aboutsummaryrefslogtreecommitdiff
path: root/doc/src
diff options
context:
space:
mode:
authorDean Rasheed <dean.a.rasheed@gmail.com>2021-04-06 11:50:42 +0100
committerDean Rasheed <dean.a.rasheed@gmail.com>2021-04-06 11:50:42 +0100
commit6b258e3d688db14aadb58dde2a72939362310684 (patch)
treeb1f740242a8998a1992065f603953e848680d89b /doc/src
parenta8af856d3257138590788e40eb84049def147acf (diff)
downloadpostgresql-6b258e3d688db14aadb58dde2a72939362310684.tar.gz
postgresql-6b258e3d688db14aadb58dde2a72939362310684.zip
pgbench: Function to generate random permutations.
This adds a new function, permute(), that generates pseudorandom permutations of arbitrary sizes. This can be used to randomly shuffle a set of values to remove unwanted correlations. For example, permuting the output from a non-uniform random distribution so that all the most common values aren't collocated, allowing more realistic tests to be performed. Formerly, hash() was recommended for this purpose, but that suffers from collisions that might alter the distribution, so recommend permute() for this purpose instead. Fabien Coelho and Hironobu Suzuki, with additional hacking be me. Reviewed by Thomas Munro, Alvaro Herrera and Muhammad Usama. Discussion: https://postgr.es/m/alpine.DEB.2.21.1807280944370.5142@lancre
Diffstat (limited to 'doc/src')
-rw-r--r--doc/src/sgml/ref/pgbench.sgml81
1 files changed, 70 insertions, 11 deletions
diff --git a/doc/src/sgml/ref/pgbench.sgml b/doc/src/sgml/ref/pgbench.sgml
index 50cf22ba6ba..8eb4f538d5b 100644
--- a/doc/src/sgml/ref/pgbench.sgml
+++ b/doc/src/sgml/ref/pgbench.sgml
@@ -1057,7 +1057,7 @@ pgbench <optional> <replaceable>options</replaceable> </optional> <replaceable>d
<row>
<entry> <literal>default_seed</literal> </entry>
- <entry>seed used in hash functions by default</entry>
+ <entry>seed used in hash and pseudorandom permutation functions by default</entry>
</row>
<row>
@@ -1866,6 +1866,24 @@ SELECT 4 AS four \; SELECT 5 AS five \aset
<row>
<entry role="func_table_entry"><para role="func_signature">
+ <function>permute</function> ( <parameter>i</parameter>, <parameter>size</parameter> [, <parameter>seed</parameter> ] )
+ <returnvalue>integer</returnvalue>
+ </para>
+ <para>
+ Permuted value of <parameter>i</parameter>, in the range
+ <literal>[0, size)</literal>. This is the new position of
+ <parameter>i</parameter> (modulo <parameter>size</parameter>) in a
+ pseudorandom permutation of the integers <literal>0...size-1</literal>,
+ parameterized by <parameter>seed</parameter>, see below.
+ </para>
+ <para>
+ <literal>permute(0, 4)</literal>
+ <returnvalue>an integer between 0 and 3</returnvalue>
+ </para></entry>
+ </row>
+
+ <row>
+ <entry role="func_table_entry"><para role="func_signature">
<function>pi</function> ()
<returnvalue>double</returnvalue>
</para>
@@ -2071,29 +2089,70 @@ f(x) = PHI(2.0 * parameter * (x - mu) / (max - min + 1)) /
</listitem>
</itemizedlist>
+ <note>
+ <para>
+ When designing a benchmark which selects rows non-uniformly, be aware
+ that the rows chosen may be correlated with other data such as IDs from
+ a sequence or the physical row ordering, which may skew performance
+ measurements.
+ </para>
+ <para>
+ To avoid this, you may wish to use the <function>permute</function>
+ function, or some other additional step with similar effect, to shuffle
+ the selected rows and remove such correlations.
+ </para>
+ </note>
+
<para>
Hash functions <literal>hash</literal>, <literal>hash_murmur2</literal> and
<literal>hash_fnv1a</literal> accept an input value and an optional seed parameter.
In case the seed isn't provided the value of <literal>:default_seed</literal>
is used, which is initialized randomly unless set by the command-line
- <literal>-D</literal> option. Hash functions can be used to scatter the
- distribution of random functions such as <literal>random_zipfian</literal> or
- <literal>random_exponential</literal>. For instance, the following pgbench
- script simulates possible real world workload typical for social media and
- blogging platforms where few accounts generate excessive load:
+ <literal>-D</literal> option.
+ </para>
+
+ <para>
+ <literal>permute</literal> accepts an input value, a size, and an optional
+ seed parameter. It generates a pseudorandom permutation of integers in
+ the range <literal>[0, size)</literal>, and returns the index of the input
+ value in the permuted values. The permutation chosen is parameterized by
+ the seed, which defaults to <literal>:default_seed</literal>, if not
+ specified. Unlike the hash functions, <literal>permute</literal> ensures
+ that there are no collisions or holes in the output values. Input values
+ outside the interval are interpreted modulo the size. The function raises
+ an error if the size is not positive. <function>permute</function> can be
+ used to scatter the distribution of non-uniform random functions such as
+ <literal>random_zipfian</literal> or <literal>random_exponential</literal>
+ so that values drawn more often are not trivially correlated. For
+ instance, the following <application>pgbench</application> script
+ simulates a possible real world workload typical for social media and
+ blogging platforms where a few accounts generate excessive load:
<programlisting>
-\set r random_zipfian(0, 100000000, 1.07)
-\set k abs(hash(:r)) % 1000000
+\set size 1000000
+\set r random_zipfian(1, :size, 1.07)
+\set k 1 + permute(:r, :size)
</programlisting>
In some cases several distinct distributions are needed which don't correlate
- with each other and this is when implicit seed parameter comes in handy:
+ with each other and this is when the optional seed parameter comes in handy:
<programlisting>
-\set k1 abs(hash(:r, :default_seed + 123)) % 1000000
-\set k2 abs(hash(:r, :default_seed + 321)) % 1000000
+\set k1 1 + permute(:r, :size, :default_seed + 123)
+\set k2 1 + permute(:r, :size, :default_seed + 321)
</programlisting>
+
+ A similar behavior can also be approximated with <function>hash</function>:
+
+<programlisting>
+\set size 1000000
+\set r random_zipfian(1, 100 * :size, 1.07)
+\set k 1 + abs(hash(:r)) % :size
+</programlisting>
+
+ However, since <function>hash</function> generates collisions, some values
+ will not be reachable and others will be more frequent than expected from
+ the original distribution.
</para>
<para>