aboutsummaryrefslogtreecommitdiff
path: root/src/backend/optimizer/plan/planner.c
diff options
context:
space:
mode:
authorDavid Rowley <drowley@postgresql.org>2023-01-11 10:25:43 +1300
committerDavid Rowley <drowley@postgresql.org>2023-01-11 10:25:43 +1300
commit3c6fc58209f24b959ee18f5d19ef96403d08f15c (patch)
tree6c27d7704fa2bc60554f1383c787ada232c6837c /src/backend/optimizer/plan/planner.c
parente5b8a4c098ad6add39626a14475148872cd687e0 (diff)
downloadpostgresql-3c6fc58209f24b959ee18f5d19ef96403d08f15c.tar.gz
postgresql-3c6fc58209f24b959ee18f5d19ef96403d08f15c.zip
Have the planner consider Incremental Sort for DISTINCT
Prior to this, we only considered a full sort on the cheapest input path and uniquifying any path which was already sorted in the required sort order. Here we adjust create_final_distinct_paths() so that it also adds an Incremental Sort path on any path which has presorted keys. Additionally, this adjusts the parallel distinct code so that we now consider sorting the cheapest partial path and incrementally sorting any partial paths with presorted keys. Previously we didn't consider any sorting for parallel distinct and only added a unique path atop any path which had the required pathkeys already. Author: David Rowley Reviewed-by: Richard Guo Discussion: https://postgr.es/m/CAApHDvo8Lz2H=42urBbfP65LTcEUOh288MT7DsG2_EWtW1AXHQ@mail.gmail.com
Diffstat (limited to 'src/backend/optimizer/plan/planner.c')
-rw-r--r--src/backend/optimizer/plan/planner.c222
1 files changed, 129 insertions, 93 deletions
diff --git a/src/backend/optimizer/plan/planner.c b/src/backend/optimizer/plan/planner.c
index 000d757bdd8..044fb246665 100644
--- a/src/backend/optimizer/plan/planner.c
+++ b/src/backend/optimizer/plan/planner.c
@@ -4654,22 +4654,63 @@ create_partial_distinct_paths(PlannerInfo *root, RelOptInfo *input_rel,
cheapest_partial_path->rows,
NULL, NULL);
- /* first try adding unique paths atop of sorted paths */
+ /*
+ * Try sorting the cheapest path and incrementally sorting any paths with
+ * presorted keys and put a unique paths atop of those.
+ */
if (grouping_is_sortable(parse->distinctClause))
{
foreach(lc, input_rel->partial_pathlist)
{
- Path *path = (Path *) lfirst(lc);
+ Path *input_path = (Path *) lfirst(lc);
+ Path *sorted_path;
+ bool is_sorted;
+ int presorted_keys;
- if (pathkeys_contained_in(root->distinct_pathkeys, path->pathkeys))
+ is_sorted = pathkeys_count_contained_in(root->distinct_pathkeys,
+ input_path->pathkeys,
+ &presorted_keys);
+
+ if (is_sorted)
+ sorted_path = input_path;
+ else
{
- add_partial_path(partial_distinct_rel, (Path *)
- create_upper_unique_path(root,
- partial_distinct_rel,
- path,
- list_length(root->distinct_pathkeys),
- numDistinctRows));
+ /*
+ * Try at least sorting the cheapest path and also try
+ * incrementally sorting any path which is partially sorted
+ * already (no need to deal with paths which have presorted
+ * keys when incremental sort is disabled unless it's the
+ * cheapest partial path).
+ */
+ if (input_path != cheapest_partial_path &&
+ (presorted_keys == 0 || !enable_incremental_sort))
+ continue;
+
+ /*
+ * We've no need to consider both a sort and incremental sort.
+ * We'll just do a sort if there are no presorted keys and an
+ * incremental sort when there are presorted keys.
+ */
+ if (presorted_keys == 0 || !enable_incremental_sort)
+ sorted_path = (Path *) create_sort_path(root,
+ partial_distinct_rel,
+ input_path,
+ root->distinct_pathkeys,
+ -1.0);
+ else
+ sorted_path = (Path *) create_incremental_sort_path(root,
+ partial_distinct_rel,
+ input_path,
+ root->distinct_pathkeys,
+ presorted_keys,
+ -1.0);
}
+
+ add_partial_path(partial_distinct_rel, (Path *)
+ create_upper_unique_path(root, partial_distinct_rel,
+ sorted_path,
+ list_length(root->distinct_pathkeys),
+ numDistinctRows));
}
}
@@ -4773,9 +4814,11 @@ create_final_distinct_paths(PlannerInfo *root, RelOptInfo *input_rel,
if (grouping_is_sortable(parse->distinctClause))
{
/*
- * First, if we have any adequately-presorted paths, just stick a
- * Unique node on those. Then consider doing an explicit sort of the
- * cheapest input path and Unique'ing that.
+ * Firstly, if we have any adequately-presorted paths, just stick a
+ * Unique node on those. We also, consider doing an explicit sort of
+ * the cheapest input path and Unique'ing that. If any paths have
+ * presorted keys then we'll create an incremental sort atop of those
+ * before adding a unique node on the top.
*
* When we have DISTINCT ON, we must sort by the more rigorous of
* DISTINCT and ORDER BY, else it won't have the desired behavior.
@@ -4785,8 +4828,8 @@ create_final_distinct_paths(PlannerInfo *root, RelOptInfo *input_rel,
* the other.)
*/
List *needed_pathkeys;
- Path *path;
ListCell *lc;
+ double limittuples = root->distinct_pathkeys == NIL ? 1.0 : -1.0;
if (parse->hasDistinctOn &&
list_length(root->distinct_pathkeys) <
@@ -4797,96 +4840,89 @@ create_final_distinct_paths(PlannerInfo *root, RelOptInfo *input_rel,
foreach(lc, input_rel->pathlist)
{
- path = (Path *) lfirst(lc);
+ Path *input_path = (Path *) lfirst(lc);
+ Path *sorted_path;
+ bool is_sorted;
+ int presorted_keys;
- if (pathkeys_contained_in(needed_pathkeys, path->pathkeys))
+ is_sorted = pathkeys_count_contained_in(needed_pathkeys,
+ input_path->pathkeys,
+ &presorted_keys);
+
+ if (is_sorted)
+ sorted_path = input_path;
+ else
{
/*
- * distinct_pathkeys may have become empty if all of the
- * pathkeys were determined to be redundant. If all of the
- * pathkeys are redundant then each DISTINCT target must only
- * allow a single value, therefore all resulting tuples must
- * be identical (or at least indistinguishable by an equality
- * check). We can uniquify these tuples simply by just taking
- * the first tuple. All we do here is add a path to do "LIMIT
- * 1" atop of 'path'. When doing a DISTINCT ON we may still
- * have a non-NIL sort_pathkeys list, so we must still only do
- * this with paths which are correctly sorted by
- * sort_pathkeys.
+ * Try at least sorting the cheapest path and also try
+ * incrementally sorting any path which is partially sorted
+ * already (no need to deal with paths which have presorted
+ * keys when incremental sort is disabled unless it's the
+ * cheapest input path).
*/
- if (root->distinct_pathkeys == NIL)
- {
- Node *limitCount;
-
- limitCount = (Node *) makeConst(INT8OID, -1, InvalidOid,
- sizeof(int64),
- Int64GetDatum(1), false,
- FLOAT8PASSBYVAL);
+ if (input_path != cheapest_input_path &&
+ (presorted_keys == 0 || !enable_incremental_sort))
+ continue;
- /*
- * If the query already has a LIMIT clause, then we could
- * end up with a duplicate LimitPath in the final plan.
- * That does not seem worth troubling over too much.
- */
- add_path(distinct_rel, (Path *)
- create_limit_path(root, distinct_rel, path, NULL,
- limitCount, LIMIT_OPTION_COUNT,
- 0, 1));
- }
+ /*
+ * We've no need to consider both a sort and incremental sort.
+ * We'll just do a sort if there are no presorted keys and an
+ * incremental sort when there are presorted keys.
+ */
+ if (presorted_keys == 0 || !enable_incremental_sort)
+ sorted_path = (Path *) create_sort_path(root,
+ distinct_rel,
+ input_path,
+ needed_pathkeys,
+ limittuples);
else
- {
- add_path(distinct_rel, (Path *)
- create_upper_unique_path(root, distinct_rel,
- path,
- list_length(root->distinct_pathkeys),
- numDistinctRows));
- }
+ sorted_path = (Path *) create_incremental_sort_path(root,
+ distinct_rel,
+ input_path,
+ needed_pathkeys,
+ presorted_keys,
+ limittuples);
}
- }
- /* For explicit-sort case, always use the more rigorous clause */
- if (list_length(root->distinct_pathkeys) <
- list_length(root->sort_pathkeys))
- {
- needed_pathkeys = root->sort_pathkeys;
- /* Assert checks that parser didn't mess up... */
- Assert(pathkeys_contained_in(root->distinct_pathkeys,
- needed_pathkeys));
- }
- else
- needed_pathkeys = root->distinct_pathkeys;
+ /*
+ * distinct_pathkeys may have become empty if all of the pathkeys
+ * were determined to be redundant. If all of the pathkeys are
+ * redundant then each DISTINCT target must only allow a single
+ * value, therefore all resulting tuples must be identical (or at
+ * least indistinguishable by an equality check). We can uniquify
+ * these tuples simply by just taking the first tuple. All we do
+ * here is add a path to do "LIMIT 1" atop of 'sorted_path'. When
+ * doing a DISTINCT ON we may still have a non-NIL sort_pathkeys
+ * list, so we must still only do this with paths which are
+ * correctly sorted by sort_pathkeys.
+ */
+ if (root->distinct_pathkeys == NIL)
+ {
+ Node *limitCount;
- path = cheapest_input_path;
- if (!pathkeys_contained_in(needed_pathkeys, path->pathkeys))
- path = (Path *) create_sort_path(root, distinct_rel,
- path,
- needed_pathkeys,
- root->distinct_pathkeys == NIL ?
- 1.0 : -1.0);
+ limitCount = (Node *) makeConst(INT8OID, -1, InvalidOid,
+ sizeof(int64),
+ Int64GetDatum(1), false,
+ FLOAT8PASSBYVAL);
- /*
- * As above, use a LimitPath instead of a UniquePath when all of the
- * distinct_pathkeys are redundant and we're only going to get a
- * series of tuples all with the same values anyway.
- */
- if (root->distinct_pathkeys == NIL)
- {
- Node *limitCount = (Node *) makeConst(INT8OID, -1, InvalidOid,
- sizeof(int64),
- Int64GetDatum(1), false,
- FLOAT8PASSBYVAL);
-
- add_path(distinct_rel, (Path *)
- create_limit_path(root, distinct_rel, path, NULL,
- limitCount, LIMIT_OPTION_COUNT, 0, 1));
- }
- else
- {
- add_path(distinct_rel, (Path *)
- create_upper_unique_path(root, distinct_rel,
- path,
- list_length(root->distinct_pathkeys),
- numDistinctRows));
+ /*
+ * If the query already has a LIMIT clause, then we could end
+ * up with a duplicate LimitPath in the final plan. That does
+ * not seem worth troubling over too much.
+ */
+ add_path(distinct_rel, (Path *)
+ create_limit_path(root, distinct_rel, sorted_path,
+ NULL, limitCount,
+ LIMIT_OPTION_COUNT, 0, 1));
+ }
+ else
+ {
+ add_path(distinct_rel, (Path *)
+ create_upper_unique_path(root, distinct_rel,
+ sorted_path,
+ list_length(root->distinct_pathkeys),
+ numDistinctRows));
+ }
}
}