diff options
author | Tom Lane <tgl@sss.pgh.pa.us> | 2005-07-23 21:05:48 +0000 |
---|---|---|
committer | Tom Lane <tgl@sss.pgh.pa.us> | 2005-07-23 21:05:48 +0000 |
commit | d007a95055b9b649b74b5d25aa4d2b46f3eca21c (patch) | |
tree | e726c049f96af578181432ae4da176cf3cbcb970 /src/backend/optimizer/util/predtest.c | |
parent | 9af9d674c61ca1c2e26d7a9295d5b1bcc8cabb60 (diff) | |
download | postgresql-d007a95055b9b649b74b5d25aa4d2b46f3eca21c.tar.gz postgresql-d007a95055b9b649b74b5d25aa4d2b46f3eca21c.zip |
Simple constraint exclusion. For now, only child tables of inheritance
scans are candidates for exclusion; this should be fixed eventually.
Simon Riggs, with some help from Tom Lane.
Diffstat (limited to 'src/backend/optimizer/util/predtest.c')
-rw-r--r-- | src/backend/optimizer/util/predtest.c | 450 |
1 files changed, 378 insertions, 72 deletions
diff --git a/src/backend/optimizer/util/predtest.c b/src/backend/optimizer/util/predtest.c index 38c43ea027c..9628f9186eb 100644 --- a/src/backend/optimizer/util/predtest.c +++ b/src/backend/optimizer/util/predtest.c @@ -9,7 +9,7 @@ * * * IDENTIFICATION - * $PostgreSQL: pgsql/src/backend/optimizer/util/predtest.c,v 1.1 2005/06/10 22:25:36 tgl Exp $ + * $PostgreSQL: pgsql/src/backend/optimizer/util/predtest.c,v 1.2 2005/07/23 21:05:47 tgl Exp $ * *------------------------------------------------------------------------- */ @@ -27,7 +27,11 @@ static bool predicate_implied_by_recurse(Node *clause, Node *predicate); +static bool predicate_refuted_by_recurse(Node *clause, Node *predicate); static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause); +static bool predicate_refuted_by_simple_clause(Expr *predicate, Node *clause); +static bool btree_predicate_proof(Expr *predicate, Node *clause, + bool refute_it); /* @@ -35,12 +39,19 @@ static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause); * Recursively checks whether the clauses in restrictinfo_list imply * that the given predicate is true. * - * The top-level List structure of each list corresponds to an AND list. - * We assume that eval_const_expressions() has been applied and so there - * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND, - * including AND just below the top-level List structure). - * If this is not true we might fail to prove an implication that is - * valid, but no worse consequences will ensue. + * The top-level List structure of each list corresponds to an AND list. + * We assume that eval_const_expressions() has been applied and so there + * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND, + * including AND just below the top-level List structure). + * If this is not true we might fail to prove an implication that is + * valid, but no worse consequences will ensue. + * + * We assume the predicate has already been checked to contain only + * immutable functions and operators. (In current use this is true + * because the predicate is part of an index predicate that has passed + * CheckPredicate().) We dare not make deductions based on non-immutable + * functions, because they might change answers between the time we make + * the plan and the time we execute the plan. */ bool predicate_implied_by(List *predicate_list, List *restrictinfo_list) @@ -70,6 +81,44 @@ predicate_implied_by(List *predicate_list, List *restrictinfo_list) return true; } +/* + * predicate_refuted_by + * Recursively checks whether the clauses in restrictinfo_list refute + * the given predicate (that is, prove it false). + * + * This is NOT the same as !(predicate_implied_by), though it is similar + * in the technique and structure of the code. + * + * The top-level List structure of each list corresponds to an AND list. + * We assume that eval_const_expressions() has been applied and so there + * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND, + * including AND just below the top-level List structure). + * If this is not true we might fail to prove an implication that is + * valid, but no worse consequences will ensue. + * + * We assume the predicate has already been checked to contain only + * immutable functions and operators. We dare not make deductions based on + * non-immutable functions, because they might change answers between the + * time we make the plan and the time we execute the plan. + */ +bool +predicate_refuted_by(List *predicate_list, List *restrictinfo_list) +{ + if (predicate_list == NIL) + return false; /* no predicate: no refutation is possible */ + if (restrictinfo_list == NIL) + return false; /* no restriction: refutation must fail */ + + /* + * Unlike the implication case, predicate_refuted_by_recurse needs to + * be able to see the top-level AND structure on both sides --- otherwise + * it will fail to handle the case where one restriction clause is an OR + * that can refute the predicate AND as a whole, but not each predicate + * clause separately. + */ + return predicate_refuted_by_recurse((Node *) restrictinfo_list, + (Node *) predicate_list); +} /*---------- * predicate_implied_by_recurse @@ -240,9 +289,271 @@ predicate_implied_by_recurse(Node *clause, Node *predicate) } } +/*---------- + * predicate_refuted_by_recurse + * Does the predicate refutation test for non-NULL restriction and + * predicate clauses. + * + * The logic followed here is ("R=>" means "refutes"): + * atom A R=> atom B iff: predicate_refuted_by_simple_clause says so + * atom A R=> AND-expr B iff: A R=> any of B's components + * atom A R=> OR-expr B iff: A R=> each of B's components + * AND-expr A R=> atom B iff: any of A's components R=> B + * AND-expr A R=> AND-expr B iff: A R=> any of B's components, + * *or* any of A's components R=> B + * AND-expr A R=> OR-expr B iff: A R=> each of B's components + * OR-expr A R=> atom B iff: each of A's components R=> B + * OR-expr A R=> AND-expr B iff: each of A's components R=> any of B's + * OR-expr A R=> OR-expr B iff: A R=> each of B's components + * + * Other comments are as for predicate_implied_by_recurse(), except that + * we have to handle a top-level AND list on both sides. + *---------- + */ +static bool +predicate_refuted_by_recurse(Node *clause, Node *predicate) +{ + ListCell *item; + + Assert(clause != NULL); + /* skip through RestrictInfo */ + if (IsA(clause, RestrictInfo)) + { + clause = (Node *) ((RestrictInfo *) clause)->clause; + Assert(clause != NULL); + Assert(!IsA(clause, RestrictInfo)); + } + Assert(predicate != NULL); + + /* + * Since a restriction List clause is handled the same as an AND clause, + * we can avoid duplicate code like this: + */ + if (and_clause(clause)) + clause = (Node *) ((BoolExpr *) clause)->args; + + /* Ditto for predicate AND-clause and List */ + if (and_clause(predicate)) + predicate = (Node *) ((BoolExpr *) predicate)->args; + + if (IsA(clause, List)) + { + if (IsA(predicate, List)) + { + /* AND-clause R=> AND-clause if A refutes any of B's items */ + /* Needed to handle (x AND y) R=> ((!x OR !y) AND z) */ + foreach(item, (List *) predicate) + { + if (predicate_refuted_by_recurse(clause, lfirst(item))) + return true; + } + /* Also check if any of A's items refutes B */ + /* Needed to handle ((x OR y) AND z) R=> (!x AND !y) */ + foreach(item, (List *) clause) + { + if (predicate_refuted_by_recurse(lfirst(item), predicate)) + return true; + } + return false; + } + else if (or_clause(predicate)) + { + /* AND-clause R=> OR-clause if A refutes each of B's items */ + foreach(item, ((BoolExpr *) predicate)->args) + { + if (!predicate_refuted_by_recurse(clause, lfirst(item))) + return false; + } + return true; + } + else + { + /* AND-clause R=> atom if any of A's items refutes B */ + foreach(item, (List *) clause) + { + if (predicate_refuted_by_recurse(lfirst(item), predicate)) + return true; + } + return false; + } + } + else if (or_clause(clause)) + { + if (or_clause(predicate)) + { + /* OR-clause R=> OR-clause if A refutes each of B's items */ + foreach(item, ((BoolExpr *) predicate)->args) + { + if (!predicate_refuted_by_recurse(clause, lfirst(item))) + return false; + } + return true; + } + else if (IsA(predicate, List)) + { + /* + * OR-clause R=> AND-clause if each of A's items refutes any of + * B's items. + */ + foreach(item, ((BoolExpr *) clause)->args) + { + Node *citem = lfirst(item); + ListCell *item2; + + foreach(item2, (List *) predicate) + { + if (predicate_refuted_by_recurse(citem, lfirst(item2))) + break; + } + if (item2 == NULL) + return false; /* citem refutes nothing */ + } + return true; + } + else + { + /* OR-clause R=> atom if each of A's items refutes B */ + foreach(item, ((BoolExpr *) clause)->args) + { + if (!predicate_refuted_by_recurse(lfirst(item), predicate)) + return false; + } + return true; + } + } + else + { + if (IsA(predicate, List)) + { + /* atom R=> AND-clause if A refutes any of B's items */ + foreach(item, (List *) predicate) + { + if (predicate_refuted_by_recurse(clause, lfirst(item))) + return true; + } + return false; + } + else if (or_clause(predicate)) + { + /* atom R=> OR-clause if A refutes each of B's items */ + foreach(item, ((BoolExpr *) predicate)->args) + { + if (!predicate_refuted_by_recurse(clause, lfirst(item))) + return false; + } + return true; + } + else + { + /* atom R=> atom is the base case */ + return predicate_refuted_by_simple_clause((Expr *) predicate, + clause); + } + } +} + + +/*---------- + * predicate_implied_by_simple_clause + * Does the predicate implication test for a "simple clause" predicate + * and a "simple clause" restriction. + * + * We return TRUE if able to prove the implication, FALSE if not. + * + * We have three strategies for determining whether one simple clause + * implies another: + * + * A simple and general way is to see if they are equal(); this works for any + * kind of expression. (Actually, there is an implied assumption that the + * functions in the expression are immutable, ie dependent only on their input + * arguments --- but this was checked for the predicate by the caller.) + * + * When the predicate is of the form "foo IS NOT NULL", we can conclude that + * the predicate is implied if the clause is a strict operator or function + * that has "foo" as an input. In this case the clause must yield NULL when + * "foo" is NULL, which we can take as equivalent to FALSE because we know + * we are within an AND/OR subtree of a WHERE clause. (Again, "foo" is + * already known immutable, so the clause will certainly always fail.) + * + * Finally, we may be able to deduce something using knowledge about btree + * operator classes; this is encapsulated in btree_predicate_proof(). + *---------- + */ +static bool +predicate_implied_by_simple_clause(Expr *predicate, Node *clause) +{ + /* First try the equal() test */ + if (equal((Node *) predicate, clause)) + return true; + + /* Next try the IS NOT NULL case */ + if (predicate && IsA(predicate, NullTest) && + ((NullTest *) predicate)->nulltesttype == IS_NOT_NULL) + { + Expr *nonnullarg = ((NullTest *) predicate)->arg; + + if (is_opclause(clause) && + list_member(((OpExpr *) clause)->args, nonnullarg) && + op_strict(((OpExpr *) clause)->opno)) + return true; + if (is_funcclause(clause) && + list_member(((FuncExpr *) clause)->args, nonnullarg) && + func_strict(((FuncExpr *) clause)->funcid)) + return true; + return false; /* we can't succeed below... */ + } + + /* Else try btree operator knowledge */ + return btree_predicate_proof(predicate, clause, false); +} + +/*---------- + * predicate_refuted_by_simple_clause + * Does the predicate refutation test for a "simple clause" predicate + * and a "simple clause" restriction. + * + * We return TRUE if able to prove the refutation, FALSE if not. + * + * Unlike the implication case, checking for equal() clauses isn't + * helpful. (XXX is it worth looking at "x vs NOT x" cases? Probably + * not seeing that canonicalization tries to get rid of NOTs.) + * + * When the predicate is of the form "foo IS NULL", we can conclude that + * the predicate is refuted if the clause is a strict operator or function + * that has "foo" as an input. See notes for implication case. + * + * Finally, we may be able to deduce something using knowledge about btree + * operator classes; this is encapsulated in btree_predicate_proof(). + *---------- + */ +static bool +predicate_refuted_by_simple_clause(Expr *predicate, Node *clause) +{ + /* First try the IS NULL case */ + if (predicate && IsA(predicate, NullTest) && + ((NullTest *) predicate)->nulltesttype == IS_NULL) + { + Expr *isnullarg = ((NullTest *) predicate)->arg; + + if (is_opclause(clause) && + list_member(((OpExpr *) clause)->args, isnullarg) && + op_strict(((OpExpr *) clause)->opno)) + return true; + if (is_funcclause(clause) && + list_member(((FuncExpr *) clause)->args, isnullarg) && + func_strict(((FuncExpr *) clause)->funcid)) + return true; + return false; /* we can't succeed below... */ + } + + /* Else try btree operator knowledge */ + return btree_predicate_proof(predicate, clause, true); +} + /* - * Define an "operator implication table" for btree operators ("strategies"). + * Define an "operator implication table" for btree operators ("strategies"), + * and a similar table for refutation. * * The strategy numbers defined by btree indexes (see access/skey.h) are: * (1) < (2) <= (3) = (4) >= (5) > @@ -263,8 +574,21 @@ predicate_implied_by_recurse(Node *clause, Node *predicate) * then the target expression must be true; if the test returns false, then * the target expression may be false. * - * An entry where test_op == 0 means the implication cannot be determined, - * i.e., this test should always be considered false. + * For example, if clause is "Quantity > 10" and pred is "Quantity > 5" + * then we test "5 <= 10" which evals to true, so clause implies pred. + * + * Similarly, the interpretation of a BT_refute_table entry is: + * + * If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you + * want to determine whether "ATTR target_op CONST2" must be false, then + * you can use "CONST2 test_op CONST1" as a test. If this test returns true, + * then the target expression must be false; if the test returns false, then + * the target expression may be true. + * + * For example, if clause is "Quantity > 10" and pred is "Quantity < 5" + * then we test "5 <= 10" which evals to true, so clause refutes pred. + * + * An entry where test_op == 0 means the implication cannot be determined. */ #define BTLT BTLessStrategyNumber @@ -274,58 +598,60 @@ predicate_implied_by_recurse(Node *clause, Node *predicate) #define BTGT BTGreaterStrategyNumber #define BTNE 6 -static const StrategyNumber - BT_implic_table[6][6] = { +static const StrategyNumber BT_implic_table[6][6] = { /* * The target operator: * - * LT LE EQ GE GT NE + * LT LE EQ GE GT NE */ - {BTGE, BTGE, 0, 0, 0, BTGE}, /* LT */ - {BTGT, BTGE, 0, 0, 0, BTGT}, /* LE */ + {BTGE, BTGE, 0 , 0 , 0 , BTGE}, /* LT */ + {BTGT, BTGE, 0 , 0 , 0 , BTGT}, /* LE */ {BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */ - {0, 0, 0, BTLE, BTLT, BTLT}, /* GE */ - {0, 0, 0, BTLE, BTLE, BTLE}, /* GT */ - {0, 0, 0, 0, 0, BTEQ} /* NE */ + {0 , 0 , 0 , BTLE, BTLT, BTLT}, /* GE */ + {0 , 0 , 0 , BTLE, BTLE, BTLE}, /* GT */ + {0 , 0 , 0 , 0 , 0 , BTEQ} /* NE */ +}; + +static const StrategyNumber BT_refute_table[6][6] = { +/* + * The target operator: + * + * LT LE EQ GE GT NE + */ + {0 , 0 , BTGE, BTGE, BTGE, 0 }, /* LT */ + {0 , 0 , BTGT, BTGT, BTGE, 0 }, /* LE */ + {BTLE, BTLT, BTNE, BTGT, BTGE, BTEQ}, /* EQ */ + {BTLE, BTLT, BTLT, 0 , 0 , 0 }, /* GE */ + {BTLE, BTLE, BTLE, 0 , 0 , 0 }, /* GT */ + {0 , 0 , BTEQ, 0 , 0 , 0 } /* NE */ }; /*---------- - * predicate_implied_by_simple_clause - * Does the predicate implication test for a "simple clause" predicate - * and a "simple clause" restriction. + * btree_predicate_proof + * Does the predicate implication or refutation test for a "simple clause" + * predicate and a "simple clause" restriction, when both are simple + * operator clauses using related btree operators. * - * We have three strategies for determining whether one simple clause - * implies another: - * - * A simple and general way is to see if they are equal(); this works for any - * kind of expression. (Actually, there is an implied assumption that the - * functions in the expression are immutable, ie dependent only on their input - * arguments --- but this was checked for the predicate by CheckPredicate().) + * When refute_it == false, we want to prove the predicate true; + * when refute_it == true, we want to prove the predicate false. + * (There is enough common code to justify handling these two cases + * in one routine.) We return TRUE if able to make the proof, FALSE + * if not able to prove it. * - * When the predicate is of the form "foo IS NOT NULL", we can conclude that - * the predicate is implied if the clause is a strict operator or function - * that has "foo" as an input. In this case the clause must yield NULL when - * "foo" is NULL, which we can take as equivalent to FALSE because we know - * we are within an AND/OR subtree of a WHERE clause. (Again, "foo" is - * already known immutable, so the clause will certainly always fail.) - * - * Our other way works only for binary boolean opclauses of the form + * What we look for here is binary boolean opclauses of the form * "foo op constant", where "foo" is the same in both clauses. The operators * and constants can be different but the operators must be in the same btree - * operator class. We use the above operator implication table to be able to + * operator class. We use the above operator implication tables to * derive implications between nonidentical clauses. (Note: "foo" is known * immutable, and constants are surely immutable, but we have to check that * the operators are too. As of 8.0 it's possible for opclasses to contain * operators that are merely stable, and we dare not make deductions with * these.) - * - * Eventually, rtree operators could also be handled by defining an - * appropriate "RT_implic_table" array. *---------- */ static bool -predicate_implied_by_simple_clause(Expr *predicate, Node *clause) +btree_predicate_proof(Expr *predicate, Node *clause, bool refute_it) { Node *leftop, *rightop; @@ -356,29 +682,8 @@ predicate_implied_by_simple_clause(Expr *predicate, Node *clause) EState *estate; MemoryContext oldcontext; - /* First try the equal() test */ - if (equal((Node *) predicate, clause)) - return true; - - /* Next try the IS NOT NULL case */ - if (predicate && IsA(predicate, NullTest) && - ((NullTest *) predicate)->nulltesttype == IS_NOT_NULL) - { - Expr *nonnullarg = ((NullTest *) predicate)->arg; - - if (is_opclause(clause) && - list_member(((OpExpr *) clause)->args, nonnullarg) && - op_strict(((OpExpr *) clause)->opno)) - return true; - if (is_funcclause(clause) && - list_member(((FuncExpr *) clause)->args, nonnullarg) && - func_strict(((FuncExpr *) clause)->funcid)) - return true; - return false; /* we can't succeed below... */ - } - /* - * Can't do anything more unless they are both binary opclauses with a + * Both expressions must be binary opclauses with a * Const on one side, and identical subexpressions on the other sides. * Note we don't have to think about binary relabeling of the Const * node, since that would have been folded right into the Const. @@ -579,7 +884,11 @@ predicate_implied_by_simple_clause(Expr *predicate, Node *clause) /* * Look up the "test" strategy number in the implication table */ - test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1]; + if (refute_it) + test_strategy = BT_refute_table[clause_strategy - 1][pred_strategy - 1]; + else + test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1]; + if (test_strategy == 0) { /* Can't determine implication using this interpretation */ @@ -608,13 +917,10 @@ predicate_implied_by_simple_clause(Expr *predicate, Node *clause) * Last check: test_op must be immutable. * * Note that we require only the test_op to be immutable, not the - * original clause_op. (pred_op must be immutable, else it - * would not be allowed in an index predicate.) Essentially - * we are assuming that the opclass is consistent even if it - * contains operators that are merely stable. - * - * XXX the above reasoning doesn't hold anymore if this routine - * is used to prove things that are not index predicates ... + * original clause_op. (pred_op is assumed to have been checked + * immutable by the caller.) Essentially we are assuming that + * the opclass is consistent even if it contains operators that + * are merely stable. */ if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE) { @@ -663,7 +969,7 @@ predicate_implied_by_simple_clause(Expr *predicate, Node *clause) if (isNull) { - /* Treat a null result as false ... but it's a tad fishy ... */ + /* Treat a null result as non-proof ... but it's a tad fishy ... */ elog(DEBUG2, "null predicate test result"); return false; } |