aboutsummaryrefslogtreecommitdiff
path: root/src/backend/executor/nodeSetOp.c
diff options
context:
space:
mode:
authorTom Lane <tgl@sss.pgh.pa.us>2008-08-07 19:35:02 +0000
committerTom Lane <tgl@sss.pgh.pa.us>2008-08-07 19:35:02 +0000
commitaf95d7aa63be1d03bad6070d090874d3dfa046e8 (patch)
tree8466da3dda219225c516bf87fc521b5ccc86f91c /src/backend/executor/nodeSetOp.c
parent368df3042783778031ece2b8580324516cd42de1 (diff)
downloadpostgresql-af95d7aa63be1d03bad6070d090874d3dfa046e8.tar.gz
postgresql-af95d7aa63be1d03bad6070d090874d3dfa046e8.zip
Improve INTERSECT/EXCEPT hashing by realizing that we don't need to make any
hashtable entries for tuples that are found only in the second input: they can never contribute to the output. Furthermore, this implies that the planner should endeavor to put first the smaller (in number of groups) input relation for an INTERSECT. Implement that, and upgrade prepunion's estimation of the number of rows returned by setops so that there's some amount of sanity in the estimate of which one is smaller.
Diffstat (limited to 'src/backend/executor/nodeSetOp.c')
-rw-r--r--src/backend/executor/nodeSetOp.c135
1 files changed, 84 insertions, 51 deletions
diff --git a/src/backend/executor/nodeSetOp.c b/src/backend/executor/nodeSetOp.c
index 2421b0a6df4..f0ebe1fc0aa 100644
--- a/src/backend/executor/nodeSetOp.c
+++ b/src/backend/executor/nodeSetOp.c
@@ -12,11 +12,16 @@
* relation. Then it is a simple matter to emit the output demanded by the
* SQL spec for INTERSECT, INTERSECT ALL, EXCEPT, or EXCEPT ALL.
*
- * In SETOP_HASHED mode, the input is delivered in no particular order.
- * We build a hash table in memory with one entry for each group of
- * identical tuples, and count the number of tuples in the group from
- * each relation. After seeing all the input, we scan the hashtable and
- * generate the correct output using those counts.
+ * In SETOP_HASHED mode, the input is delivered in no particular order,
+ * except that we know all the tuples from one input relation will come before
+ * all the tuples of the other. The planner guarantees that the first input
+ * relation is the left-hand one for EXCEPT, and tries to make the smaller
+ * input relation come first for INTERSECT. We build a hash table in memory
+ * with one entry for each group of identical tuples, and count the number of
+ * tuples in the group from each relation. After seeing all the input, we
+ * scan the hashtable and generate the correct output using those counts.
+ * We can avoid making hashtable entries for any tuples appearing only in the
+ * second input relation, since they cannot result in any output.
*
* This node type is not used for UNION or UNION ALL, since those can be
* implemented more cheaply (there's no need for the junk attribute to
@@ -32,7 +37,7 @@
*
*
* IDENTIFICATION
- * $PostgreSQL: pgsql/src/backend/executor/nodeSetOp.c,v 1.26 2008/08/07 03:04:03 tgl Exp $
+ * $PostgreSQL: pgsql/src/backend/executor/nodeSetOp.c,v 1.27 2008/08/07 19:35:02 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@@ -82,8 +87,8 @@ static TupleTableSlot *setop_retrieve_hash_table(SetOpState *setopstate);
/*
* Initialize state for a new group of input values.
*/
-static void
-initialize_counts(SetOpState *setopstate, SetOpStatePerGroup pergroup)
+static inline void
+initialize_counts(SetOpStatePerGroup pergroup)
{
pergroup->numLeft = pergroup->numRight = 0;
}
@@ -91,9 +96,21 @@ initialize_counts(SetOpState *setopstate, SetOpStatePerGroup pergroup)
/*
* Advance the appropriate counter for one input tuple.
*/
-static void
-advance_counts(SetOpState *setopstate, SetOpStatePerGroup pergroup,
- TupleTableSlot *inputslot)
+static inline void
+advance_counts(SetOpStatePerGroup pergroup, int flag)
+{
+ if (flag)
+ pergroup->numRight++;
+ else
+ pergroup->numLeft++;
+}
+
+/*
+ * Fetch the "flag" column from an input tuple.
+ * This is an integer column with value 0 for left side, 1 for right side.
+ */
+static int
+fetch_tuple_flag(SetOpState *setopstate, TupleTableSlot *inputslot)
{
SetOp *node = (SetOp *) setopstate->ps.plan;
int flag;
@@ -103,10 +120,8 @@ advance_counts(SetOpState *setopstate, SetOpStatePerGroup pergroup,
node->flagColIdx,
&isNull));
Assert(!isNull);
- if (flag)
- pergroup->numRight++;
- else
- pergroup->numLeft++;
+ Assert(flag == 0 || flag == 1);
+ return flag;
}
/*
@@ -131,33 +146,6 @@ build_hash_table(SetOpState *setopstate)
}
/*
- * Find or create a hashtable entry for the tuple group containing the
- * given tuple.
- */
-static SetOpHashEntry
-lookup_hash_entry(SetOpState *setopstate, TupleTableSlot *inputslot)
-{
- SetOpHashEntry entry;
- bool isnew;
-
- /* find or create the hashtable entry */
- entry = (SetOpHashEntry) LookupTupleHashEntry(setopstate->hashtable,
- inputslot,
- &isnew);
-
- if (isnew)
- {
- /* initialize counts for new tuple group */
- initialize_counts(setopstate, &entry->pergroup);
- }
-
- /* Must reset temp context after each hashtable lookup */
- MemoryContextReset(setopstate->tempContext);
-
- return entry;
-}
-
-/*
* We've completed processing a tuple group. Decide how many copies (if any)
* of its representative row to emit, and store the count into numOutput.
* This logic is straight from the SQL92 specification.
@@ -289,10 +277,11 @@ setop_retrieve_direct(SetOpState *setopstate)
setopstate->grp_firstTuple = NULL; /* don't keep two pointers */
/* Initialize working state for a new input tuple group */
- initialize_counts(setopstate, pergroup);
+ initialize_counts(pergroup);
/* Count the first input tuple */
- advance_counts(setopstate, pergroup, resultTupleSlot);
+ advance_counts(pergroup,
+ fetch_tuple_flag(setopstate, resultTupleSlot));
/*
* Scan the outer plan until we exhaust it or cross a group boundary.
@@ -324,7 +313,8 @@ setop_retrieve_direct(SetOpState *setopstate)
}
/* Still in same group, so count this tuple */
- advance_counts(setopstate, pergroup, outerslot);
+ advance_counts(pergroup,
+ fetch_tuple_flag(setopstate, outerslot));
}
/*
@@ -351,30 +341,73 @@ setop_retrieve_direct(SetOpState *setopstate)
static void
setop_fill_hash_table(SetOpState *setopstate)
{
+ SetOp *node = (SetOp *) setopstate->ps.plan;
PlanState *outerPlan;
- SetOpHashEntry entry;
- TupleTableSlot *outerslot;
+ int firstFlag;
+ bool in_first_rel;
/*
* get state info from node
*/
outerPlan = outerPlanState(setopstate);
+ firstFlag = node->firstFlag;
+ /* verify planner didn't mess up */
+ Assert(firstFlag == 0 ||
+ (firstFlag == 1 &&
+ (node->cmd == SETOPCMD_INTERSECT ||
+ node->cmd == SETOPCMD_INTERSECT_ALL)));
/*
* Process each outer-plan tuple, and then fetch the next one, until we
* exhaust the outer plan.
*/
+ in_first_rel = true;
for (;;)
{
+ TupleTableSlot *outerslot;
+ int flag;
+ SetOpHashEntry entry;
+ bool isnew;
+
outerslot = ExecProcNode(outerPlan);
if (TupIsNull(outerslot))
break;
- /* Find or build hashtable entry for this tuple's group */
- entry = lookup_hash_entry(setopstate, outerslot);
+ /* Identify whether it's left or right input */
+ flag = fetch_tuple_flag(setopstate, outerslot);
+
+ if (flag == firstFlag)
+ {
+ /* (still) in first input relation */
+ Assert(in_first_rel);
+
+ /* Find or build hashtable entry for this tuple's group */
+ entry = (SetOpHashEntry)
+ LookupTupleHashEntry(setopstate->hashtable, outerslot, &isnew);
+
+ /* If new tuple group, initialize counts */
+ if (isnew)
+ initialize_counts(&entry->pergroup);
+
+ /* Advance the counts */
+ advance_counts(&entry->pergroup, flag);
+ }
+ else
+ {
+ /* reached second relation */
+ in_first_rel = false;
+
+ /* For tuples not seen previously, do not make hashtable entry */
+ entry = (SetOpHashEntry)
+ LookupTupleHashEntry(setopstate->hashtable, outerslot, NULL);
+
+ /* Advance the counts if entry is already present */
+ if (entry)
+ advance_counts(&entry->pergroup, flag);
+ }
- /* Advance the counts */
- advance_counts(setopstate, &entry->pergroup, outerslot);
+ /* Must reset temp context after each hashtable lookup */
+ MemoryContextReset(setopstate->tempContext);
}
setopstate->table_filled = true;