aboutsummaryrefslogtreecommitdiff
path: root/src/backend/access/transam/multixact.c
diff options
context:
space:
mode:
authorTom Lane <tgl@sss.pgh.pa.us>2005-04-28 21:47:18 +0000
committerTom Lane <tgl@sss.pgh.pa.us>2005-04-28 21:47:18 +0000
commitbedb78d386a47fd66b6cda2040e0a5fb545ee371 (patch)
tree0db0af8556ff82d94423e8e21362900afb18b7b6 /src/backend/access/transam/multixact.c
parentd902e7d63ba2dc9cf0a1b051b2911b96831ef227 (diff)
downloadpostgresql-bedb78d386a47fd66b6cda2040e0a5fb545ee371.tar.gz
postgresql-bedb78d386a47fd66b6cda2040e0a5fb545ee371.zip
Implement sharable row-level locks, and use them for foreign key references
to eliminate unnecessary deadlocks. This commit adds SELECT ... FOR SHARE paralleling SELECT ... FOR UPDATE. The implementation uses a new SLRU data structure (managed much like pg_subtrans) to represent multiple- transaction-ID sets. When more than one transaction is holding a shared lock on a particular row, we create a MultiXactId representing that set of transactions and store its ID in the row's XMAX. This scheme allows an effectively unlimited number of row locks, just as we did before, while not costing any extra overhead except when a shared lock actually has to be shared. Still TODO: use the regular lock manager to control the grant order when multiple backends are waiting for a row lock. Alvaro Herrera and Tom Lane.
Diffstat (limited to 'src/backend/access/transam/multixact.c')
-rw-r--r--src/backend/access/transam/multixact.c1557
1 files changed, 1557 insertions, 0 deletions
diff --git a/src/backend/access/transam/multixact.c b/src/backend/access/transam/multixact.c
new file mode 100644
index 00000000000..de1a88205f1
--- /dev/null
+++ b/src/backend/access/transam/multixact.c
@@ -0,0 +1,1557 @@
+/*-------------------------------------------------------------------------
+ *
+ * multixact.c
+ * PostgreSQL multi-transaction-log manager
+ *
+ * The pg_multixact manager is a pg_clog-like manager that stores an array
+ * of TransactionIds for each MultiXactId. It is a fundamental part of the
+ * shared-row-lock implementation. A share-locked tuple stores a
+ * MultiXactId in its Xmax, and a transaction that needs to wait for the
+ * tuple to be unlocked can sleep on the potentially-several TransactionIds
+ * that compose the MultiXactId.
+ *
+ * We use two SLRU areas, one for storing the offsets on which the data
+ * starts for each MultiXactId in the other one. This trick allows us to
+ * store variable length arrays of TransactionIds. (We could alternatively
+ * use one area containing counts and TransactionIds, with valid MultiXactId
+ * values pointing at slots containing counts; but that way seems less robust
+ * since it would get completely confused if someone inquired about a bogus
+ * MultiXactId that pointed to an intermediate slot containing an XID.)
+ *
+ * This code is based on subtrans.c; see it for additional discussion.
+ * Like the subtransaction manager, we only need to remember multixact
+ * information for currently-open transactions. Thus, there is
+ * no need to preserve data over a crash and restart.
+ *
+ * The only XLOG interaction we need to take care of is that generated
+ * MultiXactId values must continue to increase across a system crash.
+ * Thus we log groups of MultiXactIds acquisition in the same fashion we do
+ * for Oids (see XLogPutNextMultiXactId).
+ *
+ * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * $PostgreSQL: pgsql/src/backend/access/transam/multixact.c,v 1.1 2005/04/28 21:47:10 tgl Exp $
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "access/multixact.h"
+#include "access/slru.h"
+#include "access/xact.h"
+#include "miscadmin.h"
+#include "utils/memutils.h"
+#include "storage/backendid.h"
+#include "storage/lmgr.h"
+#include "storage/sinval.h"
+
+
+/*
+ * Defines for MultiXactOffset page sizes. A page is the same BLCKSZ as is
+ * used everywhere else in Postgres.
+ *
+ * Note: because both uint32 and TransactionIds are 32 bits and wrap around at
+ * 0xFFFFFFFF, MultiXact page numbering also wraps around at
+ * 0xFFFFFFFF/MULTIXACT_*_PER_PAGE, and segment numbering at
+ * 0xFFFFFFFF/MULTIXACT_*_PER_PAGE/SLRU_SEGMENTS_PER_PAGE. We need take no
+ * explicit notice of that fact in this module, except when comparing segment
+ * and page numbers in TruncateMultiXact
+ * (see MultiXact{Offset,Member}PagePrecedes).
+ */
+
+/* We need four bytes per offset and also four bytes per member */
+#define MULTIXACT_OFFSETS_PER_PAGE (BLCKSZ / sizeof(uint32))
+#define MULTIXACT_MEMBERS_PER_PAGE (BLCKSZ / sizeof(TransactionId))
+
+#define MultiXactIdToOffsetPage(xid) \
+ ((xid) / (uint32) MULTIXACT_OFFSETS_PER_PAGE)
+#define MultiXactIdToOffsetEntry(xid) \
+ ((xid) % (uint32) MULTIXACT_OFFSETS_PER_PAGE)
+
+#define MXOffsetToMemberPage(xid) \
+ ((xid) / (TransactionId) MULTIXACT_MEMBERS_PER_PAGE)
+#define MXOffsetToMemberEntry(xid) \
+ ((xid) % (TransactionId) MULTIXACT_MEMBERS_PER_PAGE)
+
+/* Arbitrary number of MultiXactIds to allocate at each XLog call */
+#define MXACT_PREFETCH 8192
+
+/*
+ * Links to shared-memory data structures for MultiXact control
+ */
+static SlruCtlData MultiXactOffsetCtlData;
+static SlruCtlData MultiXactMemberCtlData;
+
+#define MultiXactOffsetCtl (&MultiXactOffsetCtlData)
+#define MultiXactMemberCtl (&MultiXactMemberCtlData)
+
+/*
+ * MultiXact state shared across all backends. All this state is protected
+ * by MultiXactGenLock. (We also use MultiXactOffsetControlLock and
+ * MultiXactMemberControlLock to guard accesses to the two sets of SLRU
+ * buffers. For concurrency's sake, we avoid holding more than one of these
+ * locks at a time.)
+ */
+typedef struct MultiXactStateData
+{
+ /* next-to-be-assigned MultiXactId */
+ MultiXactId nextMXact;
+
+ /* MultiXactIds we have left before logging more */
+ uint32 mXactCount;
+
+ /* next-to-be-assigned offset */
+ uint32 nextOffset;
+
+ /* the Offset SLRU area was last truncated at this MultiXactId */
+ MultiXactId lastTruncationPoint;
+
+ /*
+ * Per-backend data starts here. We have two arrays stored in
+ * the area immediately following the MultiXactStateData struct.
+ * Each is indexed by BackendId. (Note: valid BackendIds run from 1 to
+ * MaxBackends; element zero of each array is never used.)
+ *
+ * OldestMemberMXactId[k] is the oldest MultiXactId each backend's
+ * current transaction(s) could possibly be a member of, or
+ * InvalidMultiXactId when the backend has no live transaction that
+ * could possibly be a member of a MultiXact. Each backend sets its
+ * entry to the current nextMXact counter just before first acquiring a
+ * shared lock in a given transaction, and clears it at transaction end.
+ * (This works because only during or after acquiring a shared lock
+ * could an XID possibly become a member of a MultiXact, and that
+ * MultiXact would have to be created during or after the lock
+ * acquisition.)
+ *
+ * OldestVisibleMXactId[k] is the oldest MultiXactId each backend's
+ * current transaction(s) think is potentially live, or InvalidMultiXactId
+ * when not in a transaction or not in a transaction that's paid any
+ * attention to MultiXacts yet. This is computed when first needed in
+ * a given transaction, and cleared at transaction end. We can compute
+ * it as the minimum of the valid OldestMemberMXactId[] entries at the
+ * time we compute it (using nextMXact if none are valid). Each backend
+ * is required not to attempt to access any SLRU data for MultiXactIds
+ * older than its own OldestVisibleMXactId[] setting; this is necessary
+ * because the checkpointer could truncate away such data at any instant.
+ *
+ * The checkpointer can compute the safe truncation point as the oldest
+ * valid value among all the OldestMemberMXactId[] and
+ * OldestVisibleMXactId[] entries, or nextMXact if none are valid.
+ * Clearly, it is not possible for any later-computed OldestVisibleMXactId
+ * value to be older than this, and so there is no risk of truncating
+ * data that is still needed.
+ */
+ MultiXactId perBackendXactIds[1]; /* VARIABLE LENGTH ARRAY */
+} MultiXactStateData;
+
+/* Pointers to the state data in shared memory */
+static MultiXactStateData *MultiXactState;
+static MultiXactId *OldestMemberMXactId;
+static MultiXactId *OldestVisibleMXactId;
+
+
+/*
+ * Definitions for the backend-local MultiXactId cache.
+ *
+ * We use this cache to store known MultiXacts, so we don't need to go to
+ * SLRU areas everytime.
+ *
+ * The cache lasts for the duration of a single transaction, the rationale
+ * for this being that most entries will contain our own TransactionId and
+ * so they will be uninteresting by the time our next transaction starts.
+ * (XXX not clear that this is correct --- other members of the MultiXact
+ * could hang around longer than we did.)
+ *
+ * We allocate the cache entries in a memory context that is deleted at
+ * transaction end, so we don't need to do retail freeing of entries.
+ */
+typedef struct mXactCacheEnt
+{
+ struct mXactCacheEnt *next;
+ MultiXactId multi;
+ int nxids;
+ TransactionId xids[1]; /* VARIABLE LENGTH ARRAY */
+} mXactCacheEnt;
+
+static mXactCacheEnt *MXactCache = NULL;
+static MemoryContext MXactContext = NULL;
+
+
+#ifdef MULTIXACT_DEBUG
+#define debug_elog2(a,b) elog(a,b)
+#define debug_elog3(a,b,c) elog(a,b,c)
+#define debug_elog4(a,b,c,d) elog(a,b,c,d)
+#define debug_elog5(a,b,c,d,e) elog(a,b,c,d,e)
+#else
+#define debug_elog2(a,b)
+#define debug_elog3(a,b,c)
+#define debug_elog4(a,b,c,d)
+#define debug_elog5(a,b,c,d,e)
+#endif
+
+/* internal MultiXactId management */
+static void MultiXactIdSetOldestVisible(void);
+static MultiXactId CreateMultiXactId(int nxids, TransactionId *xids);
+static int GetMultiXactIdMembers(MultiXactId multi, TransactionId **xids);
+static MultiXactId GetNewMultiXactId(int nxids, uint32 *offset);
+
+/* MultiXact cache management */
+static MultiXactId mXactCacheGetBySet(int nxids, TransactionId *xids);
+static int mXactCacheGetById(MultiXactId multi, TransactionId **xids);
+static void mXactCachePut(MultiXactId multi, int nxids, TransactionId *xids);
+static int xidComparator(const void *arg1, const void *arg2);
+#ifdef MULTIXACT_DEBUG
+static char *mxid_to_string(MultiXactId multi, int nxids, TransactionId *xids);
+#endif
+
+/* management of SLRU infrastructure */
+static int ZeroMultiXactOffsetPage(int pageno);
+static int ZeroMultiXactMemberPage(int pageno);
+static bool MultiXactOffsetPagePrecedes(int page1, int page2);
+static bool MultiXactMemberPagePrecedes(int page1, int page2);
+static bool MultiXactIdPrecedes(MultiXactId multi1, MultiXactId multi2);
+static bool MultiXactOffsetPrecedes(uint32 offset1, uint32 offset2);
+static void ExtendMultiXactOffset(MultiXactId multi);
+static void ExtendMultiXactMember(uint32 offset);
+static void TruncateMultiXact(void);
+
+
+/*
+ * MultiXactIdExpand
+ * Add a TransactionId to a possibly-already-existing MultiXactId.
+ *
+ * We abuse the notation for the first argument: if "isMulti" is true, then
+ * it's really a MultiXactId; else it's a TransactionId. We are already
+ * storing MultiXactId in HeapTupleHeader's xmax so assuming the datatypes
+ * are equivalent is necessary anyway.
+ *
+ * If isMulti is true, then get the members of the passed MultiXactId, add
+ * the passed TransactionId, and create a new MultiXactId. If isMulti is
+ * false, then take the two TransactionIds and create a new MultiXactId with
+ * them. The caller must ensure that the multi and xid are different
+ * in the latter case.
+ *
+ * If the TransactionId is already a member of the passed MultiXactId,
+ * just return it as-is.
+ *
+ * Note that we do NOT actually modify the membership of a pre-existing
+ * MultiXactId; instead we create a new one. This is necessary to avoid
+ * a race condition against MultiXactIdWait (see notes there).
+ *
+ * NB - we don't worry about our local MultiXactId cache here, because that
+ * is handled by the lower-level routines.
+ */
+MultiXactId
+MultiXactIdExpand(MultiXactId multi, bool isMulti, TransactionId xid)
+{
+ MultiXactId newMulti;
+ TransactionId *members;
+ TransactionId *newMembers;
+ int nmembers;
+ int i;
+ int j;
+
+ AssertArg(MultiXactIdIsValid(multi));
+ AssertArg(TransactionIdIsValid(xid));
+
+ debug_elog5(DEBUG2, "Expand: received %s %u, xid %u",
+ isMulti ? "MultiXactId" : "TransactionId",
+ multi, xid);
+
+ if (!isMulti)
+ {
+ /*
+ * The first argument is a TransactionId, not a MultiXactId.
+ */
+ TransactionId xids[2];
+
+ Assert(!TransactionIdEquals(multi, xid));
+
+ xids[0] = multi;
+ xids[1] = xid;
+
+ newMulti = CreateMultiXactId(2, xids);
+
+ debug_elog5(DEBUG2, "Expand: returning %u two-elem %u/%u",
+ newMulti, multi, xid);
+
+ return newMulti;
+ }
+
+ nmembers = GetMultiXactIdMembers(multi, &members);
+
+ if (nmembers < 0)
+ {
+ /*
+ * The MultiXactId is obsolete. This can only happen if all the
+ * MultiXactId members stop running between the caller checking and
+ * passing it to us. It would be better to return that fact to the
+ * caller, but it would complicate the API and it's unlikely to happen
+ * too often, so just deal with it by creating a singleton MultiXact.
+ */
+ newMulti = CreateMultiXactId(1, &xid);
+
+ debug_elog4(DEBUG2, "Expand: %u has no members, create singleton %u",
+ multi, newMulti);
+ return newMulti;
+ }
+
+ /*
+ * If the TransactionId is already a member of the MultiXactId,
+ * just return the existing MultiXactId.
+ */
+ for (i = 0; i < nmembers; i++)
+ {
+ if (TransactionIdEquals(members[i], xid))
+ {
+ pfree(members);
+ debug_elog4(DEBUG2, "Expand: %u is already a member of %u",
+ xid, multi);
+ return multi;
+ }
+ }
+
+ /*
+ * Determine which of the members of the MultiXactId are still running,
+ * and use them to create a new one. (Removing dead members is just
+ * an optimization, but a useful one. Note we have the same race
+ * condition here as above: j could be 0 at the end of the loop.)
+ */
+ newMembers = (TransactionId *)
+ palloc(sizeof(TransactionId) * (nmembers + 1));
+
+ for (i = 0, j = 0; i < nmembers; i++)
+ {
+ if (TransactionIdIsInProgress(members[i]))
+ newMembers[j++] = members[i];
+ }
+
+ newMembers[j++] = xid;
+ newMulti = CreateMultiXactId(j, newMembers);
+
+ pfree(members);
+ pfree(newMembers);
+
+ debug_elog3(DEBUG2, "Expand: returning new multi %u", newMulti);
+
+ return newMulti;
+}
+
+/*
+ * MultiXactIdIsRunning
+ * Returns whether a MultiXactId is "running".
+ *
+ * We return true if at least one member of the given MultiXactId is still
+ * running. Note that a "false" result is certain not to change,
+ * because it is not legal to add members to an existing MultiXactId.
+ */
+bool
+MultiXactIdIsRunning(MultiXactId multi)
+{
+ TransactionId *members;
+ TransactionId myXid;
+ int nmembers;
+ int i;
+
+ debug_elog3(DEBUG2, "IsRunning %u?", multi);
+
+ nmembers = GetMultiXactIdMembers(multi, &members);
+
+ if (nmembers < 0)
+ {
+ debug_elog2(DEBUG2, "IsRunning: no members");
+ return false;
+ }
+
+ /* checking for myself is cheap */
+ myXid = GetTopTransactionId();
+
+ for (i = 0; i < nmembers; i++)
+ {
+ if (TransactionIdEquals(members[i], myXid))
+ {
+ pfree(members);
+ debug_elog3(DEBUG2, "IsRunning: I (%d) am running!", i);
+ return true;
+ }
+ }
+
+ /*
+ * This could be made better by having a special entry point in sinval.c,
+ * walking the PGPROC array only once for the whole array. But in most
+ * cases nmembers should be small enough that it doesn't much matter.
+ */
+ for (i = 0; i < nmembers; i++)
+ {
+ if (TransactionIdIsInProgress(members[i]))
+ {
+ pfree(members);
+ debug_elog4(DEBUG2, "IsRunning: member %d (%u) is running",
+ i, members[i]);
+ return true;
+ }
+ }
+
+ pfree(members);
+ debug_elog3(DEBUG2, "IsRunning: %u is not running", multi);
+
+ return false;
+}
+
+/*
+ * MultiXactIdSetOldestMember
+ * Save the oldest MultiXactId this transaction could be a member of.
+ *
+ * We set the OldestMemberMXactId for a given transaction the first time
+ * it's going to acquire a shared lock. We need to do this even if we end
+ * up using a TransactionId instead of a MultiXactId, because there is a
+ * chance that another transaction would add our XID to a MultiXactId.
+ *
+ * The value to set is the next-to-be-assigned MultiXactId, so this is meant
+ * to be called just before acquiring a shared lock.
+ */
+void
+MultiXactIdSetOldestMember(void)
+{
+ if (!MultiXactIdIsValid(OldestMemberMXactId[MyBackendId]))
+ {
+ MultiXactId nextMXact;
+
+ /*
+ * You might think we don't need to acquire a lock here, since
+ * fetching and storing of TransactionIds is probably atomic,
+ * but in fact we do: suppose we pick up nextMXact and then
+ * lose the CPU for a long time. Someone else could advance
+ * nextMXact, and then another someone else could compute an
+ * OldestVisibleMXactId that would be after the value we are
+ * going to store when we get control back. Which would be wrong.
+ */
+ LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
+
+ /*
+ * We have to beware of the possibility that nextMXact is in the
+ * wrapped-around state. We don't fix the counter itself here,
+ * but we must be sure to store a valid value in our array entry.
+ */
+ nextMXact = MultiXactState->nextMXact;
+ if (nextMXact < FirstMultiXactId)
+ nextMXact = FirstMultiXactId;
+
+ OldestMemberMXactId[MyBackendId] = nextMXact;
+
+ LWLockRelease(MultiXactGenLock);
+
+ debug_elog4(DEBUG2, "MultiXact: setting OldestMember[%d] = %u",
+ MyBackendId, nextMXact);
+ }
+}
+
+/*
+ * MultiXactIdSetOldestVisible
+ * Save the oldest MultiXactId this transaction considers possibly live.
+ *
+ * We set the OldestVisibleMXactId for a given transaction the first time
+ * it's going to inspect any MultiXactId. Once we have set this, we are
+ * guaranteed that the checkpointer won't truncate off SLRU data for
+ * MultiXactIds at or after our OldestVisibleMXactId.
+ *
+ * The value to set is the oldest of nextMXact and all the valid per-backend
+ * OldestMemberMXactId[] entries. Because of the locking we do, we can be
+ * certain that no subsequent call to MultiXactIdSetOldestMember can set
+ * an OldestMemberMXactId[] entry older than what we compute here. Therefore
+ * there is no live transaction, now or later, that can be a member of any
+ * MultiXactId older than the OldestVisibleMXactId we compute here.
+ */
+static void
+MultiXactIdSetOldestVisible(void)
+{
+ if (!MultiXactIdIsValid(OldestVisibleMXactId[MyBackendId]))
+ {
+ MultiXactId oldestMXact;
+ int i;
+
+ LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
+
+ /*
+ * We have to beware of the possibility that nextMXact is in the
+ * wrapped-around state. We don't fix the counter itself here,
+ * but we must be sure to store a valid value in our array entry.
+ */
+ oldestMXact = MultiXactState->nextMXact;
+ if (oldestMXact < FirstMultiXactId)
+ oldestMXact = FirstMultiXactId;
+
+ for (i = 1; i <= MaxBackends; i++)
+ {
+ MultiXactId thisoldest = OldestMemberMXactId[i];
+
+ if (MultiXactIdIsValid(thisoldest) &&
+ MultiXactIdPrecedes(thisoldest, oldestMXact))
+ oldestMXact = thisoldest;
+ }
+
+ OldestVisibleMXactId[MyBackendId] = oldestMXact;
+
+ LWLockRelease(MultiXactGenLock);
+
+ debug_elog4(DEBUG2, "MultiXact: setting OldestVisible[%d] = %u",
+ MyBackendId, oldestMXact);
+ }
+}
+
+/*
+ * MultiXactIdWait
+ * Sleep on a MultiXactId.
+ *
+ * We do this by sleeping on each member using XactLockTableWait. Any
+ * members that belong to the current backend are *not* waited for, however;
+ * this would not merely be useless but would lead to Assert failure inside
+ * XactLockTableWait. By the time this returns, it is certain that all
+ * transactions *of other backends* that were members of the MultiXactId
+ * are dead (and no new ones can have been added, since it is not legal
+ * to add members to an existing MultiXactId).
+ *
+ * But by the time we finish sleeping, someone else may have changed the Xmax
+ * of the containing tuple, so the caller needs to iterate on us somehow.
+ */
+void
+MultiXactIdWait(MultiXactId multi)
+{
+ TransactionId *members;
+ int nmembers;
+
+ nmembers = GetMultiXactIdMembers(multi, &members);
+
+ if (nmembers >= 0)
+ {
+ int i;
+
+ for (i = 0; i < nmembers; i++)
+ {
+ TransactionId member = members[i];
+
+ debug_elog4(DEBUG2, "MultiXactIdWait: waiting for %d (%u)",
+ i, member);
+ if (!TransactionIdIsCurrentTransactionId(member))
+ XactLockTableWait(member);
+ }
+
+ pfree(members);
+ }
+}
+
+/*
+ * CreateMultiXactId
+ * Make a new MultiXactId
+ *
+ * Make SLRU and cache entries for a new MultiXactId, recording the given
+ * TransactionIds as members. Returns the newly created MultiXactId.
+ *
+ * NB: the passed xids[] array will be sorted in-place.
+ */
+static MultiXactId
+CreateMultiXactId(int nxids, TransactionId *xids)
+{
+ MultiXactId multi;
+ int pageno;
+ int prev_pageno;
+ int entryno;
+ int slotno;
+ uint32 *offptr;
+ uint32 offset;
+ int i;
+
+ debug_elog3(DEBUG2, "Create: %s",
+ mxid_to_string(InvalidMultiXactId, nxids, xids));
+
+ /*
+ * See if the same set of XIDs already exists in our cache; if so, just
+ * re-use that MultiXactId. (Note: it might seem that looking in our
+ * cache is insufficient, and we ought to search disk to see if a
+ * duplicate definition already exists. But since we only ever create
+ * MultiXacts containing our own XID, in most cases any such MultiXacts
+ * were in fact created by us, and so will be in our cache. There are
+ * corner cases where someone else added us to a MultiXact without our
+ * knowledge, but it's not worth checking for.)
+ */
+ multi = mXactCacheGetBySet(nxids, xids);
+ if (MultiXactIdIsValid(multi))
+ {
+ debug_elog2(DEBUG2, "Create: in cache!");
+ return multi;
+ }
+
+ multi = GetNewMultiXactId(nxids, &offset);
+
+ LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
+
+ ExtendMultiXactOffset(multi);
+
+ pageno = MultiXactIdToOffsetPage(multi);
+ entryno = MultiXactIdToOffsetEntry(multi);
+
+ /*
+ * Note: we pass the MultiXactId to SimpleLruReadPage as the "transaction"
+ * to complain about if there's any I/O error. This is kinda bogus, but
+ * since the errors will always give the full pathname, it should be
+ * clear enough that a MultiXactId is really involved. Perhaps someday
+ * we'll take the trouble to generalize the slru.c error reporting code.
+ */
+ slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, multi);
+ offptr = (uint32 *) MultiXactOffsetCtl->shared->page_buffer[slotno];
+ offptr += entryno;
+ *offptr = offset;
+
+ MultiXactOffsetCtl->shared->page_status[slotno] = SLRU_PAGE_DIRTY;
+
+ /* Exchange our lock */
+ LWLockRelease(MultiXactOffsetControlLock);
+
+ debug_elog3(DEBUG2, "Create: got offset %u", offset);
+
+ LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
+
+ prev_pageno = -1;
+
+ for (i = 0; i < nxids; i++, offset++)
+ {
+ TransactionId *memberptr;
+
+ ExtendMultiXactMember(offset);
+
+ pageno = MXOffsetToMemberPage(offset);
+ entryno = MXOffsetToMemberEntry(offset);
+
+ if (pageno != prev_pageno)
+ {
+ slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, multi);
+ prev_pageno = pageno;
+ }
+
+ memberptr = (TransactionId *)
+ MultiXactMemberCtl->shared->page_buffer[slotno];
+ memberptr += entryno;
+
+ *memberptr = xids[i];
+ MultiXactMemberCtl->shared->page_status[slotno] = SLRU_PAGE_DIRTY;
+ }
+
+ LWLockRelease(MultiXactMemberControlLock);
+
+ /* Store the new MultiXactId in the local cache, too */
+ mXactCachePut(multi, nxids, xids);
+ debug_elog2(DEBUG2, "Create: all done");
+
+ return multi;
+}
+
+/*
+ * GetNewMultiXactId
+ * Get the next MultiXactId.
+ *
+ * Get the next MultiXactId, XLogging if needed. Also, reserve the needed
+ * amount of space in the "members" area. The starting offset of the
+ * reserved space is returned in *offset.
+ */
+static MultiXactId
+GetNewMultiXactId(int nxids, uint32 *offset)
+{
+ MultiXactId result;
+
+ debug_elog3(DEBUG2, "GetNew: for %d xids", nxids);
+
+ /* MultiXactIdSetOldestMember() must have been called already */
+ Assert(MultiXactIdIsValid(OldestMemberMXactId[MyBackendId]));
+
+ LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
+
+ /* Handle wraparound of the nextMXact counter */
+ if (MultiXactState->nextMXact < FirstMultiXactId)
+ {
+ MultiXactState->nextMXact = FirstMultiXactId;
+ MultiXactState->mXactCount = 0;
+ }
+
+ /* If we run out of logged for use multixacts then we must log more */
+ if (MultiXactState->mXactCount == 0)
+ {
+ XLogPutNextMultiXactId(MultiXactState->nextMXact + MXACT_PREFETCH);
+ MultiXactState->mXactCount = MXACT_PREFETCH;
+ }
+
+ result = MultiXactState->nextMXact;
+
+ /*
+ * We don't care about MultiXactId wraparound here; it will be handled by
+ * the next iteration. But note that nextMXact may be InvalidMultiXactId
+ * after this routine exits, so anyone else looking at the variable must
+ * be prepared to deal with that.
+ */
+ (MultiXactState->nextMXact)++;
+ (MultiXactState->mXactCount)--;
+
+ /*
+ * Reserve the members space.
+ */
+ *offset = MultiXactState->nextOffset;
+ MultiXactState->nextOffset += nxids;
+
+ LWLockRelease(MultiXactGenLock);
+
+ debug_elog4(DEBUG2, "GetNew: returning %u offset %u", result, *offset);
+ return result;
+}
+
+/*
+ * GetMultiXactIdMembers
+ * Returns the set of TransactionIds that make up a MultiXactId
+ *
+ * We return -1 if the MultiXactId is too old to possibly have any members
+ * still running; in that case we have not actually looked them up, and
+ * *xids is not set.
+ */
+static int
+GetMultiXactIdMembers(MultiXactId multi, TransactionId **xids)
+{
+ int pageno;
+ int prev_pageno;
+ int entryno;
+ int slotno;
+ uint32 *offptr;
+ uint32 offset;
+ int length;
+ int i;
+ MultiXactId nextMXact;
+ MultiXactId tmpMXact;
+ uint32 nextOffset;
+ TransactionId *ptr;
+
+ debug_elog3(DEBUG2, "GetMembers: asked for %u", multi);
+
+ Assert(MultiXactIdIsValid(multi));
+
+ /* See if the MultiXactId is in the local cache */
+ length = mXactCacheGetById(multi, xids);
+ if (length >= 0)
+ {
+ debug_elog3(DEBUG2, "GetMembers: found %s in the cache",
+ mxid_to_string(multi, length, *xids));
+ return length;
+ }
+
+ /* Set our OldestVisibleMXactId[] entry if we didn't already */
+ MultiXactIdSetOldestVisible();
+
+ /*
+ * We check known limits on MultiXact before resorting to the SLRU area.
+ *
+ * An ID older than our OldestVisibleMXactId[] entry can't possibly still
+ * be running, and we'd run the risk of trying to read already-truncated
+ * SLRU data if we did try to examine it.
+ *
+ * Conversely, an ID >= nextMXact shouldn't ever be seen here; if it is
+ * seen, it implies undetected ID wraparound has occurred. We just
+ * silently assume that such an ID is no longer running.
+ *
+ * Shared lock is enough here since we aren't modifying any global state.
+ * Also, we can examine our own OldestVisibleMXactId without the lock,
+ * since no one else is allowed to change it.
+ */
+ if (MultiXactIdPrecedes(multi, OldestVisibleMXactId[MyBackendId]))
+ {
+ debug_elog2(DEBUG2, "GetMembers: it's too old");
+ *xids = NULL;
+ return -1;
+ }
+
+ LWLockAcquire(MultiXactGenLock, LW_SHARED);
+
+ if (!MultiXactIdPrecedes(multi, MultiXactState->nextMXact))
+ {
+ LWLockRelease(MultiXactGenLock);
+ debug_elog2(DEBUG2, "GetMembers: it's too new!");
+ *xids = NULL;
+ return -1;
+ }
+
+ /*
+ * Before releasing the lock, save the current counter values, because
+ * the target MultiXactId may be just one less than nextMXact. We will
+ * need to use nextOffset as the endpoint if so.
+ */
+ nextMXact = MultiXactState->nextMXact;
+ nextOffset = MultiXactState->nextOffset;
+
+ LWLockRelease(MultiXactGenLock);
+
+ /* Get the offset at which we need to start reading MultiXactMembers */
+ LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
+
+ pageno = MultiXactIdToOffsetPage(multi);
+ entryno = MultiXactIdToOffsetEntry(multi);
+
+ slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, multi);
+ offptr = (uint32 *) MultiXactOffsetCtl->shared->page_buffer[slotno];
+ offptr += entryno;
+ offset = *offptr;
+
+ /*
+ * How many members do we need to read? If we are at the end of the
+ * assigned MultiXactIds, use the offset just saved above. Else we
+ * need to check the MultiXactId following ours.
+ *
+ * Use the same increment rule as GetNewMultiXactId(), that is, don't
+ * handle wraparound explicitly until needed.
+ */
+ tmpMXact = multi + 1;
+
+ if (nextMXact == tmpMXact)
+ length = nextOffset - offset;
+ else
+ {
+ /* handle wraparound if needed */
+ if (tmpMXact < FirstMultiXactId)
+ tmpMXact = FirstMultiXactId;
+
+ prev_pageno = pageno;
+
+ pageno = MultiXactIdToOffsetPage(tmpMXact);
+ entryno = MultiXactIdToOffsetEntry(tmpMXact);
+
+ if (pageno != prev_pageno)
+ slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, tmpMXact);
+
+ offptr = (uint32 *) MultiXactOffsetCtl->shared->page_buffer[slotno];
+ offptr += entryno;
+ length = *offptr - offset;
+ }
+
+ LWLockRelease(MultiXactOffsetControlLock);
+
+ ptr = (TransactionId *) palloc(length * sizeof(TransactionId));
+ *xids = ptr;
+
+ /* Now get the members themselves. */
+ LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
+
+ prev_pageno = -1;
+ for (i = 0; i < length; i++, offset++)
+ {
+ TransactionId *xactptr;
+
+ pageno = MXOffsetToMemberPage(offset);
+ entryno = MXOffsetToMemberEntry(offset);
+
+ if (pageno != prev_pageno)
+ {
+ slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, multi);
+ prev_pageno = pageno;
+ }
+
+ xactptr = (TransactionId *)
+ MultiXactMemberCtl->shared->page_buffer[slotno];
+ xactptr += entryno;
+
+ ptr[i] = *xactptr;
+ }
+
+ LWLockRelease(MultiXactMemberControlLock);
+
+ /*
+ * Copy the result into the local cache.
+ */
+ mXactCachePut(multi, length, ptr);
+
+ debug_elog3(DEBUG2, "GetMembers: no cache for %s",
+ mxid_to_string(multi, length, ptr));
+ return length;
+}
+
+/*
+ * mXactCacheGetBySet
+ * returns a MultiXactId from the cache based on the set of
+ * TransactionIds that compose it, or InvalidMultiXactId if
+ * none matches.
+ *
+ * This is helpful, for example, if two transactions want to lock a huge
+ * table. By using the cache, the second will use the same MultiXactId
+ * for the majority of tuples, thus keeping MultiXactId usage low (saving
+ * both I/O and wraparound issues).
+ *
+ * NB: the passed xids[] array will be sorted in-place.
+ */
+static MultiXactId
+mXactCacheGetBySet(int nxids, TransactionId *xids)
+{
+ mXactCacheEnt *entry;
+
+ debug_elog3(DEBUG2, "CacheGet: looking for %s",
+ mxid_to_string(InvalidMultiXactId, nxids, xids));
+
+ /* sort the array so comparison is easy */
+ qsort(xids, nxids, sizeof(TransactionId), xidComparator);
+
+ for (entry = MXactCache; entry != NULL; entry = entry->next)
+ {
+ if (entry->nxids != nxids)
+ continue;
+
+ /* We assume the cache entries are sorted */
+ if (memcmp(xids, entry->xids, nxids * sizeof(TransactionId)) == 0)
+ {
+ debug_elog3(DEBUG2, "CacheGet: found %u", entry->multi);
+ return entry->multi;
+ }
+ }
+
+ debug_elog2(DEBUG2, "CacheGet: not found :-(");
+ return InvalidMultiXactId;
+}
+
+/*
+ * mXactCacheGetById
+ * returns the composing TransactionId set from the cache for a
+ * given MultiXactId, if present.
+ *
+ * If successful, *xids is set to the address of a palloc'd copy of the
+ * TransactionId set. Return value is number of members, or -1 on failure.
+ */
+static int
+mXactCacheGetById(MultiXactId multi, TransactionId **xids)
+{
+ mXactCacheEnt *entry;
+
+ debug_elog3(DEBUG2, "CacheGet: looking for %u", multi);
+
+ for (entry = MXactCache; entry != NULL; entry = entry->next)
+ {
+ if (entry->multi == multi)
+ {
+ TransactionId *ptr;
+ Size size;
+
+ size = sizeof(TransactionId) * entry->nxids;
+ ptr = (TransactionId *) palloc(size);
+ *xids = ptr;
+
+ memcpy(ptr, entry->xids, size);
+
+ debug_elog3(DEBUG2, "CacheGet: found %s",
+ mxid_to_string(multi, entry->nxids, entry->xids));
+ return entry->nxids;
+ }
+ }
+
+ debug_elog2(DEBUG2, "CacheGet: not found");
+ return -1;
+}
+
+/*
+ * mXactCachePut
+ * Add a new MultiXactId and its composing set into the local cache.
+ */
+static void
+mXactCachePut(MultiXactId multi, int nxids, TransactionId *xids)
+{
+ mXactCacheEnt *entry;
+
+ debug_elog3(DEBUG2, "CachePut: storing %s",
+ mxid_to_string(multi, nxids, xids));
+
+ if (MXactContext == NULL)
+ {
+ /* The cache only lives as long as the current transaction */
+ debug_elog2(DEBUG2, "CachePut: initializing memory context");
+ MXactContext = AllocSetContextCreate(TopTransactionContext,
+ "MultiXact Cache Context",
+ ALLOCSET_SMALL_MINSIZE,
+ ALLOCSET_SMALL_INITSIZE,
+ ALLOCSET_SMALL_MAXSIZE);
+ }
+
+ entry = (mXactCacheEnt *)
+ MemoryContextAlloc(MXactContext,
+ offsetof(mXactCacheEnt, xids) +
+ nxids * sizeof(TransactionId));
+
+ entry->multi = multi;
+ entry->nxids = nxids;
+ memcpy(entry->xids, xids, nxids * sizeof(TransactionId));
+
+ /* mXactCacheGetBySet assumes the entries are sorted, so sort them */
+ qsort(entry->xids, nxids, sizeof(TransactionId), xidComparator);
+
+ entry->next = MXactCache;
+ MXactCache = entry;
+}
+
+/*
+ * xidComparator
+ * qsort comparison function for XIDs
+ *
+ * We don't need to use wraparound comparison for XIDs, and indeed must
+ * not do so since that does not respect the triangle inequality! Any
+ * old sort order will do.
+ */
+static int
+xidComparator(const void *arg1, const void *arg2)
+{
+ TransactionId xid1 = * (const TransactionId *) arg1;
+ TransactionId xid2 = * (const TransactionId *) arg2;
+
+ if (xid1 > xid2)
+ return 1;
+ if (xid1 < xid2)
+ return -1;
+ return 0;
+}
+
+#ifdef MULTIXACT_DEBUG
+static char *
+mxid_to_string(MultiXactId multi, int nxids, TransactionId *xids)
+{
+ char *str = palloc(15 * (nxids + 1) + 4);
+ int i;
+ snprintf(str, 47, "%u %d[%u", multi, nxids, xids[0]);
+
+ for (i = 1; i < nxids; i++)
+ snprintf(str + strlen(str), 17, ", %u", xids[i]);
+
+ strcat(str, "]");
+ return str;
+}
+#endif
+
+/*
+ * AtEOXact_MultiXact
+ * Handle transaction end for MultiXact
+ *
+ * This is called at top transaction commit or abort (we don't care which).
+ */
+void
+AtEOXact_MultiXact(void)
+{
+ /*
+ * Reset our OldestMemberMXactId and OldestVisibleMXactId values,
+ * both of which should only be valid while within a transaction.
+ *
+ * We assume that storing a MultiXactId is atomic and so we need
+ * not take MultiXactGenLock to do this.
+ */
+ OldestMemberMXactId[MyBackendId] = InvalidMultiXactId;
+ OldestVisibleMXactId[MyBackendId] = InvalidMultiXactId;
+
+ /*
+ * Discard the local MultiXactId cache. Since MXactContext was created
+ * as a child of TopTransactionContext, we needn't delete it explicitly.
+ */
+ MXactContext = NULL;
+ MXactCache = NULL;
+}
+
+/*
+ * Initialization of shared memory for MultiXact. We use two SLRU areas,
+ * thus double memory. Also, reserve space for the shared MultiXactState
+ * struct and the per-backend MultiXactId arrays (two of those, too).
+ */
+int
+MultiXactShmemSize(void)
+{
+#define SHARED_MULTIXACT_STATE_SIZE \
+ (sizeof(MultiXactStateData) + sizeof(MultiXactId) * 2 * MaxBackends)
+
+ return (SimpleLruShmemSize() * 2 + SHARED_MULTIXACT_STATE_SIZE);
+}
+
+void
+MultiXactShmemInit(void)
+{
+ bool found;
+
+ debug_elog2(DEBUG2, "Shared Memory Init for MultiXact");
+
+ MultiXactOffsetCtl->PagePrecedes = MultiXactOffsetPagePrecedes;
+ MultiXactMemberCtl->PagePrecedes = MultiXactMemberPagePrecedes;
+
+ SimpleLruInit(MultiXactOffsetCtl, "MultiXactOffset Ctl",
+ MultiXactOffsetControlLock, "pg_multixact/offsets");
+ SimpleLruInit(MultiXactMemberCtl, "MultiXactMember Ctl",
+ MultiXactMemberControlLock, "pg_multixact/members");
+
+ /* Override default assumption that writes should be fsync'd */
+ MultiXactOffsetCtl->do_fsync = false;
+ MultiXactMemberCtl->do_fsync = false;
+
+ /* Initialize our shared state struct */
+ MultiXactState = ShmemInitStruct("Shared MultiXact State",
+ SHARED_MULTIXACT_STATE_SIZE,
+ &found);
+ if (!IsUnderPostmaster)
+ {
+ Assert(!found);
+
+ /* Make sure we zero out the per-backend state */
+ MemSet(MultiXactState, 0, SHARED_MULTIXACT_STATE_SIZE);
+ }
+ else
+ Assert(found);
+
+ /*
+ * Set up array pointers. Note that perBackendXactIds[0] is wasted
+ * space since we only use indexes 1..MaxBackends in each array.
+ */
+ OldestMemberMXactId = MultiXactState->perBackendXactIds;
+ OldestVisibleMXactId = OldestMemberMXactId + MaxBackends;
+}
+
+/*
+ * This func must be called ONCE on system install. It creates the initial
+ * MultiXact segments. (The MultiXacts directories are assumed to have been
+ * created by initdb, and MultiXactShmemInit must have been called already.)
+ *
+ * Note: it's not really necessary to create the initial segments now,
+ * since slru.c would create 'em on first write anyway. But we may as well
+ * do it to be sure the directories are set up correctly.
+ */
+void
+BootStrapMultiXact(void)
+{
+ int slotno;
+
+ LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
+
+ /* Offsets first page */
+ slotno = ZeroMultiXactOffsetPage(0);
+ SimpleLruWritePage(MultiXactOffsetCtl, slotno, NULL);
+ Assert(MultiXactOffsetCtl->shared->page_status[slotno] == SLRU_PAGE_CLEAN);
+
+ LWLockRelease(MultiXactOffsetControlLock);
+
+ LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
+
+ /* Members first page */
+ slotno = ZeroMultiXactMemberPage(0);
+ SimpleLruWritePage(MultiXactMemberCtl, slotno, NULL);
+ Assert(MultiXactMemberCtl->shared->page_status[slotno] == SLRU_PAGE_CLEAN);
+
+ LWLockRelease(MultiXactMemberControlLock);
+}
+
+/*
+ * Initialize (or reinitialize) a page of MultiXactOffset to zeroes.
+ *
+ * The page is not actually written, just set up in shared memory.
+ * The slot number of the new page is returned.
+ *
+ * Control lock must be held at entry, and will be held at exit.
+ */
+static int
+ZeroMultiXactOffsetPage(int pageno)
+{
+ return SimpleLruZeroPage(MultiXactOffsetCtl, pageno);
+}
+
+/*
+ * Ditto, for MultiXactMember
+ */
+static int
+ZeroMultiXactMemberPage(int pageno)
+{
+ return SimpleLruZeroPage(MultiXactMemberCtl, pageno);
+}
+
+/*
+ * This must be called ONCE during postmaster or standalone-backend startup.
+ *
+ * StartupXLOG has already established nextMXact by calling
+ * MultiXactSetNextMXact and/or MultiXactAdvanceNextMXact.
+ *
+ * We don't need any locks here, really; the SLRU locks are taken
+ * only because slru.c expects to be called with locks held.
+ */
+void
+StartupMultiXact(void)
+{
+ int startPage;
+ int cutoffPage;
+ uint32 offset;
+
+ /*
+ * We start nextOffset at zero after every reboot; there is no need to
+ * avoid offset values that were used in the previous system lifecycle.
+ */
+ MultiXactState->nextOffset = 0;
+
+ /*
+ * Because of the above, a shutdown and restart is likely to leave
+ * high-numbered MultiXactMember page files that would not get recycled
+ * for a long time (about as long as the system had been up in the
+ * previous cycle of life). To clean out such page files, we issue an
+ * artificial truncation call that will zap any page files in the first
+ * half of the offset cycle. Should there be any page files in the last
+ * half, they will get cleaned out by the first checkpoint.
+ *
+ * XXX it might be a good idea to disable this when debugging, since it
+ * will tend to destroy evidence after a crash. To not be *too* ruthless,
+ * we arbitrarily spare the first 64 pages. (Note this will get
+ * rounded off to a multiple of SLRU_PAGES_PER_SEGMENT ...)
+ */
+ offset = ((~ (uint32) 0) >> 1) + 1;
+
+ cutoffPage = MXOffsetToMemberPage(offset) + 64;
+
+ /*
+ * Defeat safety interlock in SimpleLruTruncate; this hack will be
+ * cleaned up by ZeroMultiXactMemberPage call below.
+ */
+ MultiXactMemberCtl->shared->latest_page_number = cutoffPage;
+
+ SimpleLruTruncate(MultiXactMemberCtl, cutoffPage);
+
+ /*
+ * Initialize lastTruncationPoint to invalid, ensuring that the first
+ * checkpoint will try to do truncation.
+ */
+ MultiXactState->lastTruncationPoint = InvalidMultiXactId;
+
+ /*
+ * Since we don't expect MultiXact to be valid across crashes, we
+ * initialize the currently-active pages to zeroes during startup.
+ * Whenever we advance into a new page, both ExtendMultiXact routines
+ * will likewise zero the new page without regard to whatever was
+ * previously on disk.
+ */
+ LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
+
+ startPage = MultiXactIdToOffsetPage(MultiXactState->nextMXact);
+ (void) ZeroMultiXactOffsetPage(startPage);
+
+ LWLockRelease(MultiXactOffsetControlLock);
+
+ LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
+
+ startPage = MXOffsetToMemberPage(MultiXactState->nextOffset);
+ (void) ZeroMultiXactMemberPage(startPage);
+
+ LWLockRelease(MultiXactMemberControlLock);
+}
+
+/*
+ * This must be called ONCE during postmaster or standalone-backend shutdown
+ */
+void
+ShutdownMultiXact(void)
+{
+ /*
+ * Flush dirty MultiXact pages to disk
+ *
+ * This is not actually necessary from a correctness point of view. We do
+ * it merely as a debugging aid.
+ */
+ SimpleLruFlush(MultiXactOffsetCtl, false);
+ SimpleLruFlush(MultiXactMemberCtl, false);
+}
+
+/*
+ * Get the next MultiXactId to save in a checkpoint record
+ */
+MultiXactId
+MultiXactGetCheckptMulti(bool is_shutdown)
+{
+ MultiXactId retval;
+
+ LWLockAcquire(MultiXactGenLock, LW_SHARED);
+
+ retval = MultiXactState->nextMXact;
+ if (!is_shutdown)
+ retval += MultiXactState->mXactCount;
+
+ LWLockRelease(MultiXactGenLock);
+
+ debug_elog3(DEBUG2, "MultiXact: MultiXact for checkpoint record is %u",
+ retval);
+
+ return retval;
+}
+
+/*
+ * Perform a checkpoint --- either during shutdown, or on-the-fly
+ */
+void
+CheckPointMultiXact(void)
+{
+ /*
+ * Flush dirty MultiXact pages to disk
+ *
+ * This is not actually necessary from a correctness point of view. We do
+ * it merely to improve the odds that writing of dirty pages is done
+ * by the checkpoint process and not by backends.
+ */
+ SimpleLruFlush(MultiXactOffsetCtl, true);
+ SimpleLruFlush(MultiXactMemberCtl, true);
+
+ /*
+ * Truncate the SLRU files
+ */
+ TruncateMultiXact();
+}
+
+/*
+ * Set the next-to-be-assigned MultiXactId
+ *
+ * This is used when we can determine the correct next Id exactly
+ * from an XLog record. We need no locking since it is only called
+ * during bootstrap and XLog replay.
+ */
+void
+MultiXactSetNextMXact(MultiXactId nextMulti)
+{
+ debug_elog3(DEBUG2, "MultiXact: setting next multi to %u", nextMulti);
+ MultiXactState->nextMXact = nextMulti;
+ MultiXactState->mXactCount = 0;
+}
+
+/*
+ * Ensure the next-to-be-assigned MultiXactId is at least minMulti
+ *
+ * This is used when we can determine a minimum safe value
+ * from an XLog record. We need no locking since it is only called
+ * during XLog replay.
+ */
+void
+MultiXactAdvanceNextMXact(MultiXactId minMulti)
+{
+ if (MultiXactIdPrecedes(MultiXactState->nextMXact, minMulti))
+ {
+ debug_elog3(DEBUG2, "MultiXact: setting next multi to %u", minMulti);
+ MultiXactState->nextMXact = minMulti;
+ MultiXactState->mXactCount = 0;
+ }
+}
+
+/*
+ * Make sure that MultiXactOffset has room for a newly-allocated MultiXactId.
+ *
+ * The MultiXactOffsetControlLock should be held at entry, and will
+ * be held at exit.
+ */
+void
+ExtendMultiXactOffset(MultiXactId multi)
+{
+ int pageno;
+
+ /*
+ * No work except at first MultiXactId of a page. But beware: just after
+ * wraparound, the first MultiXactId of page zero is FirstMultiXactId.
+ */
+ if (MultiXactIdToOffsetEntry(multi) != 0 &&
+ multi != FirstMultiXactId)
+ return;
+
+ pageno = MultiXactIdToOffsetPage(multi);
+
+ /* Zero the page */
+ ZeroMultiXactOffsetPage(pageno);
+}
+
+/*
+ * Make sure that MultiXactMember has room for the members of a newly-
+ * allocated MultiXactId.
+ *
+ * The MultiXactMemberControlLock should be held at entry, and will be held
+ * at exit.
+ */
+void
+ExtendMultiXactMember(uint32 offset)
+{
+ int pageno;
+
+ /*
+ * No work except at first entry of a page.
+ */
+ if (MXOffsetToMemberEntry(offset) != 0)
+ return;
+
+ pageno = MXOffsetToMemberPage(offset);
+
+ /* Zero the page */
+ ZeroMultiXactMemberPage(pageno);
+}
+
+/*
+ * Remove all MultiXactOffset and MultiXactMember segments before the oldest
+ * ones still of interest.
+ *
+ * This is called only during checkpoints. We assume no more than one
+ * backend does this at a time.
+ */
+static void
+TruncateMultiXact(void)
+{
+ MultiXactId nextMXact;
+ uint32 nextOffset;
+ MultiXactId oldestMXact;
+ uint32 oldestOffset;
+ int cutoffPage;
+ int i;
+
+ /*
+ * First, compute where we can safely truncate. Per notes above,
+ * this is the oldest valid value among all the OldestMemberMXactId[] and
+ * OldestVisibleMXactId[] entries, or nextMXact if none are valid.
+ */
+ LWLockAcquire(MultiXactGenLock, LW_SHARED);
+
+ /*
+ * We have to beware of the possibility that nextMXact is in the
+ * wrapped-around state. We don't fix the counter itself here,
+ * but we must be sure to use a valid value in our calculation.
+ */
+ nextMXact = MultiXactState->nextMXact;
+ if (nextMXact < FirstMultiXactId)
+ nextMXact = FirstMultiXactId;
+
+ oldestMXact = nextMXact;
+ for (i = 1; i <= MaxBackends; i++)
+ {
+ MultiXactId thisoldest;
+
+ thisoldest = OldestMemberMXactId[i];
+ if (MultiXactIdIsValid(thisoldest) &&
+ MultiXactIdPrecedes(thisoldest, oldestMXact))
+ oldestMXact = thisoldest;
+ thisoldest = OldestVisibleMXactId[i];
+ if (MultiXactIdIsValid(thisoldest) &&
+ MultiXactIdPrecedes(thisoldest, oldestMXact))
+ oldestMXact = thisoldest;
+ }
+
+ /* Save the current nextOffset too */
+ nextOffset = MultiXactState->nextOffset;
+
+ LWLockRelease(MultiXactGenLock);
+
+ debug_elog3(DEBUG2, "MultiXact: truncation point = %u", oldestMXact);
+
+ /*
+ * If we already truncated at this point, do nothing. This saves time
+ * when no MultiXacts are getting used, which is probably not uncommon.
+ */
+ if (MultiXactState->lastTruncationPoint == oldestMXact)
+ return;
+
+ /*
+ * We need to determine where to truncate MultiXactMember. If we
+ * found a valid oldest MultiXactId, read its starting offset;
+ * otherwise we use the nextOffset value we saved above.
+ */
+ if (oldestMXact == nextMXact)
+ oldestOffset = nextOffset;
+ else
+ {
+ int pageno;
+ int slotno;
+ int entryno;
+ uint32 *offptr;
+
+ LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
+
+ pageno = MultiXactIdToOffsetPage(oldestMXact);
+ entryno = MultiXactIdToOffsetEntry(oldestMXact);
+
+ slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, oldestMXact);
+ offptr = (uint32 *) MultiXactOffsetCtl->shared->page_buffer[slotno];
+ offptr += entryno;
+ oldestOffset = *offptr;
+
+ LWLockRelease(MultiXactOffsetControlLock);
+ }
+
+ /*
+ * The cutoff point is the start of the segment containing oldestMXact.
+ * We pass the *page* containing oldestMXact to SimpleLruTruncate.
+ */
+ cutoffPage = MultiXactIdToOffsetPage(oldestMXact);
+
+ SimpleLruTruncate(MultiXactOffsetCtl, cutoffPage);
+
+ /*
+ * Also truncate MultiXactMember at the previously determined offset.
+ */
+ cutoffPage = MXOffsetToMemberPage(oldestOffset);
+
+ SimpleLruTruncate(MultiXactMemberCtl, cutoffPage);
+
+ /*
+ * Set the last known truncation point. We don't need a lock for this
+ * since only one backend does checkpoints at a time.
+ */
+ MultiXactState->lastTruncationPoint = oldestMXact;
+}
+
+/*
+ * Decide which of two MultiXactOffset page numbers is "older" for truncation
+ * purposes.
+ *
+ * We need to use comparison of MultiXactId here in order to do the right
+ * thing with wraparound. However, if we are asked about page number zero, we
+ * don't want to hand InvalidMultiXactId to MultiXactIdPrecedes: it'll get
+ * weird. So, offset both multis by FirstMultiXactId to avoid that.
+ * (Actually, the current implementation doesn't do anything weird with
+ * InvalidMultiXactId, but there's no harm in leaving this code like this.)
+ */
+static bool
+MultiXactOffsetPagePrecedes(int page1, int page2)
+{
+ MultiXactId multi1;
+ MultiXactId multi2;
+
+ multi1 = ((MultiXactId) page1) * MULTIXACT_OFFSETS_PER_PAGE;
+ multi1 += FirstMultiXactId;
+ multi2 = ((MultiXactId) page2) * MULTIXACT_OFFSETS_PER_PAGE;
+ multi2 += FirstMultiXactId;
+
+ return MultiXactIdPrecedes(multi1, multi2);
+}
+
+/*
+ * Decide which of two MultiXactMember page numbers is "older" for truncation
+ * purposes. There is no "invalid offset number" so use the numbers verbatim.
+ */
+static bool
+MultiXactMemberPagePrecedes(int page1, int page2)
+{
+ uint32 offset1;
+ uint32 offset2;
+
+ offset1 = ((uint32) page1) * MULTIXACT_MEMBERS_PER_PAGE;
+ offset2 = ((uint32) page2) * MULTIXACT_MEMBERS_PER_PAGE;
+
+ return MultiXactOffsetPrecedes(offset1, offset2);
+}
+
+/*
+ * Decide which of two MultiXactIds is earlier.
+ *
+ * XXX do we need to do something special for InvalidMultiXactId?
+ * (Doesn't look like it.)
+ */
+static bool
+MultiXactIdPrecedes(MultiXactId multi1, MultiXactId multi2)
+{
+ int32 diff = (int32) (multi1 - multi2);
+
+ return (diff < 0);
+}
+
+/*
+ * Decide which of two offsets is earlier.
+ */
+static bool
+MultiXactOffsetPrecedes(uint32 offset1, uint32 offset2)
+{
+ int32 diff = (int32) (offset1 - offset2);
+
+ return (diff < 0);
+}