERIC_POS, 0, NULL, (NumericDigit *) const_one_data}; +static const NumericVar const_minus_one = +{1, 0, NUMERIC_NEG, 0, NULL, (NumericDigit *) const_one_data}; + static const NumericDigit const_two_data[1] = {2}; static const NumericVar const_two = {1, 0, NUMERIC_POS, 0, NULL, (NumericDigit *) const_two_data}; @@ -416,6 +460,12 @@ static const NumericVar const_one_point_one = static const NumericVar const_nan = {0, 0, NUMERIC_NAN, 0, NULL, NULL}; +static const NumericVar const_pinf = +{0, 0, NUMERIC_PINF, 0, NULL, NULL}; + +static const NumericVar const_ninf = +{0, 0, NUMERIC_NINF, 0, NULL, NULL}; + #if DEC_DIGITS == 4 static const int round_powers[4] = {0, 1000, 100, 10}; #endif @@ -465,10 +515,12 @@ static void set_var_from_var(const NumericVar *value, NumericVar *dest); static char *get_str_from_var(const NumericVar *var); static char *get_str_from_var_sci(const NumericVar *var, int rscale); +static Numeric duplicate_numeric(Numeric num); static Numeric make_result(const NumericVar *var); static Numeric make_result_opt_error(const NumericVar *var, bool *error); static void apply_typmod(NumericVar *var, int32 typmod); +static void apply_typmod_special(Numeric num, int32 typmod); static bool numericvar_to_int32(const NumericVar *var, int32 *result); static bool numericvar_to_int64(const NumericVar *var, int64 *result); @@ -478,7 +530,6 @@ static bool numericvar_to_uint64(const NumericVar *var, uint64 *result); static bool numericvar_to_int128(const NumericVar *var, int128 *result); static void int128_to_numericvar(int128 val, NumericVar *var); #endif -static double numeric_to_double_no_overflow(Numeric num); static double numericvar_to_double_no_overflow(const NumericVar *var); static Datum numeric_abbrev_convert(Datum original_datum, SortSupport ssup); @@ -587,23 +638,43 @@ numeric_in(PG_FUNCTION_ARGS) } /* - * Check for NaN + * Check for NaN and infinities. We recognize the same strings allowed by + * float8in(). */ if (pg_strncasecmp(cp, "NaN", 3) == 0) { res = make_result(&const_nan); - - /* Should be nothing left but spaces */ cp += 3; - while (*cp) - { - if (!isspace((unsigned char) *cp)) - ereport(ERROR, - (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), - errmsg("invalid input syntax for type %s: \"%s\"", - "numeric", str))); - cp++; - } + } + else if (pg_strncasecmp(cp, "Infinity", 8) == 0) + { + res = make_result(&const_pinf); + cp += 8; + } + else if (pg_strncasecmp(cp, "+Infinity", 9) == 0) + { + res = make_result(&const_pinf); + cp += 9; + } + else if (pg_strncasecmp(cp, "-Infinity", 9) == 0) + { + res = make_result(&const_ninf); + cp += 9; + } + else if (pg_strncasecmp(cp, "inf", 3) == 0) + { + res = make_result(&const_pinf); + cp += 3; + } + else if (pg_strncasecmp(cp, "+inf", 4) == 0) + { + res = make_result(&const_pinf); + cp += 4; + } + else if (pg_strncasecmp(cp, "-inf", 4) == 0) + { + res = make_result(&const_ninf); + cp += 4; } else { @@ -620,7 +691,7 @@ numeric_in(PG_FUNCTION_ARGS) * We duplicate a few lines of code here because we would like to * throw any trailing-junk syntax error before any semantic error * resulting from apply_typmod. We can't easily fold the two cases - * together because we mustn't apply apply_typmod to a NaN. + * together because we mustn't apply apply_typmod to a NaN/Inf. */ while (*cp) { @@ -636,8 +707,24 @@ numeric_in(PG_FUNCTION_ARGS) res = make_result(&value); free_var(&value); + + PG_RETURN_NUMERIC(res); + } + + /* Should be nothing left but spaces */ + while (*cp) + { + if (!isspace((unsigned char) *cp)) + ereport(ERROR, + (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), + errmsg("invalid input syntax for type %s: \"%s\"", + "numeric", str))); + cp++; } + /* As above, throw any typmod error after finishing syntax check */ + apply_typmod_special(res, typmod); + PG_RETURN_NUMERIC(res); } @@ -655,10 +742,17 @@ numeric_out(PG_FUNCTION_ARGS) char *str; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_CSTRING(pstrdup("NaN")); + if (NUMERIC_IS_SPECIAL(num)) + { + if (NUMERIC_IS_PINF(num)) + PG_RETURN_CSTRING(pstrdup("Infinity")); + else if (NUMERIC_IS_NINF(num)) + PG_RETURN_CSTRING(pstrdup("-Infinity")); + else + PG_RETURN_CSTRING(pstrdup("NaN")); + } /* * Get the number in the variable format. @@ -682,6 +776,41 @@ numeric_is_nan(Numeric num) } /* + * numeric_is_inf() - + * + * Is Numeric value an infinity? + */ +bool +numeric_is_inf(Numeric num) +{ + return NUMERIC_IS_INF(num); +} + +/* + * numeric_is_integral() - + * + * Is Numeric value integral? + */ +static bool +numeric_is_integral(Numeric num) +{ + NumericVar arg; + + /* Reject NaN, but infinities are considered integral */ + if (NUMERIC_IS_SPECIAL(num)) + { + if (NUMERIC_IS_NAN(num)) + return false; + return true; + } + + /* Integral if there are no digits to the right of the decimal point */ + init_var_from_num(num, &arg); + + return (arg.ndigits == 0 || arg.ndigits <= arg.weight + 1); +} + +/* * numeric_maximum_size() - * * Maximum size of a numeric with given typmod, or -1 if unlimited/unknown. @@ -732,10 +861,17 @@ numeric_out_sci(Numeric num, int scale) char *str; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num)) - return pstrdup("NaN"); + if (NUMERIC_IS_SPECIAL(num)) + { + if (NUMERIC_IS_PINF(num)) + return pstrdup("Infinity"); + else if (NUMERIC_IS_NINF(num)) + return pstrdup("-Infinity"); + else + return pstrdup("NaN"); + } init_var_from_num(num, &x); @@ -760,10 +896,17 @@ numeric_normalize(Numeric num) int last; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num)) - return pstrdup("NaN"); + if (NUMERIC_IS_SPECIAL(num)) + { + if (NUMERIC_IS_PINF(num)) + return pstrdup("Infinity"); + else if (NUMERIC_IS_NINF(num)) + return pstrdup("-Infinity"); + else + return pstrdup("NaN"); + } init_var_from_num(num, &x); @@ -823,7 +966,9 @@ numeric_recv(PG_FUNCTION_ARGS) value.sign = (uint16) pq_getmsgint(buf, sizeof(uint16)); if (!(value.sign == NUMERIC_POS || value.sign == NUMERIC_NEG || - value.sign == NUMERIC_NAN)) + value.sign == NUMERIC_NAN || + value.sign == NUMERIC_PINF || + value.sign == NUMERIC_NINF)) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("invalid sign in external \"numeric\" value"))); @@ -849,13 +994,29 @@ numeric_recv(PG_FUNCTION_ARGS) * If the given dscale would hide any digits, truncate those digits away. * We could alternatively throw an error, but that would take a bunch of * extra code (about as much as trunc_var involves), and it might cause - * client compatibility issues. + * client compatibility issues. Be careful not to apply trunc_var to + * special values, as it could do the wrong thing; we don't need it + * anyway, since make_result will ignore all but the sign field. + * + * After doing that, be sure to check the typmod restriction. */ - trunc_var(&value, value.dscale); + if (value.sign == NUMERIC_POS || + value.sign == NUMERIC_NEG) + { + trunc_var(&value, value.dscale); - apply_typmod(&value, typmod); + apply_typmod(&value, typmod); + + res = make_result(&value); + } + else + { + /* apply_typmod_special wants us to make the Numeric first */ + res = make_result(&value); + + apply_typmod_special(res, typmod); + } - res = make_result(&value); free_var(&value); PG_RETURN_NUMERIC(res); @@ -961,21 +1122,21 @@ numeric (PG_FUNCTION_ARGS) NumericVar var; /* - * Handle NaN + * Handle NaN and infinities: if apply_typmod_special doesn't complain, + * just return a copy of the input. */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); + if (NUMERIC_IS_SPECIAL(num)) + { + apply_typmod_special(num, typmod); + PG_RETURN_NUMERIC(duplicate_numeric(num)); + } /* * If the value isn't a valid type modifier, simply return a copy of the * input value */ if (typmod < (int32) (VARHDRSZ)) - { - new = (Numeric) palloc(VARSIZE(num)); - memcpy(new, num, VARSIZE(num)); - PG_RETURN_NUMERIC(new); - } + PG_RETURN_NUMERIC(duplicate_numeric(num)); /* * Get the precision and scale out of the typmod value @@ -997,8 +1158,7 @@ numeric (PG_FUNCTION_ARGS) && (NUMERIC_CAN_BE_SHORT(scale, NUMERIC_WEIGHT(num)) || !NUMERIC_IS_SHORT(num))) { - new = (Numeric) palloc(VARSIZE(num)); - memcpy(new, num, VARSIZE(num)); + new = duplicate_numeric(num); if (NUMERIC_IS_SHORT(num)) new->choice.n_short.n_header = (num->choice.n_short.n_header & ~NUMERIC_SHORT_DSCALE_MASK) @@ -1100,20 +1260,19 @@ numeric_abs(PG_FUNCTION_ARGS) Numeric res; /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* * Do it the easy way directly on the packed format */ - res = (Numeric) palloc(VARSIZE(num)); - memcpy(res, num, VARSIZE(num)); + res = duplicate_numeric(num); if (NUMERIC_IS_SHORT(num)) res->choice.n_short.n_header = num->choice.n_short.n_header & ~NUMERIC_SHORT_SIGN_MASK; + else if (NUMERIC_IS_SPECIAL(num)) + { + /* This changes -Inf to Inf, and doesn't affect NaN */ + res->choice.n_short.n_header = + num->choice.n_short.n_header & ~NUMERIC_INF_SIGN_MASK; + } else res->choice.n_long.n_sign_dscale = NUMERIC_POS | NUMERIC_DSCALE(num); @@ -1128,23 +1287,24 @@ numeric_uminus(PG_FUNCTION_ARGS) Numeric res; /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* * Do it the easy way directly on the packed format */ - res = (Numeric) palloc(VARSIZE(num)); - memcpy(res, num, VARSIZE(num)); + res = duplicate_numeric(num); + + if (NUMERIC_IS_SPECIAL(num)) + { + /* Flip the sign, if it's Inf or -Inf */ + if (!NUMERIC_IS_NAN(num)) + res->choice.n_short.n_header = + num->choice.n_short.n_header ^ NUMERIC_INF_SIGN_MASK; + } /* * The packed format is known to be totally zero digit trimmed always. So - * we can identify a ZERO by the fact that there are no digits at all. Do - * nothing to a zero. + * once we've eliminated specials, we can identify a zero by the fact that + * there are no digits at all. Do nothing to a zero. */ - if (NUMERIC_NDIGITS(num) != 0) + else if (NUMERIC_NDIGITS(num) != 0) { /* Else, flip the sign */ if (NUMERIC_IS_SHORT(num)) @@ -1166,12 +1326,42 @@ Datum numeric_uplus(PG_FUNCTION_ARGS) { Numeric num = PG_GETARG_NUMERIC(0); - Numeric res; - res = (Numeric) palloc(VARSIZE(num)); - memcpy(res, num, VARSIZE(num)); + PG_RETURN_NUMERIC(duplicate_numeric(num)); +} - PG_RETURN_NUMERIC(res); + +/* + * numeric_sign_internal() - + * + * Returns -1 if the argument is less than 0, 0 if the argument is equal + * to 0, and 1 if the argument is greater than zero. Caller must have + * taken care of the NaN case, but we can handle infinities here. + */ +static int +numeric_sign_internal(Numeric num) +{ + if (NUMERIC_IS_SPECIAL(num)) + { + Assert(!NUMERIC_IS_NAN(num)); + /* Must be Inf or -Inf */ + if (NUMERIC_IS_PINF(num)) + return 1; + else + return -1; + } + + /* + * The packed format is known to be totally zero digit trimmed always. So + * once we've eliminated specials, we can identify a zero by the fact that + * there are no digits at all. + */ + else if (NUMERIC_NDIGITS(num) == 0) + return 0; + else if (NUMERIC_SIGN(num) == NUMERIC_NEG) + return -1; + else + return 1; } /* @@ -1184,37 +1374,25 @@ Datum numeric_sign(PG_FUNCTION_ARGS) { Numeric num = PG_GETARG_NUMERIC(0); - Numeric res; - NumericVar result; /* - * Handle NaN + * Handle NaN (infinities can be handled normally) */ if (NUMERIC_IS_NAN(num)) PG_RETURN_NUMERIC(make_result(&const_nan)); - init_var(&result); - - /* - * The packed format is known to be totally zero digit trimmed always. So - * we can identify a ZERO by the fact that there are no digits at all. - */ - if (NUMERIC_NDIGITS(num) == 0) - set_var_from_var(&const_zero, &result); - else + switch (numeric_sign_internal(num)) { - /* - * And if there are some, we return a copy of ONE with the sign of our - * argument - */ - set_var_from_var(&const_one, &result); - result.sign = NUMERIC_SIGN(num); + case 0: + PG_RETURN_NUMERIC(make_result(&const_zero)); + case 1: + PG_RETURN_NUMERIC(make_result(&const_one)); + case -1: + PG_RETURN_NUMERIC(make_result(&const_minus_one)); } - res = make_result(&result); - free_var(&result); - - PG_RETURN_NUMERIC(res); + Assert(false); + return (Datum) 0; } @@ -1234,10 +1412,10 @@ numeric_round(PG_FUNCTION_ARGS) NumericVar arg; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); + if (NUMERIC_IS_SPECIAL(num)) + PG_RETURN_NUMERIC(duplicate_numeric(num)); /* * Limit the scale value to avoid possible overflow in calculations @@ -1283,10 +1461,10 @@ numeric_trunc(PG_FUNCTION_ARGS) NumericVar arg; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); + if (NUMERIC_IS_SPECIAL(num)) + PG_RETURN_NUMERIC(duplicate_numeric(num)); /* * Limit the scale value to avoid possible overflow in calculations @@ -1328,8 +1506,11 @@ numeric_ceil(PG_FUNCTION_ARGS) Numeric res; NumericVar result; - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); + /* + * Handle NaN and infinities + */ + if (NUMERIC_IS_SPECIAL(num)) + PG_RETURN_NUMERIC(duplicate_numeric(num)); init_var_from_num(num, &result); ceil_var(&result, &result); @@ -1353,8 +1534,11 @@ numeric_floor(PG_FUNCTION_ARGS) Numeric res; NumericVar result; - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); + /* + * Handle NaN and infinities + */ + if (NUMERIC_IS_SPECIAL(num)) + PG_RETURN_NUMERIC(duplicate_numeric(num)); init_var_from_num(num, &result); floor_var(&result, &result); @@ -1390,26 +1574,46 @@ generate_series_step_numeric(PG_FUNCTION_ARGS) Numeric stop_num = PG_GETARG_NUMERIC(1); NumericVar steploc = const_one; - /* handle NaN in start and stop values */ - if (NUMERIC_IS_NAN(start_num)) - ereport(ERROR, - (errcode(ERRCODE_INVALID_PARAMETER_VALUE), - errmsg("start value cannot be NaN"))); - - if (NUMERIC_IS_NAN(stop_num)) - ereport(ERROR, - (errcode(ERRCODE_INVALID_PARAMETER_VALUE), - errmsg("stop value cannot be NaN"))); + /* Reject NaN and infinities in start and stop values */ + if (NUMERIC_IS_SPECIAL(start_num)) + { + if (NUMERIC_IS_NAN(start_num)) + ereport(ERROR, + (errcode(ERRCODE_INVALID_PARAMETER_VALUE), + errmsg("start value cannot be NaN"))); + else + ereport(ERROR, + (errcode(ERRCODE_INVALID_PARAMETER_VALUE), + errmsg("start value cannot be infinity"))); + } + if (NUMERIC_IS_SPECIAL(stop_num)) + { + if (NUMERIC_IS_NAN(stop_num)) + ereport(ERROR, + (errcode(ERRCODE_INVALID_PARAMETER_VALUE), + errmsg("stop value cannot be NaN"))); + else + ereport(ERROR, + (errcode(ERRCODE_INVALID_PARAMETER_VALUE), + errmsg("stop value cannot be infinity"))); + } /* see if we were given an explicit step size */ if (PG_NARGS() == 3) { Numeric step_num = PG_GETARG_NUMERIC(2); - if (NUMERIC_IS_NAN(step_num)) - ereport(ERROR, - (errcode(ERRCODE_INVALID_PARAMETER_VALUE), - errmsg("step size cannot be NaN"))); + if (NUMERIC_IS_SPECIAL(step_num)) + { + if (NUMERIC_IS_NAN(step_num)) + ereport(ERROR, + (errcode(ERRCODE_INVALID_PARAMETER_VALUE), + errmsg("step size cannot be NaN"))); + else + ereport(ERROR, + (errcode(ERRCODE_INVALID_PARAMETER_VALUE), + errmsg("step size cannot be infinity"))); + } init_var_from_num(step_num, &steploc); @@ -1510,12 +1714,21 @@ width_bucket_numeric(PG_FUNCTION_ARGS) (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), errmsg("count must be greater than zero"))); - if (NUMERIC_IS_NAN(operand) || - NUMERIC_IS_NAN(bound1) || - NUMERIC_IS_NAN(bound2)) - ereport(ERROR, - (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), - errmsg("operand, lower bound, and upper bound cannot be NaN"))); + if (NUMERIC_IS_SPECIAL(operand) || + NUMERIC_IS_SPECIAL(bound1) || + NUMERIC_IS_SPECIAL(bound2)) + { + if (NUMERIC_IS_NAN(operand) || + NUMERIC_IS_NAN(bound1) || + NUMERIC_IS_NAN(bound2)) + ereport(ERROR, + (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), + errmsg("operand, lower bound, and upper bound cannot be NaN"))); + else + ereport(ERROR, + (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), + errmsg("operand, lower bound, and upper bound cannot be infinity"))); + } init_var(&result_var); init_var(&count_var); @@ -1719,9 +1932,14 @@ numeric_abbrev_convert(Datum original_datum, SortSupport ssup) else value = (Numeric) original_varatt; - if (NUMERIC_IS_NAN(value)) + if (NUMERIC_IS_SPECIAL(value)) { - result = NUMERIC_ABBREV_NAN; + if (NUMERIC_IS_PINF(value)) + result = NUMERIC_ABBREV_PINF; + else if (NUMERIC_IS_NINF(value)) + result = NUMERIC_ABBREV_NINF; + else + result = NUMERIC_ABBREV_NAN; } else { @@ -1847,7 +2065,7 @@ numeric_cmp_abbrev(Datum x, Datum y, SortSupport ssup) { /* * NOTE WELL: this is intentionally backwards, because the abbreviation is - * negated relative to the original value, to handle NaN. + * negated relative to the original value, to handle NaN/infinity cases. */ if (DatumGetNumericAbbrev(x) < DatumGetNumericAbbrev(y)) return 1; @@ -2150,20 +2368,42 @@ cmp_numerics(Numeric num1, Numeric num2) int result; /* - * We consider all NANs to be equal and larger than any non-NAN. This is - * somewhat arbitrary; the important thing is to have a consistent sort - * order. + * We consider all NANs to be equal and larger than any non-NAN (including + * Infinity). This is somewhat arbitrary; the important thing is to have + * a consistent sort order. */ - if (NUMERIC_IS_NAN(num1)) + if (NUMERIC_IS_SPECIAL(num1)) { - if (NUMERIC_IS_NAN(num2)) - result = 0; /* NAN = NAN */ - else - result = 1; /* NAN > non-NAN */ + if (NUMERIC_IS_NAN(num1)) + { + if (NUMERIC_IS_NAN(num2)) + result = 0; /* NAN = NAN */ + else + result = 1; /* NAN > non-NAN */ + } + else if (NUMERIC_IS_PINF(num1)) + { + if (NUMERIC_IS_NAN(num2)) + result = -1; /* PINF < NAN */ + else if (NUMERIC_IS_PINF(num2)) + result = 0; /* PINF = PINF */ + else + result = 1; /* PINF > anything else */ + } + else /* num1 must be NINF */ + { + if (NUMERIC_IS_NINF(num2)) + result = 0; /* NINF = NINF */ + else + result = -1; /* NINF < anything else */ + } } - else if (NUMERIC_IS_NAN(num2)) + else if (NUMERIC_IS_SPECIAL(num2)) { - result = -1; /* non-NAN < NAN */ + if (NUMERIC_IS_NINF(num2)) + result = 1; /* normal > NINF */ + else + result = -1; /* normal < NAN or PINF */ } else { @@ -2190,10 +2430,12 @@ in_range_numeric_numeric(PG_FUNCTION_ARGS) bool result; /* - * Reject negative or NaN offset. Negative is per spec, and NaN is - * because appropriate semantics for that seem non-obvious. + * Reject negative (including -Inf) or NaN offset. Negative is per spec, + * and NaN is because appropriate semantics for that seem non-obvious. */ - if (NUMERIC_IS_NAN(offset) || NUMERIC_SIGN(offset) == NUMERIC_NEG) + if (NUMERIC_IS_NAN(offset) || + NUMERIC_IS_NINF(offset) || + NUMERIC_SIGN(offset) == NUMERIC_NEG) ereport(ERROR, (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), errmsg("invalid preceding or following size in window function"))); @@ -2214,6 +2456,67 @@ in_range_numeric_numeric(PG_FUNCTION_ARGS) { result = less; /* non-NAN < NAN */ } + + /* + * Deal with infinite offset (necessarily +Inf, at this point). + */ + else if (NUMERIC_IS_SPECIAL(offset)) + { + Assert(NUMERIC_IS_PINF(offset)); + if (sub ? NUMERIC_IS_PINF(base) : NUMERIC_IS_NINF(base)) + { + /* + * base +/- offset would produce NaN, so return true for any val + * (see in_range_float8_float8() for reasoning). + */ + result = true; + } + else if (sub) + { + /* base - offset must be -inf */ + if (less) + result = NUMERIC_IS_NINF(val); /* only -inf is <= sum */ + else + result = true; /* any val is >= sum */ + } + else + { + /* base + offset must be +inf */ + if (less) + result = true; /* any val is <= sum */ + else + result = NUMERIC_IS_PINF(val); /* only +inf is >= sum */ + } + } + + /* + * Deal with cases where val and/or base is infinite. The offset, being + * now known finite, cannot affect the conclusion. + */ + else if (NUMERIC_IS_SPECIAL(val)) + { + if (NUMERIC_IS_PINF(val)) + { + if (NUMERIC_IS_PINF(base)) + result = true; /* PINF = PINF */ + else + result = !less; /* PINF > any other non-NAN */ + } + else /* val must be NINF */ + { + if (NUMERIC_IS_NINF(base)) + result = true; /* NINF = NINF */ + else + result = less; /* NINF < anything else */ + } + } + else if (NUMERIC_IS_SPECIAL(base)) + { + if (NUMERIC_IS_NINF(base)) + result = !less; /* normal > NINF */ + else + result = less; /* normal < PINF */ + } else { /* @@ -2264,8 +2567,8 @@ hash_numeric(PG_FUNCTION_ARGS) int hash_len; NumericDigit *digits; - /* If it's NaN, don't try to hash the rest of the fields */ - if (NUMERIC_IS_NAN(key)) + /* If it's NaN or infinity, don't try to hash the rest of the fields */ + if (NUMERIC_IS_SPECIAL(key)) PG_RETURN_UINT32(0); weight = NUMERIC_WEIGHT(key); @@ -2345,7 +2648,8 @@ hash_numeric_extended(PG_FUNCTION_ARGS) int hash_len; NumericDigit *digits; - if (NUMERIC_IS_NAN(key)) + /* If it's NaN or infinity, don't try to hash the rest of the fields */ + if (NUMERIC_IS_SPECIAL(key)) PG_RETURN_UINT64(seed); weight = NUMERIC_WEIGHT(key); @@ -2429,10 +2733,32 @@ numeric_add_opt_error(Numeric num1, Numeric num2, bool *have_error) Numeric res; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - return make_result(&const_nan); + if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2)) + { + if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) + return make_result(&const_nan); + if (NUMERIC_IS_PINF(num1)) + { + if (NUMERIC_IS_NINF(num2)) + return make_result(&const_nan); /* Inf + -Inf */ + else + return make_result(&const_pinf); + } + if (NUMERIC_IS_NINF(num1)) + { + if (NUMERIC_IS_PINF(num2)) + return make_result(&const_nan); /* -Inf + Inf */ + else + return make_result(&const_ninf); + } + /* by here, num1 must be finite, so num2 is not */ + if (NUMERIC_IS_PINF(num2)) + return make_result(&const_pinf); + Assert(NUMERIC_IS_NINF(num2)); + return make_result(&const_ninf); + } /* * Unpack the values, let add_var() compute the result and return it. @@ -2485,10 +2811,32 @@ numeric_sub_opt_error(Numeric num1, Numeric num2, bool *have_error) Numeric res; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - return make_result(&const_nan); + if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2)) + { + if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) + return make_result(&const_nan); + if (NUMERIC_IS_PINF(num1)) + { + if (NUMERIC_IS_PINF(num2)) + return make_result(&const_nan); /* Inf - Inf */ + else + return make_result(&const_pinf); + } + if (NUMERIC_IS_NINF(num1)) + { + if (NUMERIC_IS_NINF(num2)) + return make_result(&const_nan); /* -Inf - -Inf */ + else + return make_result(&const_ninf); + } + /* by here, num1 must be finite, so num2 is not */ + if (NUMERIC_IS_PINF(num2)) + return make_result(&const_ninf); + Assert(NUMERIC_IS_NINF(num2)); + return make_result(&const_pinf); + } /* * Unpack the values, let sub_var() compute the result and return it. @@ -2541,10 +2889,64 @@ numeric_mul_opt_error(Numeric num1, Numeric num2, bool *have_error) Numeric res; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - return make_result(&const_nan); + if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2)) + { + if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) + return make_result(&const_nan); + if (NUMERIC_IS_PINF(num1)) + { + switch (numeric_sign_internal(num2)) + { + case 0: + return make_result(&const_nan); /* Inf * 0 */ + case 1: + return make_result(&const_pinf); + case -1: + return make_result(&const_ninf); + } + Assert(false); + } + if (NUMERIC_IS_NINF(num1)) + { + switch (numeric_sign_internal(num2)) + { + case 0: + return make_result(&const_nan); /* -Inf * 0 */ + case 1: + return make_result(&const_ninf); + case -1: + return make_result(&const_pinf); + } + Assert(false); + } + /* by here, num1 must be finite, so num2 is not */ + if (NUMERIC_IS_PINF(num2)) + { + switch (numeric_sign_internal(num1)) + { + case 0: + return make_result(&const_nan); /* 0 * Inf */ + case 1: + return make_result(&const_pinf); + case -1: + return make_result(&const_ninf); + } + Assert(false); + } + Assert(NUMERIC_IS_NINF(num2)); + switch (numeric_sign_internal(num1)) + { + case 0: + return make_result(&const_nan); /* 0 * -Inf */ + case 1: + return make_result(&const_ninf); + case -1: + return make_result(&const_pinf); + } + Assert(false); + } /* * Unpack the values, let mul_var() compute the result and return it. @@ -2605,10 +3007,67 @@ numeric_div_opt_error(Numeric num1, Numeric num2, bool *have_error) *have_error = false; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - return make_result(&const_nan); + if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2)) + { + if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) + return make_result(&const_nan); + if (NUMERIC_IS_PINF(num1)) + { + if (NUMERIC_IS_SPECIAL(num2)) + return make_result(&const_nan); /* Inf / [-]Inf */ + switch (numeric_sign_internal(num2)) + { + case 0: + if (have_error) + { + *have_error = true; + return NULL; + } + ereport(ERROR, + (errcode(ERRCODE_DIVISION_BY_ZERO), + errmsg("division by zero"))); + break; + case 1: + return make_result(&const_pinf); + case -1: + return make_result(&const_ninf); + } + Assert(false); + } + if (NUMERIC_IS_NINF(num1)) + { + if (NUMERIC_IS_SPECIAL(num2)) + return make_result(&const_nan); /* -Inf / [-]Inf */ + switch (numeric_sign_internal(num2)) + { + case 0: + if (have_error) + { + *have_error = true; + return NULL; + } + ereport(ERROR, + (errcode(ERRCODE_DIVISION_BY_ZERO), + errmsg("division by zero"))); + break; + case 1: + return make_result(&const_ninf); + case -1: + return make_result(&const_pinf); + } + Assert(false); + } + /* by here, num1 must be finite, so num2 is not */ + + /* + * POSIX would have us return zero or minus zero if num1 is zero, and + * otherwise throw an underflow error. But the numeric type doesn't + * really do underflow, so let's just return zero. + */ + return make_result(&const_zero); + } /* * Unpack the arguments @@ -2661,10 +3120,57 @@ numeric_div_trunc(PG_FUNCTION_ARGS) Numeric res; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - PG_RETURN_NUMERIC(make_result(&const_nan)); + if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2)) + { + if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) + PG_RETURN_NUMERIC(make_result(&const_nan)); + if (NUMERIC_IS_PINF(num1)) + { + if (NUMERIC_IS_SPECIAL(num2)) + PG_RETURN_NUMERIC(make_result(&const_nan)); /* Inf / [-]Inf */ + switch (numeric_sign_internal(num2)) + { + case 0: + ereport(ERROR, + (errcode(ERRCODE_DIVISION_BY_ZERO), + errmsg("division by zero"))); + break; + case 1: + PG_RETURN_NUMERIC(make_result(&const_pinf)); + case -1: + PG_RETURN_NUMERIC(make_result(&const_ninf)); + } + Assert(false); + } + if (NUMERIC_IS_NINF(num1)) + { + if (NUMERIC_IS_SPECIAL(num2)) + PG_RETURN_NUMERIC(make_result(&const_nan)); /* -Inf / [-]Inf */ + switch (numeric_sign_internal(num2)) + { + case 0: + ereport(ERROR, + (errcode(ERRCODE_DIVISION_BY_ZERO), + errmsg("division by zero"))); + break; + case 1: + PG_RETURN_NUMERIC(make_result(&const_ninf)); + case -1: + PG_RETURN_NUMERIC(make_result(&const_pinf)); + } + Assert(false); + } + /* by here, num1 must be finite, so num2 is not */ + + /* + * POSIX would have us return zero or minus zero if num1 is zero, and + * otherwise throw an underflow error. But the numeric type doesn't + * really do underflow, so let's just return zero. + */ + PG_RETURN_NUMERIC(make_result(&const_zero)); + } /* * Unpack the arguments @@ -2723,8 +3229,34 @@ numeric_mod_opt_error(Numeric num1, Numeric num2, bool *have_error) if (have_error) *have_error = false; - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - return make_result(&const_nan); + /* + * Handle NaN and infinities. We follow POSIX fmod() on this, except that + * POSIX treats x-is-infinite and y-is-zero identically, raising EDOM and + * returning NaN. We choose to throw error only for y-is-zero. + */ + if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2)) + { + if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) + return make_result(&const_nan); + if (NUMERIC_IS_INF(num1)) + { + if (numeric_sign_internal(num2) == 0) + { + if (have_error) + { + *have_error = true; + return NULL; + } + ereport(ERROR, + (errcode(ERRCODE_DIVISION_BY_ZERO), + errmsg("division by zero"))); + } + /* Inf % any nonzero = NaN */ + return make_result(&const_nan); + } + /* num2 must be [-]Inf; result is num1 regardless of sign of num2 */ + return duplicate_numeric(num1); + } init_var_from_num(num1, &arg1); init_var_from_num(num2, &arg2); @@ -2763,10 +3295,10 @@ numeric_inc(PG_FUNCTION_ARGS) Numeric res; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); + if (NUMERIC_IS_SPECIAL(num)) + PG_RETURN_NUMERIC(duplicate_numeric(num)); /* * Compute the result and return it @@ -2850,9 +3382,10 @@ numeric_gcd(PG_FUNCTION_ARGS) Numeric res; /* - * Handle NaN + * Handle NaN and infinities: we consider the result to be NaN in all such + * cases. */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) + if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2)) PG_RETURN_NUMERIC(make_result(&const_nan)); /* @@ -2892,9 +3425,10 @@ numeric_lcm(PG_FUNCTION_ARGS) Numeric res; /* - * Handle NaN + * Handle NaN and infinities: we consider the result to be NaN in all such + * cases. */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) + if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2)) PG_RETURN_NUMERIC(make_result(&const_nan)); /* @@ -3003,10 +3537,18 @@ numeric_sqrt(PG_FUNCTION_ARGS) int rscale; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); + if (NUMERIC_IS_SPECIAL(num)) + { + /* error should match that in sqrt_var() */ + if (NUMERIC_IS_NINF(num)) + ereport(ERROR, + (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), + errmsg("cannot take square root of a negative number"))); + /* For NAN or PINF, just duplicate the input */ + PG_RETURN_NUMERIC(duplicate_numeric(num)); + } /* * Unpack the argument and determine the result scale. We choose a scale @@ -3054,10 +3596,16 @@ numeric_exp(PG_FUNCTION_ARGS) double val; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); + if (NUMERIC_IS_SPECIAL(num)) + { + /* Per POSIX, exp(-Inf) is zero */ + if (NUMERIC_IS_NINF(num)) + PG_RETURN_NUMERIC(make_result(&const_zero)); + /* For NAN or PINF, just duplicate the input */ + PG_RETURN_NUMERIC(duplicate_numeric(num)); + } /* * Unpack the argument and determine the result scale. We choose a scale @@ -3115,10 +3663,17 @@ numeric_ln(PG_FUNCTION_ARGS) int rscale; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); + if (NUMERIC_IS_SPECIAL(num)) + { + if (NUMERIC_IS_NINF(num)) + ereport(ERROR, + (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), + errmsg("cannot take logarithm of a negative number"))); + /* For NAN or PINF, just duplicate the input */ + PG_RETURN_NUMERIC(duplicate_numeric(num)); + } init_var_from_num(num, &arg); init_var(&result); @@ -3157,10 +3712,39 @@ numeric_log(PG_FUNCTION_ARGS) NumericVar result; /* - * Handle NaN + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - PG_RETURN_NUMERIC(make_result(&const_nan)); + if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2)) + { + int sign1, + sign2; + + if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) + PG_RETURN_NUMERIC(make_result(&const_nan)); + /* fail on negative inputs including -Inf, as log_var would */ + sign1 = numeric_sign_internal(num1); + sign2 = numeric_sign_internal(num2); + if (sign1 < 0 || sign2 < 0) + ereport(ERROR, + (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), + errmsg("cannot take logarithm of a negative number"))); + /* fail on zero inputs, as log_var would */ + if (sign1 == 0 || sign2 == 0) + ereport(ERROR, + (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), + errmsg("cannot take logarithm of zero"))); + if (NUMERIC_IS_PINF(num1)) + { + /* log(Inf, Inf) reduces to Inf/Inf, so it's NaN */ + if (NUMERIC_IS_PINF(num2)) + PG_RETURN_NUMERIC(make_result(&const_nan)); + /* log(Inf, finite-positive) is zero (we don't throw underflow) */ + PG_RETURN_NUMERIC(make_result(&const_zero)); + } + Assert(NUMERIC_IS_PINF(num2)); + /* log(finite-positive, Inf) is Inf */ + PG_RETURN_NUMERIC(make_result(&const_pinf)); + } /* * Initialize things @@ -3186,7 +3770,7 @@ numeric_log(PG_FUNCTION_ARGS) /* * numeric_power() - * - * Raise b to the power of x + * Raise x to the power of y */ Datum numeric_power(PG_FUNCTION_ARGS) @@ -3196,61 +3780,171 @@ numeric_power(PG_FUNCTION_ARGS) Numeric res; NumericVar arg1; NumericVar arg2; - NumericVar arg2_trunc; NumericVar result; + int sign1, + sign2; /* - * Handle NaN cases. We follow the POSIX spec for pow(3), which says that - * NaN ^ 0 = 1, and 1 ^ NaN = 1, while all other cases with NaN inputs - * yield NaN (with no error). + * Handle NaN and infinities */ - if (NUMERIC_IS_NAN(num1)) + if (NUMERIC_IS_SPECIAL(num1) || NUMERIC_IS_SPECIAL(num2)) { - if (!NUMERIC_IS_NAN(num2)) + /* + * We follow the POSIX spec for pow(3), which says that NaN ^ 0 = 1, + * and 1 ^ NaN = 1, while all other cases with NaN inputs yield NaN + * (with no error). + */ + if (NUMERIC_IS_NAN(num1)) + { + if (!NUMERIC_IS_SPECIAL(num2)) + { + init_var_from_num(num2, &arg2); + if (cmp_var(&arg2, &const_zero) == 0) + PG_RETURN_NUMERIC(make_result(&const_one)); + } + PG_RETURN_NUMERIC(make_result(&const_nan)); + } + if (NUMERIC_IS_NAN(num2)) + { + if (!NUMERIC_IS_SPECIAL(num1)) + { + init_var_from_num(num1, &arg1); + if (cmp_var(&arg1, &const_one) == 0) + PG_RETURN_NUMERIC(make_result(&const_one)); + } + PG_RETURN_NUMERIC(make_result(&const_nan)); + } + /* At least one input is infinite, but error rules still apply */ + sign1 = numeric_sign_internal(num1); + sign2 = numeric_sign_internal(num2); + if (sign1 == 0 && sign2 < 0) + ereport(ERROR, + (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), + errmsg("zero raised to a negative power is undefined"))); + if (sign1 < 0 && !numeric_is_integral(num2)) + ereport(ERROR, + (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), + errmsg("a negative number raised to a non-integer power yields a complex result"))); + + /* + * POSIX gives this series of rules for pow(3) with infinite inputs: + * + * For any value of y, if x is +1, 1.0 shall be returned. + */ + if (!NUMERIC_IS_SPECIAL(num1)) { - init_var_from_num(num2, &arg2); - if (cmp_var(&arg2, &const_zero) == 0) + init_var_from_num(num1, &arg1); + if (cmp_var(&arg1, &const_one) == 0) PG_RETURN_NUMERIC(make_result(&const_one)); } - PG_RETURN_NUMERIC(make_result(&const_nan)); - } - if (NUMERIC_IS_NAN(num2)) - { - init_var_from_num(num1, &arg1); - if (cmp_var(&arg1, &const_one) == 0) + + /* + * For any value of x, if y is [-]0, 1.0 shall be returned. + */ + if (sign2 == 0) PG_RETURN_NUMERIC(make_result(&const_one)); - PG_RETURN_NUMERIC(make_result(&const_nan)); - } - /* - * Initialize things - */ - init_var(&arg2_trunc); - init_var(&result); - init_var_from_num(num1, &arg1); - init_var_from_num(num2, &arg2); + /* + * For any odd integer value of y > 0, if x is [-]0, [-]0 shall be + * returned. For y > 0 and not an odd integer, if x is [-]0, +0 shall + * be returned. (Since we don't deal in minus zero, we need not + * distinguish these two cases.) + */ + if (sign1 == 0 && sign2 > 0) + PG_RETURN_NUMERIC(make_result(&const_zero)); - set_var_from_var(&arg2, &arg2_trunc); - trunc_var(&arg2_trunc, 0); + /* + * If x is -1, and y is [-]Inf, 1.0 shall be returned. + * + * For |x| < 1, if y is -Inf, +Inf shall be returned. + * + * For |x| > 1, if y is -Inf, +0 shall be returned. + * + * For |x| < 1, if y is +Inf, +0 shall be returned. + * + * For |x| > 1, if y is +Inf, +Inf shall be returned. + */ + if (NUMERIC_IS_INF(num2)) + { + bool abs_x_gt_one; + + if (NUMERIC_IS_SPECIAL(num1)) + abs_x_gt_one = true; /* x is either Inf or -Inf */ + else + { + init_var_from_num(num1, &arg1); + if (cmp_var(&arg1, &const_minus_one) == 0) + PG_RETURN_NUMERIC(make_result(&const_one)); + arg1.sign = NUMERIC_POS; /* now arg1 = abs(x) */ + abs_x_gt_one = (cmp_var(&arg1, &const_one) > 0); + } + if (abs_x_gt_one == (sign2 > 0)) + PG_RETURN_NUMERIC(make_result(&const_pinf)); + else + PG_RETURN_NUMERIC(make_result(&const_zero)); + } + + /* + * For y < 0, if x is +Inf, +0 shall be returned. + * + * For y > 0, if x is +Inf, +Inf shall be returned. + */ + if (NUMERIC_IS_PINF(num1)) + { + if (sign2 > 0) + PG_RETURN_NUMERIC(make_result(&const_pinf)); + else + PG_RETURN_NUMERIC(make_result(&const_zero)); + } + + Assert(NUMERIC_IS_NINF(num1)); + + /* + * For y an odd integer < 0, if x is -Inf, -0 shall be returned. For + * y < 0 and not an odd integer, if x is -Inf, +0 shall be returned. + * (Again, we need not distinguish these two cases.) + */ + if (sign2 < 0) + PG_RETURN_NUMERIC(make_result(&const_zero)); + + /* + * For y an odd integer > 0, if x is -Inf, -Inf shall be returned. For + * y > 0 and not an odd integer, if x is -Inf, +Inf shall be returned. + */ + init_var_from_num(num2, &arg2); + if (arg2.ndigits > 0 && arg2.ndigits == arg2.weight + 1 && + (arg2.digits[arg2.ndigits - 1] & 1)) + PG_RETURN_NUMERIC(make_result(&const_ninf)); + else + PG_RETURN_NUMERIC(make_result(&const_pinf)); + } /* * The SQL spec requires that we emit a particular SQLSTATE error code for * certain error conditions. Specifically, we don't return a * divide-by-zero error code for 0 ^ -1. */ - if (cmp_var(&arg1, &const_zero) == 0 && - cmp_var(&arg2, &const_zero) < 0) + sign1 = numeric_sign_internal(num1); + sign2 = numeric_sign_internal(num2); + + if (sign1 == 0 && sign2 < 0) ereport(ERROR, (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), errmsg("zero raised to a negative power is undefined"))); - if (cmp_var(&arg1, &const_zero) < 0 && - cmp_var(&arg2, &arg2_trunc) != 0) + if (sign1 < 0 && !numeric_is_integral(num2)) ereport(ERROR, (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), errmsg("a negative number raised to a non-integer power yields a complex result"))); /* + * Initialize things + */ + init_var(&result); + init_var_from_num(num1, &arg1); + init_var_from_num(num2, &arg2); + + /* * Call power_var() to compute and return the result; note it handles * scale selection itself. */ @@ -3259,7 +3953,6 @@ numeric_power(PG_FUNCTION_ARGS) res = make_result(&result); free_var(&result); - free_var(&arg2_trunc); PG_RETURN_NUMERIC(res); } @@ -3274,7 +3967,7 @@ numeric_scale(PG_FUNCTION_ARGS) { Numeric num = PG_GETARG_NUMERIC(0); - if (NUMERIC_IS_NAN(num)) + if (NUMERIC_IS_SPECIAL(num)) PG_RETURN_NULL(); PG_RETURN_INT32(NUMERIC_DSCALE(num)); @@ -3341,7 +4034,7 @@ numeric_min_scale(PG_FUNCTION_ARGS) NumericVar arg; int min_scale; - if (NUMERIC_IS_NAN(num)) + if (NUMERIC_IS_SPECIAL(num)) PG_RETURN_NULL(); init_var_from_num(num, &arg); @@ -3361,8 +4054,8 @@ numeric_trim_scale(PG_FUNCTION_ARGS) Numeric res; NumericVar result; - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); + if (NUMERIC_IS_SPECIAL(num)) + PG_RETURN_NUMERIC(duplicate_numeric(num)); init_var_from_num(num, &result); result.dscale = get_min_scale(&result); @@ -3408,8 +4101,7 @@ numeric_int4_opt_error(Numeric num, bool *have_error) if (have_error) *have_error = false; - /* XXX would it be better to return NULL? */ - if (NUMERIC_IS_NAN(num)) + if (NUMERIC_IS_SPECIAL(num)) { if (have_error) { @@ -3418,9 +4110,14 @@ numeric_int4_opt_error(Numeric num, bool *have_error) } else { - ereport(ERROR, - (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), - errmsg("cannot convert NaN to integer"))); + if (NUMERIC_IS_NAN(num)) + ereport(ERROR, + (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), + errmsg("cannot convert NaN to integer"))); + else + ereport(ERROR, + (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), + errmsg("cannot convert infinity to integer"))); } } @@ -3499,11 +4196,17 @@ numeric_int8(PG_FUNCTION_ARGS) NumericVar x; int64 result; - /* XXX would it be better to return NULL? */ - if (NUMERIC_IS_NAN(num)) - ereport(ERROR, - (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), - errmsg("cannot convert NaN to bigint"))); + if (NUMERIC_IS_SPECIAL(num)) + { + if (NUMERIC_IS_NAN(num)) + ereport(ERROR, + (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), + errmsg("cannot convert NaN to bigint"))); + else + ereport(ERROR, + (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), + errmsg("cannot convert infinity to bigint"))); + } /* Convert to variable format and thence to int8 */ init_var_from_num(num, &x); @@ -3544,11 +4247,17 @@ numeric_int2(PG_FUNCTION_ARGS) int64 val; int16 result; - /* XXX would it be better to return NULL? */ - if (NUMERIC_IS_NAN(num)) - ereport(ERROR, - (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), - errmsg("cannot convert NaN to smallint"))); + if (NUMERIC_IS_SPECIAL(num)) + { + if (NUMERIC_IS_NAN(num)) + ereport(ERROR, + (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), + errmsg("cannot convert NaN to smallint"))); + else + ereport(ERROR, + (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), + errmsg("cannot convert infinity to smallint"))); + } /* Convert to variable format and thence to int8 */ init_var_from_num(num, &x); @@ -3583,9 +4292,12 @@ float8_numeric(PG_FUNCTION_ARGS) PG_RETURN_NUMERIC(make_result(&const_nan)); if (isinf(val)) - ereport(ERROR, - (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), - errmsg("cannot convert infinity to numeric"))); + { + if (val < 0) + PG_RETURN_NUMERIC(make_result(&const_ninf)); + else + PG_RETURN_NUMERIC(make_result(&const_pinf)); + } snprintf(buf, sizeof(buf), "%.*g", DBL_DIG, val); @@ -3609,8 +4321,15 @@ numeric_float8(PG_FUNCTION_ARGS) char *tmp; Datum result; - if (NUMERIC_IS_NAN(num)) - PG_RETURN_FLOAT8(get_float8_nan()); + if (NUMERIC_IS_SPECIAL(num)) + { + if (NUMERIC_IS_PINF(num)) + PG_RETURN_FLOAT8(get_float8_infinity()); + else if (NUMERIC_IS_NINF(num)) + PG_RETURN_FLOAT8(-get_float8_infinity()); + else + PG_RETURN_FLOAT8(get_float8_nan()); + } tmp = DatumGetCString(DirectFunctionCall1(numeric_out, NumericGetDatum(num))); @@ -3634,10 +4353,22 @@ numeric_float8_no_overflow(PG_FUNCTION_ARGS) Numeric num = PG_GETARG_NUMERIC(0); double val; - if (NUMERIC_IS_NAN(num)) - PG_RETURN_FLOAT8(get_float8_nan()); + if (NUMERIC_IS_SPECIAL(num)) + { + if (NUMERIC_IS_PINF(num)) + val = HUGE_VAL; + else if (NUMERIC_IS_NINF(num)) + val = -HUGE_VAL; + else + val = get_float8_nan(); + } + else + { + NumericVar x; - val = numeric_to_double_no_overflow(num); + init_var_from_num(num, &x); + val = numericvar_to_double_no_overflow(&x); + } PG_RETURN_FLOAT8(val); } @@ -3654,9 +4385,12 @@ float4_numeric(PG_FUNCTION_ARGS) PG_RETURN_NUMERIC(make_result(&const_nan)); if (isinf(val)) - ereport(ERROR, - (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), - errmsg("cannot convert infinity to numeric"))); + { + if (val < 0) + PG_RETURN_NUMERIC(make_result(&const_ninf)); + else + PG_RETURN_NUMERIC(make_result(&const_pinf)); + } snprintf(buf, sizeof(buf), "%.*g", FLT_DIG, val); @@ -3680,8 +4414,15 @@ numeric_float4(PG_FUNCTION_ARGS) char *tmp; Datum result; - if (NUMERIC_IS_NAN(num)) - PG_RETURN_FLOAT4(get_float4_nan()); + if (NUMERIC_IS_SPECIAL(num)) + { + if (NUMERIC_IS_PINF(num)) + PG_RETURN_FLOAT4(get_float4_infinity()); + else if (NUMERIC_IS_NINF(num)) + PG_RETURN_FLOAT4(-get_float4_infinity()); + else + PG_RETURN_FLOAT4(get_float4_nan()); + } tmp = DatumGetCString(DirectFunctionCall1(numeric_out, NumericGetDatum(num))); @@ -3701,10 +4442,17 @@ numeric_pg_lsn(PG_FUNCTION_ARGS) NumericVar x; XLogRecPtr result; - if (NUMERIC_IS_NAN(num)) - ereport(ERROR, - (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), - errmsg("cannot convert NaN to pg_lsn"))); + if (NUMERIC_IS_SPECIAL(num)) + { + if (NUMERIC_IS_NAN(num)) + ereport(ERROR, + (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), + errmsg("cannot convert NaN to pg_lsn"))); + else + ereport(ERROR, + (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), + errmsg("cannot convert infinity to pg_lsn"))); + } /* Convert to variable format and thence to pg_lsn */ init_var_from_num(num, &x); @@ -3741,9 +4489,15 @@ typedef struct NumericAggState NumericSumAccum sumX2; /* sum of squares of processed numbers */ int maxScale; /* maximum scale seen so far */ int64 maxScaleCount; /* number of values seen with maximum scale */ - int64 NaNcount; /* count of NaN values (not included in N!) */ + /* These counts are *not* included in N! Use NA_TOTAL_COUNT() as needed */ + int64 NaNcount; /* count of NaN values */ + int64 pInfcount; /* count of +Inf values */ + int64 nInfcount; /* count of -Inf values */ } NumericAggState; +#define NA_TOTAL_COUNT(na) \ + ((na)->N + (na)->NaNcount + (na)->pInfcount + (na)->nInfcount) + /* * Prepare state data for a numeric aggregate function that needs to compute * sum, count and optionally sum of squares of the input. @@ -3795,10 +4549,15 @@ do_numeric_accum(NumericAggState *state, Numeric newval) NumericVar X2; MemoryContext old_context; - /* Count NaN inputs separately from all else */ - if (NUMERIC_IS_NAN(newval)) + /* Count NaN/infinity inputs separately from all else */ + if (NUMERIC_IS_SPECIAL(newval)) { - state->NaNcount++; + if (NUMERIC_IS_PINF(newval)) + state->pInfcount++; + else if (NUMERIC_IS_NINF(newval)) + state->nInfcount++; + else + state->NaNcount++; return; } @@ -3860,10 +4619,15 @@ do_numeric_discard(NumericAggState *state, Numeric newval) NumericVar X2; MemoryContext old_context; - /* Count NaN inputs separately from all else */ - if (NUMERIC_IS_NAN(newval)) + /* Count NaN/infinity inputs separately from all else */ + if (NUMERIC_IS_SPECIAL(newval)) { - state->NaNcount--; + if (NUMERIC_IS_PINF(newval)) + state->pInfcount--; + else if (NUMERIC_IS_NINF(newval)) + state->nInfcount--; + else + state->NaNcount--; return true; } @@ -3986,6 +4750,8 @@ numeric_combine(PG_FUNCTION_ARGS) state1 = makeNumericAggStateCurrentContext(true); state1->N = state2->N; state1->NaNcount = state2->NaNcount; + state1->pInfcount = state2->pInfcount; + state1->nInfcount = state2->nInfcount; state1->maxScale = state2->maxScale; state1->maxScaleCount = state2->maxScaleCount; @@ -3999,6 +4765,8 @@ numeric_combine(PG_FUNCTION_ARGS) state1->N += state2->N; state1->NaNcount += state2->NaNcount; + state1->pInfcount += state2->pInfcount; + state1->nInfcount += state2->nInfcount; if (state2->N > 0) { @@ -4074,6 +4842,8 @@ numeric_avg_combine(PG_FUNCTION_ARGS) state1 = makeNumericAggStateCurrentContext(false); state1->N = state2->N; state1->NaNcount = state2->NaNcount; + state1->pInfcount = state2->pInfcount; + state1->nInfcount = state2->nInfcount; state1->maxScale = state2->maxScale; state1->maxScaleCount = state2->maxScaleCount; @@ -4086,6 +4856,8 @@ numeric_avg_combine(PG_FUNCTION_ARGS) state1->N += state2->N; state1->NaNcount += state2->NaNcount; + state1->pInfcount += state2->pInfcount; + state1->nInfcount += state2->nInfcount; if (state2->N > 0) { @@ -4164,6 +4936,12 @@ numeric_avg_serialize(PG_FUNCTION_ARGS) /* NaNcount */ pq_sendint64(&buf, state->NaNcount); + /* pInfcount */ + pq_sendint64(&buf, state->pInfcount); + + /* nInfcount */ + pq_sendint64(&buf, state->nInfcount); + result = pq_endtypsend(&buf); PG_RETURN_BYTEA_P(result); @@ -4218,6 +4996,12 @@ numeric_avg_deserialize(PG_FUNCTION_ARGS) /* NaNcount */ result->NaNcount = pq_getmsgint64(&buf); + /* pInfcount */ + result->pInfcount = pq_getmsgint64(&buf); + + /* nInfcount */ + result->nInfcount = pq_getmsgint64(&buf); + pq_getmsgend(&buf); pfree(buf.data); @@ -4286,6 +5070,12 @@ numeric_serialize(PG_FUNCTION_ARGS) /* NaNcount */ pq_sendint64(&buf, state->NaNcount); + /* pInfcount */ + pq_sendint64(&buf, state->pInfcount); + + /* nInfcount */ + pq_sendint64(&buf, state->nInfcount); + result = pq_endtypsend(&buf); PG_RETURN_BYTEA_P(result); @@ -4349,6 +5139,12 @@ numeric_deserialize(PG_FUNCTION_ARGS) /* NaNcount */ result->NaNcount = pq_getmsgint64(&buf); + /* pInfcount */ + result->pInfcount = pq_getmsgint64(&buf); + + /* nInfcount */ + result->nInfcount = pq_getmsgint64(&buf); + pq_getmsgend(&buf); pfree(buf.data); @@ -5141,12 +5937,20 @@ numeric_avg(PG_FUNCTION_ARGS) state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); /* If there were no non-null inputs, return NULL */ - if (state == NULL || (state->N + state->NaNcount) == 0) + if (state == NULL || NA_TOTAL_COUNT(state) == 0) PG_RETURN_NULL(); if (state->NaNcount > 0) /* there was at least one NaN input */ PG_RETURN_NUMERIC(make_result(&const_nan)); + /* adding plus and minus infinities gives NaN */ + if (state->pInfcount > 0 && state->nInfcount > 0) + PG_RETURN_NUMERIC(make_result(&const_nan)); + if (state->pInfcount > 0) + PG_RETURN_NUMERIC(make_result(&const_pinf)); + if (state->nInfcount > 0) + PG_RETURN_NUMERIC(make_result(&const_ninf)); + N_datum = DirectFunctionCall1(int8_numeric, Int64GetDatum(state->N)); init_var(&sumX_var); @@ -5167,12 +5971,20 @@ numeric_sum(PG_FUNCTION_ARGS) state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); /* If there were no non-null inputs, return NULL */ - if (state == NULL || (state->N + state->NaNcount) == 0) + if (state == NULL || NA_TOTAL_COUNT(state) == 0) PG_RETURN_NULL(); if (state->NaNcount > 0) /* there was at least one NaN input */ PG_RETURN_NUMERIC(make_result(&const_nan)); + /* adding plus and minus infinities gives NaN */ + if (state->pInfcount > 0 && state->nInfcount > 0) + PG_RETURN_NUMERIC(make_result(&const_nan)); + if (state->pInfcount > 0) + PG_RETURN_NUMERIC(make_result(&const_pinf)); + if (state->nInfcount > 0) + PG_RETURN_NUMERIC(make_result(&const_ninf)); + init_var(&sumX_var); accum_sum_final(&state->sumX, &sumX_var); result = make_result(&sumX_var); @@ -5208,9 +6020,9 @@ numeric_stddev_internal(NumericAggState *state, /* * Sample stddev and variance are undefined when N <= 1; population stddev * is undefined when N == 0. Return NULL in either case (note that NaNs - * count as normal inputs for this purpose). + * and infinities count as normal inputs for this purpose). */ - if (state == NULL || (totCount = state->N + state->NaNcount) == 0) + if (state == NULL || (totCount = NA_TOTAL_COUNT(state)) == 0) { *is_null = true; return NULL; @@ -5225,9 +6037,10 @@ numeric_stddev_internal(NumericAggState *state, *is_null = false; /* - * Deal with NaN inputs. + * Deal with NaN and infinity cases. By analogy to the behavior of the + * float8 functions, any infinity input produces NaN output. */ - if (state->NaNcount > 0) + if (state->NaNcount > 0 || state->pInfcount > 0 || state->nInfcount > 0) return make_result(&const_nan); /* OK, normal calculation applies */ @@ -5870,6 +6683,12 @@ dump_numeric(const char *str, Numeric num) case NUMERIC_NAN: printf("NaN"); break; + case NUMERIC_PINF: + printf("Infinity"); + break; + case NUMERIC_NINF: + printf("-Infinity"); + break; default: printf("SIGN=0x%x", NUMERIC_SIGN(num)); break; @@ -5901,6 +6720,12 @@ dump_var(const char *str, NumericVar *var) case NUMERIC_NAN: printf("NaN"); break; + case NUMERIC_PINF: + printf("Infinity"); + break; + case NUMERIC_NINF: + printf("-Infinity"); + break; default: printf("SIGN=0x%x", var->sign); break; @@ -5918,8 +6743,9 @@ dump_var(const char *str, NumericVar *var) * * Local functions follow * - * In general, these do not support NaNs --- callers must eliminate - * the possibility of NaN first. (make_result() is an exception.) + * In general, these do not support "special" (NaN or infinity) inputs; + * callers should handle those possibilities first. + * (There are one or two exceptions, noted in their header comments.) * * ---------------------------------------------------------------------- */ @@ -5979,9 +6805,9 @@ zero_var(NumericVar *var) * * Parse a string and put the number into a variable * - * This function does not handle leading or trailing spaces, and it doesn't - * accept "NaN" either. It returns the end+1 position so that caller can - * check for trailing spaces/garbage if deemed necessary. + * This function does not handle leading or trailing spaces. It returns + * the end+1 position parsed, so that caller can check for trailing + * spaces/garbage if deemed necessary. * * cp is the place to actually start parsing; str is what to use in error * reports. (Typically cp would be the same except advanced over spaces.) @@ -6456,12 +7282,28 @@ get_str_from_var_sci(const NumericVar *var, int rscale) /* + * duplicate_numeric() - copy a packed-format Numeric + * + * This will handle NaN and Infinity cases. + */ +static Numeric +duplicate_numeric(Numeric num) +{ + Numeric res; + + res = (Numeric) palloc(VARSIZE(num)); + memcpy(res, num, VARSIZE(num)); + return res; +} + +/* * make_result_opt_error() - * * Create the packed db numeric format in palloc()'d memory from - * a variable. If "*have_error" flag is provided, on error it's set to - * true, NULL returned. This is helpful when caller need to handle errors - * by itself. + * a variable. This will handle NaN and Infinity cases. + * + * If "have_error" isn't NULL, on overflow *have_error is set to true and + * NULL is returned. This is helpful when caller needs to handle errors. */ static Numeric make_result_opt_error(const NumericVar *var, bool *have_error) @@ -6476,12 +7318,22 @@ make_result_opt_error(const NumericVar *var, bool *have_error) if (have_error) *have_error = false; - if (sign == NUMERIC_NAN) + if ((sign & NUMERIC_SIGN_MASK) == NUMERIC_SPECIAL) { + /* + * Verify valid special value. This could be just an Assert, perhaps, + * but it seems worthwhile to expend a few cycles to ensure that we + * never write any nonzero reserved bits to disk. + */ + if (!(sign == NUMERIC_NAN || + sign == NUMERIC_PINF || + sign == NUMERIC_NINF)) + elog(ERROR, "invalid numeric sign value 0x%x", sign); + result = (Numeric) palloc(NUMERIC_HDRSZ_SHORT); SET_VARSIZE(result, NUMERIC_HDRSZ_SHORT); - result->choice.n_header = NUMERIC_NAN; + result->choice.n_header = sign; /* the header word is all we need */ dump_numeric("make_result()", result); @@ -6572,8 +7424,8 @@ make_result(const NumericVar *var) /* * apply_typmod() - * - * Do bounds checking and rounding according to the attributes - * typmod field. + * Do bounds checking and rounding according to the specified typmod. + * Note that this is only applied to normal finite values. */ static void apply_typmod(NumericVar *var, int32 typmod) @@ -6647,6 +7499,45 @@ apply_typmod(NumericVar *var, int32 typmod) } /* + * apply_typmod_special() - + * + * Do bounds checking according to the specified typmod, for an Inf or NaN. + * For convenience of most callers, the value is presented in packed form. + */ +static void +apply_typmod_special(Numeric num, int32 typmod) +{ + int precision; + int scale; + + Assert(NUMERIC_IS_SPECIAL(num)); /* caller error if not */ + + /* + * NaN is allowed regardless of the typmod; that's rather dubious perhaps, + * but it's a longstanding behavior. Inf is rejected if we have any + * typmod restriction, since an infinity shouldn't be claimed to fit in + * any finite number of digits. + */ + if (NUMERIC_IS_NAN(num)) + return; + + /* Do nothing if we have a default typmod (-1) */ + if (typmod < (int32) (VARHDRSZ)) + return; + + typmod -= VARHDRSZ; + precision = (typmod >> 16) & 0xffff; + scale = typmod & 0xffff; + + ereport(ERROR, + (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), + errmsg("numeric field overflow"), + errdetail("A field with precision %d, scale %d cannot hold an infinite value.", + precision, scale))); +} + + +/* * Convert numeric to int8, rounding if needed. * * If overflow, return false (no error is raised). Return true if okay. @@ -6961,36 +7852,9 @@ int128_to_numericvar(int128 val, NumericVar *var) #endif /* - * Convert numeric to float8; if out of range, return +/- HUGE_VAL + * Convert a NumericVar to float8; if out of range, return +/- HUGE_VAL */ static double -numeric_to_double_no_overflow(Numeric num) -{ - char *tmp; - double val; - char *endptr; - - tmp = DatumGetCString(DirectFunctionCall1(numeric_out, - NumericGetDatum(num))); - - /* unlike float8in, we ignore ERANGE from strtod */ - val = strtod(tmp, &endptr); - if (*endptr != '\0') - { - /* shouldn't happen ... */ - ereport(ERROR, - (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), - errmsg("invalid input syntax for type %s: \"%s\"", - "double precision", tmp))); - } - - pfree(tmp); - - return val; -} - -/* As above, but work from a NumericVar */ -static double numericvar_to_double_no_overflow(const NumericVar *var) { char *tmp; |