1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
|
// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
// Copyright (c) 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
// Unittest for the TCMalloc implementation.
//
// * The test consists of a set of threads.
// * Each thread maintains a set of allocated objects, with
// a bound on the total amount of data in the set.
// * Each allocated object's contents are generated by
// hashing the object pointer, and a generation count
// in the object. This allows us to easily check for
// data corruption.
// * At any given step, the thread can do any of the following:
// a. Allocate an object
// b. Increment an object's generation count and update
// its contents.
// c. Pass the object to another thread
// d. Free an object
// Also, at the end of every step, object(s) are freed to maintain
// the memory upper-bound.
//
#include "config_for_unittests.h"
// Complicated ordering requirements. tcmalloc.h defines (indirectly)
// _POSIX_C_SOURCE, which it needs so stdlib.h defines posix_memalign.
// unistd.h, on the other hand, requires _POSIX_C_SOURCE to be unset,
// at least on FreeBSD, in order to define sbrk. The solution
// is to #include unistd.h first. This is safe because unistd.h
// doesn't sub-include stdlib.h, so we'll still get posix_memalign
// when we #include stdlib.h. Blah.
#ifdef HAVE_UNISTD_H
#include <unistd.h> // for testing sbrk hooks
#endif
#include "tcmalloc_internal.h" // must come early, to pick up posix_memalign
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <stdint.h> // for intptr_t
#include <sys/types.h> // for size_t
#ifdef HAVE_FCNTL_H
#include <fcntl.h> // for open; used with mmap-hook test
#endif
#ifdef HAVE_MALLOC_H
#include <malloc.h> // defines pvalloc/etc on cygwin
#endif
#include <assert.h>
#include <algorithm>
#include <mutex>
#include <new>
#include <string>
#include <thread>
#include <vector>
#include "gperftools/malloc_hook.h"
#include "gperftools/malloc_extension.h"
#include "gperftools/nallocx.h"
#include "gperftools/tcmalloc.h"
#include "base/function_ref.h"
#include "base/cleanup.h"
#include "base/static_storage.h"
#include "tests/testutil.h"
#include "testing_portal.h"
#include "gtest/gtest.h"
#include "base/logging.h"
using tcmalloc::TestingPortal;
namespace {
// SetFlag updates given variable to new value and returns
// tcmalloc::Cleanup that restores it to previous value.
template <typename T, typename V>
decltype(auto) SetFlag(T* ptr, V value) {
T old_value = *ptr;
*ptr = value;
return tcmalloc::Cleanup{[=] () {
*ptr = old_value;
}};
}
struct NumericProperty {
const char* const name;
constexpr NumericProperty(const char* name) : name(name) {}
// Override sets this property to new value and returns
// tcmalloc::Cleanup that returns it to previous setting.
decltype(auto) Override(size_t new_value) const {
MallocExtension *e = MallocExtension::instance();
size_t old_value;
CHECK(e->GetNumericProperty(name, &old_value));
CHECK(e->SetNumericProperty(name, new_value));
return tcmalloc::Cleanup{[old_value, name = name] () {
CHECK(MallocExtension::instance()->SetNumericProperty(name, old_value));
}};
}
};
constexpr NumericProperty kAggressiveDecommit{"tcmalloc.aggressive_memory_decommit"};
} // namespace
// Windows doesn't define pvalloc and a few other obsolete unix
// functions; nor does it define posix_memalign (which is not obsolete).
#if defined(_WIN32)
# define cfree free // don't bother to try to test these obsolete fns
# define valloc malloc
# define pvalloc malloc
// I'd like to map posix_memalign to _aligned_malloc, but _aligned_malloc
// must be paired with _aligned_free (not normal free), which is too
// invasive a change to how we allocate memory here. So just bail
static bool kOSSupportsMemalign = false;
static inline void* Memalign(size_t align, size_t size) {
//LOG(FATAL) << "memalign not supported on windows";
exit(1);
return NULL;
}
static inline int PosixMemalign(void** ptr, size_t align, size_t size) {
//LOG(FATAL) << "posix_memalign not supported on windows";
exit(1);
return -1;
}
// OS X defines posix_memalign in some OS versions but not others;
// it's confusing enough to check that it's easiest to just not to test.
#elif defined(__APPLE__)
static bool kOSSupportsMemalign = false;
static inline void* Memalign(size_t align, size_t size) {
//LOG(FATAL) << "memalign not supported on OS X";
exit(1);
return NULL;
}
static inline int PosixMemalign(void** ptr, size_t align, size_t size) {
//LOG(FATAL) << "posix_memalign not supported on OS X";
exit(1);
return -1;
}
#else
static bool kOSSupportsMemalign = true;
static inline void* Memalign(size_t align, size_t size) {
return noopt(memalign(align, noopt(size)));
}
static inline int PosixMemalign(void** ptr, size_t align, size_t size) {
return noopt(posix_memalign(ptr, align, noopt(size)));
}
#endif
static constexpr size_t kOveralignment = 64;
struct overaligned_type
{
alignas(kOveralignment)
unsigned char data[kOveralignment * 2]; // make the object size different from
// alignment to make sure the correct
// values are passed to the new/delete
// implementation functions
};
struct OOMAbleSysAlloc : public SysAllocator {
SysAllocator *child;
int simulate_oom;
void* Alloc(size_t size, size_t* actual_size, size_t alignment) {
if (simulate_oom) {
return NULL;
}
return child->Alloc(size, actual_size, alignment);
}
};
static OOMAbleSysAlloc* get_test_sys_alloc() {
static tcmalloc::StaticStorage<OOMAbleSysAlloc> storage;
return storage.get();
}
void setup_oomable_sys_alloc() {
SysAllocator *def = MallocExtension::instance()->GetSystemAllocator();
OOMAbleSysAlloc *alloc = get_test_sys_alloc();
new (alloc) OOMAbleSysAlloc;
alloc->child = def;
MallocExtension::instance()->SetSystemAllocator(alloc);
}
static const int FLAGS_numtests = 50000;
static const int FLAGS_log_every_n_tests = 50000; // log exactly once
// Testing parameters
static const int FLAGS_lgmaxsize = 16; // lg() of the max size object to alloc
static const int FLAGS_numthreads = 10; // Number of threads
static const int FLAGS_threadmb = 4; // Max memory size allocated by thread
static const int FLAGS_lg_max_memalign = 18; // lg of max alignment for memalign
static const double FLAGS_memalign_min_fraction = 0; // min expected%
static const double FLAGS_memalign_max_fraction = 0.4; // max expected%
static const double FLAGS_memalign_max_alignment_ratio = 6; // alignment/size
// Weights of different operations
static const int FLAGS_allocweight = 50; // Weight for picking allocation
static const int FLAGS_freeweight = 50; // Weight for picking free
static const int FLAGS_updateweight = 10; // Weight for picking update
static const int FLAGS_passweight = 1; // Weight for passing object
static const int kSizeBits = 8 * sizeof(size_t);
static const size_t kMaxSize = ~static_cast<size_t>(0);
static const size_t kMaxSignedSize = ((size_t(1) << (kSizeBits-1)) - 1);
static const size_t kNotTooBig = 100000;
// We want an allocation that is definitely more than main memory. OS
// X has special logic to discard very big allocs before even passing
// the request along to the user-defined memory allocator; we're not
// interested in testing their logic, so we have to make sure we're
// not *too* big.
static const size_t kTooBig = kMaxSize - 100000;
// To help with generating random numbers
class TestHarness {
private:
// Information kept per type
struct Type {
std::string name;
int type;
int weight;
};
public:
TestHarness(int seed) {
srandom(seed);
}
// Add operation type with specified weight. When starting a new
// iteration, an operation type is picked with probability
// proportional to its weight.
//
// "type" must be non-negative.
// "weight" must be non-negative.
void AddType(int type, int weight, const char* name);
// Call this to get the type of operation for the next iteration.
// It returns a random operation type from the set of registered
// operations. Returns -1 if tests should finish.
int PickType();
// If n == 0, returns the next pseudo-random number in the range [0 .. 0]
// If n != 0, returns the next pseudo-random number in the range [0 .. n)
int Uniform(int n) {
if (n == 0) {
return random() * 0;
} else {
return random() % n;
}
}
// Pick "base" uniformly from range [0,max_log] and then return
// "base" random bits. The effect is to pick a number in the range
// [0,2^max_log-1] with bias towards smaller numbers.
int Skewed(int max_log) {
const int base = random() % (max_log+1);
return random() % (1 << base);
}
private:
std::vector<Type> types_; // Registered types
int total_weight_ = 0; // Total weight of all types
int num_tests_ = 0; // Num tests run so far
};
void TestHarness::AddType(int type, int weight, const char* name) {
Type t;
t.name = name;
t.type = type;
t.weight = weight;
types_.push_back(t);
total_weight_ += weight;
}
int TestHarness::PickType() {
if (num_tests_ >= FLAGS_numtests) return -1;
num_tests_++;
CHECK(total_weight_ > 0);
// This is a little skewed if total_weight_ doesn't divide 2^31, but it's close
int v = Uniform(total_weight_);
int i;
for (i = 0; i < types_.size(); i++) {
v -= types_[i].weight;
if (v < 0) {
break;
}
}
CHECK(i < types_.size());
if ((num_tests_ % FLAGS_log_every_n_tests) == 0) {
printf(" Test %d out of %d: %s\n",
num_tests_, FLAGS_numtests, types_[i].name.c_str());
}
return types_[i].type;
}
class AllocatorState : public TestHarness {
public:
explicit AllocatorState(int seed) : TestHarness(seed), memalign_fraction_(0) {
if (kOSSupportsMemalign) {
CHECK_GE(FLAGS_memalign_max_fraction, 0);
CHECK_LE(FLAGS_memalign_max_fraction, 1);
CHECK_GE(FLAGS_memalign_min_fraction, 0);
CHECK_LE(FLAGS_memalign_min_fraction, 1);
double delta = FLAGS_memalign_max_fraction - FLAGS_memalign_min_fraction;
CHECK_GE(delta, 0);
memalign_fraction_ = (Uniform(10000)/10000.0 * delta +
FLAGS_memalign_min_fraction);
//printf("memalign fraction: %f\n", memalign_fraction_);
}
}
virtual ~AllocatorState() {}
// Allocate memory. Randomly choose between malloc() or posix_memalign().
void* alloc(size_t size) {
if (Uniform(100) < memalign_fraction_ * 100) {
// Try a few times to find a reasonable alignment, or fall back on malloc.
for (int i = 0; i < 5; i++) {
size_t alignment = size_t{1} << Uniform(FLAGS_lg_max_memalign);
if (alignment >= sizeof(intptr_t) &&
(size < sizeof(intptr_t) ||
alignment < FLAGS_memalign_max_alignment_ratio * size)) {
void *result = reinterpret_cast<void*>(static_cast<intptr_t>(0x1234));
int err = PosixMemalign(&result, alignment, size);
if (err != 0) {
CHECK_EQ(err, ENOMEM);
}
return err == 0 ? result : NULL;
}
}
}
return noopt(malloc(size));
}
private:
double memalign_fraction_;
};
// Info kept per thread
class TesterThread {
private:
// Info kept per allocated object
struct Object {
char* ptr; // Allocated pointer
int size; // Allocated size
int generation; // Generation counter of object contents
};
std::vector<std::unique_ptr<TesterThread>> &all_threads_;
std::mutex lock_; // For passing in another thread's obj
int id_; // My thread id
AllocatorState rnd_; // For generating random numbers
std::vector<Object> heap_; // This thread's heap
std::vector<Object> passed_; // Pending objects passed from others
size_t heap_size_; // Current heap size
// Type of operations
enum Type { ALLOC, FREE, UPDATE, PASS };
// ACM minimal standard random number generator. (re-entrant.)
class ACMRandom {
int32_t seed_;
public:
explicit ACMRandom(int32_t seed) { seed_ = seed; }
int32_t Next() {
const int32_t M = 2147483647L; // 2^31-1
const int32_t A = 16807;
// In effect, we are computing seed_ = (seed_ * A) % M, where M = 2^31-1
uint32_t lo = A * (int32_t)(seed_ & 0xFFFF);
uint32_t hi = A * (int32_t)((uint32_t)seed_ >> 16);
lo += (hi & 0x7FFF) << 16;
if (lo > M) {
lo &= M;
++lo;
}
lo += hi >> 15;
if (lo > M) {
lo &= M;
++lo;
}
return (seed_ = (int32_t) lo);
}
};
public:
TesterThread(std::vector<std::unique_ptr<TesterThread>>& all_threads, int id)
: all_threads_(all_threads),
id_(id),
rnd_(id+1),
heap_size_(0) {
}
virtual ~TesterThread() {
}
virtual void Run() {
rnd_.AddType(ALLOC, FLAGS_allocweight, "allocate");
rnd_.AddType(FREE, FLAGS_freeweight, "free");
rnd_.AddType(UPDATE, FLAGS_updateweight, "update");
rnd_.AddType(PASS, FLAGS_passweight, "pass");
while (true) {
AcquirePassedObjects();
switch (rnd_.PickType()) {
case ALLOC: AllocateObject(); break;
case FREE: FreeObject(); break;
case UPDATE: UpdateObject(); break;
case PASS: PassObject(); break;
case -1: goto done;
default: CHECK(nullptr == "Unknown type");
}
ShrinkHeap();
}
done:
DeleteHeap();
}
// Allocate a new object
void AllocateObject() {
Object object;
object.size = rnd_.Skewed(FLAGS_lgmaxsize);
object.ptr = static_cast<char*>(rnd_.alloc(object.size));
CHECK(object.ptr);
object.generation = 0;
FillContents(&object);
heap_.push_back(object);
heap_size_ += object.size;
}
// Mutate a random object
void UpdateObject() {
if (heap_.empty()) return;
const int index = rnd_.Uniform(heap_.size());
CheckContents(heap_[index]);
heap_[index].generation++;
FillContents(&heap_[index]);
}
// Free a random object
void FreeObject() {
if (heap_.empty()) return;
const int index = rnd_.Uniform(heap_.size());
Object object = heap_[index];
CheckContents(object);
free(object.ptr);
heap_size_ -= object.size;
heap_[index] = heap_[heap_.size()-1];
heap_.pop_back();
}
// Delete all objects in the heap
void DeleteHeap() {
while (!heap_.empty()) {
FreeObject();
}
}
// Free objects until our heap is small enough
void ShrinkHeap() {
while (heap_size_ > FLAGS_threadmb << 20) {
CHECK(!heap_.empty());
FreeObject();
}
}
// Pass a random object to another thread
void PassObject() {
// Pick object to pass
if (heap_.empty()) return;
const int index = rnd_.Uniform(heap_.size());
Object object = heap_[index];
CheckContents(object);
// Pick thread to pass
const int tid = rnd_.Uniform(FLAGS_numthreads);
TesterThread* thread = all_threads_[tid].get();
if (thread->lock_.try_lock()) {
// Pass the object
thread->passed_.push_back(object);
thread->lock_.unlock();
heap_size_ -= object.size;
heap_[index] = heap_[heap_.size()-1];
heap_.pop_back();
}
}
// Grab any objects passed to this thread by another thread
void AcquirePassedObjects() {
// We do not create unnecessary contention by always using
// TryLock(). Plus we unlock immediately after swapping passed
// objects into a local vector.
std::vector<Object> copy;
{ // Locking scope
if (!lock_.try_lock()) {
return;
}
swap(copy, passed_);
lock_.unlock();
}
for (int i = 0; i < copy.size(); ++i) {
const Object& object = copy[i];
CheckContents(object);
heap_.push_back(object);
heap_size_ += object.size;
}
}
// Fill object contents according to ptr/generation
void FillContents(Object* object) {
ACMRandom r(reinterpret_cast<intptr_t>(object->ptr) & 0x7fffffff);
for (int i = 0; i < object->generation; ++i) {
r.Next();
}
const char c = static_cast<char>(r.Next());
memset(object->ptr, c, object->size);
}
// Check object contents
void CheckContents(const Object& object) {
ACMRandom r(reinterpret_cast<intptr_t>(object.ptr) & 0x7fffffff);
for (int i = 0; i < object.generation; ++i) {
r.Next();
}
// For large objects, we just check a prefix/suffix
const char expected = static_cast<char>(r.Next());
const int limit1 = object.size < 32 ? object.size : 32;
const int start2 = limit1 > object.size - 32 ? limit1 : object.size - 32;
for (int i = 0; i < limit1; ++i) {
CHECK_EQ(object.ptr[i], expected);
}
for (int i = start2; i < object.size; ++i) {
CHECK_EQ(object.ptr[i], expected);
}
}
};
TEST(TCMallocTest, ManyThreads) {
printf("Testing threaded allocation/deallocation (%d threads)\n",
FLAGS_numthreads);
std::vector<std::unique_ptr<TesterThread>> ptrs;
ptrs.reserve(FLAGS_numthreads);
// Note, the logic inside PassObject requires us to create all
// TesterThreads first, before starting any of them.
for (int i = 0; i < FLAGS_numthreads; i++) {
ptrs.emplace_back(std::make_unique<TesterThread>(ptrs, i));
}
std::vector<std::thread> threads;
threads.reserve(FLAGS_numthreads);
for (int i = 0; i < FLAGS_numthreads; i++) {
threads.emplace_back([thr = ptrs[i].get()] () {
thr->Run();
});
}
for (auto& t : threads) {
t.join();
}
}
static void TryHugeAllocation(size_t s, AllocatorState* rnd) {
void* p = rnd->alloc(noopt(s));
CHECK(p == NULL); // huge allocation s should fail!
}
static void TestHugeAllocations(AllocatorState* rnd) {
// Check that asking for stuff tiny bit smaller than largest possible
// size returns NULL.
for (size_t i = 0; i < 70000; i += rnd->Uniform(20)) {
TryHugeAllocation(kMaxSize - i, rnd);
}
// Asking for memory sizes near signed/unsigned boundary (kMaxSignedSize)
// might work or not, depending on the amount of virtual memory.
if (!TestingPortal::Get()->IsDebuggingMalloc()) {
// debug allocation takes forever for huge allocs
for (size_t i = 0; i < 100; i++) {
void* p = NULL;
p = rnd->alloc(kMaxSignedSize + i);
if (p) free(p); // if: free(NULL) is not necessarily defined
p = rnd->alloc(kMaxSignedSize - i);
if (p) free(p);
}
}
// Check that ReleaseFreeMemory has no visible effect (aka, does not
// crash the test):
MallocExtension* inst = MallocExtension::instance();
CHECK(inst);
inst->ReleaseFreeMemory();
}
static void TestCalloc(size_t n, size_t s, bool ok) {
char* p = reinterpret_cast<char*>(noopt(calloc)(n, s));
if (!ok) {
CHECK(p == NULL); // calloc(n, s) should not succeed
} else {
CHECK(p != NULL); // calloc(n, s) should succeed
for (int i = 0; i < n*s; i++) {
CHECK(p[i] == '\0');
}
free(p);
}
}
// This makes sure that reallocing a small number of bytes in either
// direction doesn't cause us to allocate new memory.
TEST(TCMallocTest, Realloc) {
if (TestingPortal::Get()->IsDebuggingMalloc()) {
// debug alloc doesn't try to minimize reallocs
return;
}
// When sampling, we always allocate in units of page-size, which
// makes reallocs of small sizes do extra work (thus, failing these
// checks). Since sampling is random, we turn off sampling to make
// sure that doesn't happen to us here.
// turn off sampling
tcmalloc::Cleanup cleanup = SetFlag(&TestingPortal::Get()->GetSampleParameter(), 0);
int start_sizes[] = { 100, 1000, 10000, 100000 };
int deltas[] = { 1, -2, 4, -8, 16, -32, 64, -128 };
for (int s = 0; s < sizeof(start_sizes)/sizeof(*start_sizes); ++s) {
void* p = noopt(malloc(start_sizes[s]));
ASSERT_NE(p, nullptr);
// The larger the start-size, the larger the non-reallocing delta.
for (int d = 0; d < (s+1) * 2; ++d) {
void* new_p = noopt(realloc)(p, start_sizes[s] + deltas[d]);
ASSERT_EQ(p, new_p); // realloc should not allocate new memory
}
// Test again, but this time reallocing smaller first.
for (int d = 0; d < s*2; ++d) {
void* new_p = noopt(realloc)(p, start_sizes[s] - deltas[d]);
ASSERT_EQ(p, new_p); // realloc should not allocate new memory
}
free(p);
}
}
#if __cpp_exceptions
static int news_handled = 0;
static void TestNewHandler() {
++news_handled;
throw std::bad_alloc();
}
static void TestOneNew(void* (*func)(size_t)) {
func = noopt(func);
// success test
try {
void* ptr = (*func)(kNotTooBig);
if (0 == ptr) {
printf("allocation should not have failed.\n");
abort();
}
} catch (...) {
printf("allocation threw unexpected exception.\n");
abort();
}
// failure test
// we should always receive a bad_alloc exception
try {
(*func)(kTooBig);
printf("allocation should have failed.\n");
abort();
} catch (const std::bad_alloc&) {
// correct
} catch (...) {
printf("allocation threw unexpected exception.\n");
abort();
}
}
static void TestNew(void* (*func)(size_t)) {
news_handled = 0;
// test without new_handler:
std::new_handler saved_handler = std::set_new_handler(0);
TestOneNew(func);
// test with new_handler:
std::set_new_handler(TestNewHandler);
TestOneNew(func);
if (news_handled != 1) {
printf("new_handler was not called.\n");
abort();
}
std::set_new_handler(saved_handler);
}
static void TestOneNothrowNew(void* (*func)(size_t, const std::nothrow_t&)) {
func = noopt(func);
// success test
try {
void* ptr = (*func)(kNotTooBig, std::nothrow);
if (ptr == nullptr) {
printf("allocation should not have failed.\n");
abort();
}
} catch (...) {
printf("allocation threw unexpected exception.\n");
abort();
}
// failure test
// we should always receive a bad_alloc exception
try {
if ((*func)(kTooBig, std::nothrow) != 0) {
printf("allocation should have failed.\n");
abort();
}
} catch (...) {
printf("nothrow allocation threw unexpected exception.\n");
abort();
}
}
static void TestNothrowNew(void* (*func)(size_t, const std::nothrow_t&)) {
news_handled = 0;
// test without new_handler:
std::new_handler saved_handler = std::set_new_handler(0);
TestOneNothrowNew(func);
// test with new_handler:
std::set_new_handler(TestNewHandler);
TestOneNothrowNew(func);
if (news_handled != 1) {
printf("nothrow new_handler was not called.\n");
abort();
}
std::set_new_handler(saved_handler);
}
TEST(TCMallocTest, OperatorsNewOOMs) {
printf("Testing operator new(nothrow).\n");
TestNothrowNew(&::operator new);
printf("Testing operator new[](nothrow).\n");
TestNothrowNew(&::operator new[]);
printf("Testing operator new.\n");
TestNew(&::operator new);
printf("Testing operator new[].\n");
TestNew(&::operator new[]);
}
#endif // __cpp_exceptions
// These are used as callbacks by the sanity-check. Set* and Reset*
// register the hook that counts how many times the associated memory
// function is called. After each such call, call Verify* to verify
// that we used the tcmalloc version of the call, and not the libc.
// Note the ... in the hook signature: we don't care what arguments
// the hook takes.
#define MAKE_HOOK_CALLBACK(hook_type, ...) \
static volatile int g_##hook_type##_calls = 0; \
static void IncrementCallsTo##hook_type(__VA_ARGS__) { \
g_##hook_type##_calls++; \
} \
static void Verify##hook_type##WasCalled() { \
CHECK_GT(g_##hook_type##_calls, 0); \
g_##hook_type##_calls = 0; /* reset for next call */ \
} \
static void Set##hook_type() { \
CHECK(MallocHook::Add##hook_type( \
(MallocHook::hook_type)&IncrementCallsTo##hook_type)); \
} \
static void Reset##hook_type() { \
g_##hook_type##_calls = 0; \
CHECK(MallocHook::Remove##hook_type( \
(MallocHook::hook_type)&IncrementCallsTo##hook_type)); \
}
// We do one for each hook typedef in malloc_hook.h
MAKE_HOOK_CALLBACK(NewHook, const void*, size_t);
MAKE_HOOK_CALLBACK(DeleteHook, const void*);
static void TestAlignmentForSize(int size) {
const size_t min_align = TestingPortal::Get()->GetMinAlign();
printf("Testing alignment of malloc(%d)\n", size);
static const int kNum = 100;
void* ptrs[kNum];
for (int i = 0; i < kNum; i++) {
ptrs[i] = malloc(size);
uintptr_t p = reinterpret_cast<uintptr_t>(ptrs[i]);
CHECK((p % sizeof(void*)) == 0);
CHECK((p % sizeof(double)) == 0);
// Must have 16-byte (or 8-byte in case of -DTCMALLOC_ALIGN_8BYTES)
// alignment for large enough objects
if (size >= min_align) {
CHECK((p % min_align) == 0);
}
}
for (int i = 0; i < kNum; i++) {
free(ptrs[i]);
}
}
TEST(TCMallocTest, MallocAlignment) {
for (int lg = 0; lg < 16; lg++) {
TestAlignmentForSize((1<<lg) - 1);
TestAlignmentForSize((1<<lg) + 0);
TestAlignmentForSize((1<<lg) + 1);
}
}
TEST(TCMallocTest, HugeThreadCache) {
printf("==== Testing huge thread cache\n");
// More than 2^16 to cause integer overflow of 16 bit counters.
static const int kNum = 70000;
char** array = new char*[kNum];
for (int i = 0; i < kNum; ++i) {
array[i] = new char[10];
}
for (int i = 0; i < kNum; ++i) {
delete[] array[i];
}
delete[] array;
}
// Check that at least one of the callbacks from Ranges() contains
// the specified address with the specified type, and has size
// >= min_size.
static void CheckRangeCallback(void* ptr, base::MallocRange::Type type,
size_t min_size) {
bool matched = false;
const uintptr_t addr = reinterpret_cast<uintptr_t>(ptr);
auto callback = [&] (const base::MallocRange* r) -> void {
if (!(r->address <= addr && addr < r->address + r->length)) {
return;
}
if (type == base::MallocRange::FREE) {
// We are expecting r->type == FREE, but ReleaseMemory
// may have already moved us to UNMAPPED state instead (this happens in
// approximately 0.1% of executions). Accept either state.
CHECK(r->type == base::MallocRange::FREE ||
r->type == base::MallocRange::UNMAPPED);
} else {
CHECK_EQ(r->type, type);
}
CHECK_GE(r->length, min_size);
matched = true;
};
tcmalloc::FunctionRefFirstDataArg<void(const base::MallocRange*)> ref(callback);
MallocExtension::instance()->Ranges(ref.data, ref.fn);
EXPECT_TRUE(matched);
}
TEST(TCMallocTest, Ranges) {
static const int MB = 1048576;
void* a = malloc(MB);
void* b = malloc(MB);
base::MallocRange::Type releasedType =
TestingPortal::Get()->HaveSystemRelease() ? base::MallocRange::UNMAPPED : base::MallocRange::FREE;
CheckRangeCallback(a, base::MallocRange::INUSE, MB);
CheckRangeCallback(b, base::MallocRange::INUSE, MB);
(noopt(free))(a);
CheckRangeCallback(a, base::MallocRange::FREE, MB);
CheckRangeCallback(b, base::MallocRange::INUSE, MB);
MallocExtension::instance()->ReleaseFreeMemory();
CheckRangeCallback(a, releasedType, MB);
CheckRangeCallback(b, base::MallocRange::INUSE, MB);
(noopt(free))(b);
CheckRangeCallback(a, releasedType, MB);
CheckRangeCallback(b, base::MallocRange::FREE, MB);
}
static size_t GetUnmappedBytes() {
size_t bytes;
CHECK(MallocExtension::instance()->GetNumericProperty(
"tcmalloc.pageheap_unmapped_bytes", &bytes));
return bytes;
}
TEST(TCMallocTest, ReleaseToSystem) {
// Debug allocation mode adds overhead to each allocation which
// messes up all the equality tests here. I just disable the
// teset in this mode.
if (TestingPortal::Get()->IsDebuggingMalloc()) {
return;
}
if(!TestingPortal::Get()->HaveSystemRelease()) return;
tcmalloc::Cleanup release_rate_cleanup = SetFlag(&TestingPortal::Get()->GetReleaseRate(), 0);
tcmalloc::Cleanup decommit_cleanup = kAggressiveDecommit.Override(0);
static const int MB = 1048576;
void* a = noopt(malloc(MB));
void* b = noopt(malloc(MB));
MallocExtension::instance()->ReleaseFreeMemory();
size_t starting_bytes = GetUnmappedBytes();
// Calling ReleaseFreeMemory() a second time shouldn't do anything.
MallocExtension::instance()->ReleaseFreeMemory();
EXPECT_EQ(starting_bytes, GetUnmappedBytes());
// ReleaseToSystem shouldn't do anything either.
MallocExtension::instance()->ReleaseToSystem(MB);
EXPECT_EQ(starting_bytes, GetUnmappedBytes());
free(a);
// The span to release should be 1MB.
MallocExtension::instance()->ReleaseToSystem(MB/2);
EXPECT_EQ(starting_bytes + MB, GetUnmappedBytes());
// Should do nothing since the previous call released too much.
MallocExtension::instance()->ReleaseToSystem(MB/4);
EXPECT_EQ(starting_bytes + MB, GetUnmappedBytes());
free(b);
// Use up the extra MB/4 bytes from 'a' and also release 'b'.
MallocExtension::instance()->ReleaseToSystem(MB/2);
EXPECT_EQ(starting_bytes + 2*MB, GetUnmappedBytes());
// Should do nothing since the previous call released too much.
MallocExtension::instance()->ReleaseToSystem(MB/2);
EXPECT_EQ(starting_bytes + 2*MB, GetUnmappedBytes());
// Nothing else to release.
MallocExtension::instance()->ReleaseFreeMemory();
EXPECT_EQ(starting_bytes + 2*MB, GetUnmappedBytes());
a = noopt(malloc(MB));
free(a);
EXPECT_EQ(starting_bytes + MB, GetUnmappedBytes());
// Releasing less than a page should still trigger a release.
MallocExtension::instance()->ReleaseToSystem(1);
EXPECT_EQ(starting_bytes + 2*MB, GetUnmappedBytes());
}
TEST(TCMallocTest, AggressiveDecommit) {
// Debug allocation mode adds overhead to each allocation which
// messes up all the equality tests here. I just disable the
// teset in this mode.
if(TestingPortal::Get()->IsDebuggingMalloc() || !TestingPortal::Get()->HaveSystemRelease()) {
return;
}
printf("Testing aggressive de-commit\n");
MallocExtension::instance()->ReleaseFreeMemory();
tcmalloc::Cleanup cleanup = kAggressiveDecommit.Override(1);
static const int MB = 1048576;
void* a = noopt(malloc(MB));
void* b = noopt(malloc(MB));
size_t starting_bytes = GetUnmappedBytes();
// ReleaseToSystem shouldn't do anything either.
MallocExtension::instance()->ReleaseToSystem(MB);
EXPECT_EQ(starting_bytes, GetUnmappedBytes());
free(a);
// The span to release should be 1MB.
EXPECT_EQ(starting_bytes + MB, GetUnmappedBytes());
free(b);
EXPECT_EQ(starting_bytes + 2*MB, GetUnmappedBytes());
// Nothing else to release.
MallocExtension::instance()->ReleaseFreeMemory();
EXPECT_EQ(starting_bytes + 2*MB, GetUnmappedBytes());
a = noopt(malloc(MB));
free(a);
EXPECT_EQ(starting_bytes + 2*MB, GetUnmappedBytes());
printf("Done testing aggressive de-commit\n");
}
// On MSVC10, in release mode, the optimizer convinces itself
// g_no_memory is never changed (I guess it doesn't realize OnNoMemory
// might be called). Work around this by setting the var volatile.
volatile bool g_no_memory = false;
std::new_handler g_old_handler = NULL;
static void OnNoMemory() {
g_no_memory = true;
std::set_new_handler(g_old_handler);
}
TEST(TCMallocTest, SetNewMode) {
int old_mode = tc_set_new_mode(1);
g_old_handler = std::set_new_handler(&OnNoMemory);
g_no_memory = false;
void* ret = noopt(malloc(noopt(kTooBig)));
EXPECT_EQ(NULL, ret);
EXPECT_TRUE(g_no_memory);
g_old_handler = std::set_new_handler(&OnNoMemory);
g_no_memory = false;
ret = noopt(calloc(1, noopt(kTooBig)));
EXPECT_EQ(NULL, ret);
EXPECT_TRUE(g_no_memory);
g_old_handler = std::set_new_handler(&OnNoMemory);
g_no_memory = false;
ret = noopt(realloc(nullptr, noopt(kTooBig)));
EXPECT_EQ(NULL, ret);
EXPECT_TRUE(g_no_memory);
if (kOSSupportsMemalign) {
// Not really important, but must be small enough such that
// kAlignment + kTooBig does not overflow.
const int kAlignment = 1 << 5;
g_old_handler = std::set_new_handler(&OnNoMemory);
g_no_memory = false;
ret = Memalign(kAlignment, kTooBig);
EXPECT_EQ(NULL, ret);
EXPECT_TRUE(g_no_memory);
g_old_handler = std::set_new_handler(&OnNoMemory);
g_no_memory = false;
EXPECT_EQ(ENOMEM,
PosixMemalign(&ret, kAlignment, kTooBig));
EXPECT_EQ(NULL, ret);
EXPECT_TRUE(g_no_memory);
}
tc_set_new_mode(old_mode);
}
TEST(TCMallocTest, TestErrno) {
void* ret;
if (kOSSupportsMemalign) {
errno = 0;
ret = Memalign(128, kTooBig);
EXPECT_EQ(NULL, ret);
EXPECT_EQ(ENOMEM, errno);
}
errno = 0;
ret = noopt(malloc(noopt(kTooBig)));
EXPECT_EQ(NULL, ret);
EXPECT_EQ(ENOMEM, errno);
errno = 0;
ret = tc_malloc_skip_new_handler(kTooBig);
EXPECT_EQ(NULL, ret);
EXPECT_EQ(ENOMEM, errno);
}
// Ensure that nallocx works before main.
struct GlobalNallocx {
GlobalNallocx() {
if (!TestingPortal::Get()->IsDebuggingMalloc()) {
CHECK_GT(nallocx(99, 0), 99);
}
}
} global_nallocx;
#if defined(__GNUC__)
static void check_global_nallocx() __attribute__((constructor));
static void check_global_nallocx() {
if (TestingPortal::Get()->IsDebuggingMalloc()) {
return;
}
CHECK_GT(nallocx(99, 0), 99);
}
#endif // __GNUC__
static size_t GrowNallocxTestSize(size_t sz) {
if (sz < 1024) {
return sz + 7;
}
size_t divided = sz >> 7;
divided |= (divided >> 1);
divided |= (divided >> 2);
divided |= (divided >> 4);
divided |= (divided >> 8);
divided |= (divided >> 16);
divided += 1;
return sz + divided;
}
TEST(TCMallocTest, NAllocX) {
if (TestingPortal::Get()->IsDebuggingMalloc()) {
return;
}
for (size_t size = 0; size <= (1 << 20); size = GrowNallocxTestSize(size)) {
size_t rounded = nallocx(size, 0);
ASSERT_GE(rounded, size);
void* ptr = malloc(size);
ASSERT_EQ(rounded, MallocExtension::instance()->GetAllocatedSize(ptr));
free(ptr);
}
}
TEST(TCMallocTest, NAllocXAlignment) {
if (TestingPortal::Get()->IsDebuggingMalloc()) {
return;
}
for (size_t size = 0; size <= (1 << 20); size = GrowNallocxTestSize(size)) {
for (size_t align_log = 0; align_log < 10; align_log++) {
size_t rounded = nallocx(size, MALLOCX_LG_ALIGN(align_log));
size_t align = size_t{1} << align_log;
ASSERT_GE(rounded, size);
ASSERT_EQ(rounded % align, 0);
void* ptr = tc_memalign(align, size);
ASSERT_EQ(rounded, MallocExtension::instance()->GetAllocatedSize(ptr));
free(ptr);
}
}
}
struct NewHandlerHelper {
NewHandlerHelper(NewHandlerHelper* prev) : prev(prev) {
memset(filler, 0, sizeof(filler));
}
NewHandlerHelper* Pop() {
NewHandlerHelper* prev = this->prev;
delete this;
return prev;
}
NewHandlerHelper* const prev;
char filler[512];
};
static int saw_new_handler_runs;
static NewHandlerHelper* oom_test_last_ptr;
static void test_new_handler() {
oom_test_last_ptr = oom_test_last_ptr->Pop();
saw_new_handler_runs++;
}
TEST(TCMallocTest, NewHandler) {
// debug allocator does internal allocations and crashes when such
// internal allocation fails. So don't test it.
if (TestingPortal::Get()->IsDebuggingMalloc()) {
return;
}
ASSERT_EQ(oom_test_last_ptr, nullptr);
ASSERT_EQ(saw_new_handler_runs, 0);
tcmalloc::Cleanup clean_oom_testers([] () {
while (oom_test_last_ptr) {
oom_test_last_ptr = oom_test_last_ptr->Pop();
}
});
setup_oomable_sys_alloc();
std::new_handler old = std::set_new_handler(test_new_handler);
get_test_sys_alloc()->simulate_oom = true;
tcmalloc::Cleanup restore_oom([] () {
get_test_sys_alloc()->simulate_oom = false;
});
ASSERT_EQ(saw_new_handler_runs, 0);
// After we enabled "simulate oom" behavior in sys allocator, we may
// need to allocate a lot of NewHandlerHelper instances until all
// the page heap free reserves are consumed and we're hitting
// sysallocator. So we have a linked list of thoses and keep
// allocating until we see our test_new_handler runs.
//
// Note, there is also slight chance that we'll hit crash while
// failing to allocate internal metadata. It doesn't happen often
// (and not with default order of tests), but something we'll need
// to fix one day.
for (int i = 1<<24; i > 0; i--) {
oom_test_last_ptr = noopt(new NewHandlerHelper(oom_test_last_ptr));
ASSERT_NE(oom_test_last_ptr, nullptr);
if (saw_new_handler_runs) {
break;
}
}
ASSERT_EQ(saw_new_handler_runs, 1);
std::set_new_handler(old);
}
TEST(TCMallocTest, AllTests) {
AllocatorState rnd(100);
// Check that empty allocation works
printf("Testing empty allocation\n");
{
void* p1 = rnd.alloc(0);
ASSERT_NE(p1, nullptr);
void* p2 = rnd.alloc(0);
ASSERT_NE(p2, nullptr);
ASSERT_NE(p1, p2);
free(p1);
free(p2);
}
// This code stresses some of the memory allocation via STL.
// It may call operator delete(void*, nothrow_t).
printf("Testing STL use\n");
{
std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(0);
std::stable_sort(v.begin(), v.end());
}
#ifdef ENABLE_SIZED_DELETE
{
printf("Testing large sized delete is not crashing\n");
// Large sized delete
// case. https://github.com/gperftools/gperftools/issues/1254
std::vector<char*> addresses;
constexpr int kSizedDepth = 1024;
addresses.reserve(kSizedDepth);
for (int i = 0; i < kSizedDepth; i++) {
addresses.push_back(noopt(new char[12686]));
}
for (int i = 0; i < kSizedDepth; i++) {
::operator delete[](addresses[i], 12686);
}
}
#endif
// Test each of the memory-allocation functions once, just as a sanity-check
printf("Sanity-testing all the memory allocation functions\n");
{
// We use new-hook and delete-hook to verify we actually called the
// tcmalloc version of these routines, and not the libc version.
SetNewHook(); // defined as part of MAKE_HOOK_CALLBACK, above
SetDeleteHook(); // ditto
tcmalloc::Cleanup unhook([] () {
// Reset the hooks to what they used to be. These are all
// defined as part of MAKE_HOOK_CALLBACK, above.
ResetNewHook();
ResetDeleteHook();
});
void* p1 = noopt(malloc)(10);
ASSERT_NE(p1, nullptr); // force use of this variable
VerifyNewHookWasCalled();
// Also test the non-standard tc_malloc_size
size_t actual_p1_size = tc_malloc_size(p1);
ASSERT_GE(actual_p1_size, 10);
ASSERT_LT(actual_p1_size, 100000); // a reasonable upper-bound, I think
free(p1);
VerifyDeleteHookWasCalled();
p1 = tc_malloc_skip_new_handler(10);
ASSERT_NE(p1, nullptr);
VerifyNewHookWasCalled();
free(p1);
VerifyDeleteHookWasCalled();
p1 = noopt(calloc)(10, 2);
ASSERT_NE(p1, nullptr);
VerifyNewHookWasCalled();
// We make sure we realloc to a big size, since some systems (OS
// X) will notice if the realloced size continues to fit into the
// malloc-block and make this a noop if so.
p1 = noopt(realloc)(p1, 30000);
ASSERT_NE(p1, nullptr);
VerifyNewHookWasCalled();
VerifyDeleteHookWasCalled();
cfree(p1); // synonym for free
VerifyDeleteHookWasCalled();
if (kOSSupportsMemalign) {
ASSERT_EQ(noopt(PosixMemalign)(&p1, sizeof(p1), 40), 0);
ASSERT_NE(p1, nullptr);
VerifyNewHookWasCalled();
free(p1);
VerifyDeleteHookWasCalled();
p1 = noopt(Memalign)(sizeof(p1) * 2, 50);
ASSERT_NE(p1, nullptr);
VerifyNewHookWasCalled();
free(p1);
VerifyDeleteHookWasCalled();
}
// Windows has _aligned_malloc. Let's test that that's captured too.
#if (defined(_MSC_VER) || defined(__MINGW32__)) && !defined(PERFTOOLS_NO_ALIGNED_MALLOC)
p1 = noopt(_aligned_malloc)(sizeof(p1) * 2, 64);
ASSERT_NE(p1, nullptr);
VerifyNewHookWasCalled();
_aligned_free(p1);
VerifyDeleteHookWasCalled();
#endif
p1 = noopt(valloc(60));
ASSERT_NE(p1, nullptr);
VerifyNewHookWasCalled();
free(p1);
VerifyDeleteHookWasCalled();
p1 = noopt(pvalloc(70));
ASSERT_NE(p1, nullptr);
VerifyNewHookWasCalled();
free(p1);
VerifyDeleteHookWasCalled();
char* p2 = noopt(new char);
ASSERT_NE(p2, nullptr);
VerifyNewHookWasCalled();
delete p2;
VerifyDeleteHookWasCalled();
p2 = noopt(new char[100]);
ASSERT_NE(p2, nullptr);
VerifyNewHookWasCalled();
delete[] p2;
VerifyDeleteHookWasCalled();
p2 = noopt(new (std::nothrow) char);
ASSERT_NE(p2, nullptr);
VerifyNewHookWasCalled();
delete p2;
VerifyDeleteHookWasCalled();
p2 = noopt(new (std::nothrow) char[100]);
ASSERT_NE(p2, nullptr);
VerifyNewHookWasCalled();
delete[] p2;
VerifyDeleteHookWasCalled();
// Another way of calling operator new
p2 = noopt(static_cast<char*>(::operator new(100)));
ASSERT_NE(p2, nullptr);
VerifyNewHookWasCalled();
::operator delete(p2);
VerifyDeleteHookWasCalled();
// Try to call nothrow's delete too. Compilers use this.
p2 = noopt(static_cast<char*>(::operator new(100, std::nothrow)));
ASSERT_NE(p2, nullptr);
VerifyNewHookWasCalled();
::operator delete(p2, std::nothrow);
VerifyDeleteHookWasCalled();
#ifdef ENABLE_SIZED_DELETE
p2 = noopt(new char);
ASSERT_NE(p2, nullptr);
VerifyNewHookWasCalled();
::operator delete(p2, sizeof(char));
VerifyDeleteHookWasCalled();
p2 = noopt(new char[100]);
ASSERT_NE(p2, nullptr);
VerifyNewHookWasCalled();
::operator delete[](p2, sizeof(char) * 100);
VerifyDeleteHookWasCalled();
#endif
overaligned_type* poveraligned = noopt(new overaligned_type);
ASSERT_NE(poveraligned, nullptr);
ASSERT_EQ((((size_t)poveraligned) % kOveralignment), 0);
VerifyNewHookWasCalled();
delete poveraligned;
VerifyDeleteHookWasCalled();
poveraligned = noopt(new overaligned_type[10]);
ASSERT_NE(poveraligned, nullptr);
ASSERT_EQ((((size_t)poveraligned) % kOveralignment), 0);
VerifyNewHookWasCalled();
delete[] poveraligned;
VerifyDeleteHookWasCalled();
poveraligned = noopt(new(std::nothrow) overaligned_type);
ASSERT_NE(poveraligned, nullptr);
ASSERT_EQ((((size_t)poveraligned) % kOveralignment), 0);
VerifyNewHookWasCalled();
delete poveraligned;
VerifyDeleteHookWasCalled();
poveraligned = noopt(new(std::nothrow) overaligned_type[10]);
ASSERT_NE(poveraligned, nullptr);
ASSERT_EQ((((size_t)poveraligned) % kOveralignment), 0);
VerifyNewHookWasCalled();
delete[] poveraligned;
VerifyDeleteHookWasCalled();
// Another way of calling operator new
p2 = noopt(static_cast<char*>(::operator new(100, std::align_val_t(kOveralignment))));
ASSERT_NE(p2, nullptr);
ASSERT_EQ((((size_t)p2) % kOveralignment), 0);
VerifyNewHookWasCalled();
::operator delete(p2, std::align_val_t(kOveralignment));
VerifyDeleteHookWasCalled();
p2 = noopt(static_cast<char*>(::operator new(100, std::align_val_t(kOveralignment), std::nothrow)));
ASSERT_NE(p2, nullptr);
ASSERT_EQ((((size_t)p2) % kOveralignment), 0);
VerifyNewHookWasCalled();
::operator delete(p2, std::align_val_t(kOveralignment), std::nothrow);
VerifyDeleteHookWasCalled();
poveraligned = noopt(new overaligned_type);
ASSERT_NE(poveraligned, nullptr);
ASSERT_EQ((((size_t)poveraligned) % kOveralignment), 0);
VerifyNewHookWasCalled();
::operator delete(poveraligned, sizeof(overaligned_type), std::align_val_t(kOveralignment));
VerifyDeleteHookWasCalled();
poveraligned = noopt(new overaligned_type[10]);
ASSERT_NE(poveraligned, nullptr);
ASSERT_EQ((((size_t)poveraligned) % kOveralignment), 0);
VerifyNewHookWasCalled();
::operator delete[](poveraligned, sizeof(overaligned_type) * 10, std::align_val_t(kOveralignment));
VerifyDeleteHookWasCalled();
// On AIX user defined malloc replacement of libc routines
// cannot be done at link time must be done a runtime via
// environment variable MALLOCTYPE
#if !defined(_AIX)
// Try strdup(), which the system allocates but we must free. If
// all goes well, libc will use our malloc!
p2 = noopt(strdup("in memory of James Golick"));
ASSERT_NE(p2, nullptr);
VerifyNewHookWasCalled();
free(p2);
VerifyDeleteHookWasCalled();
#endif
}
// Check that "lots" of memory can be allocated
printf("Testing large allocation\n");
{
const int mb_to_allocate = 100;
void* p = rnd.alloc(mb_to_allocate << 20);
ASSERT_NE(p, nullptr); // could not allocate
free(p);
}
// Check calloc() with various arguments
printf("Testing calloc\n");
TestCalloc(0, 0, true);
TestCalloc(0, 1, true);
TestCalloc(1, 1, true);
TestCalloc(1<<10, 0, true);
TestCalloc(1<<20, 0, true);
TestCalloc(0, 1<<10, true);
TestCalloc(0, 1<<20, true);
TestCalloc(1<<20, 2, true);
TestCalloc(2, 1<<20, true);
TestCalloc(1000, 1000, true);
TestCalloc(kMaxSize, 2, false);
TestCalloc(2, kMaxSize, false);
TestCalloc(kMaxSize, kMaxSize, false);
TestCalloc(kMaxSignedSize, 3, false);
TestCalloc(3, kMaxSignedSize, false);
TestCalloc(kMaxSignedSize, kMaxSignedSize, false);
// Do the memory intensive tests after threads are done, since exhausting
// the available address space can make pthread_create to fail.
// Check that huge allocations fail with NULL instead of crashing
printf("Testing huge allocations\n");
TestHugeAllocations(&rnd);
// Check that large allocations fail with NULL instead of crashing
//
// debug allocation takes forever for huge allocs
if (!TestingPortal::Get()->IsDebuggingMalloc()) {
constexpr NumericProperty kHeapLimitMB{"tcmalloc.heap_limit_mb"};
printf("Testing out of memory\n");
tcmalloc::Cleanup cleanup_limit = kHeapLimitMB.Override(1<<10); // 1 gig. Note, this is in megs.
// Don't exercise more than 1 gig, no need to.
for (int s = 0; ; s += (10<<20)) {
void* large_object = rnd.alloc(s);
if (large_object == nullptr) {
break;
}
free(large_object);
}
}
}
TEST(TCMallocTest, EmergencyMalloc) {
auto portal = TestingPortal::Get();
if (!portal->HasEmergencyMalloc()) {
printf("EmergencyMalloc test skipped\n");
return;
}
SetNewHook();
SetDeleteHook();
tcmalloc::Cleanup unhook([] () {
ResetNewHook();
ResetDeleteHook();
});
void* p1 = noopt(tc_malloc)(32);
void* p2 = nullptr;
VerifyNewHookWasCalled();
portal->WithEmergencyMallocEnabled([&] () {
p2 = noopt(malloc)(32);
});
ASSERT_NE(p2, nullptr);
// Emergency malloc doesn't call hook
ASSERT_EQ(g_NewHook_calls, 0);
// Emergency malloc doesn't return pointers recognized by MallocExtension
ASSERT_EQ(MallocExtension::instance()->GetOwnership(p1), MallocExtension::kOwned);
ASSERT_EQ(MallocExtension::instance()->GetOwnership(p2), MallocExtension::kNotOwned);
// Emergency malloc automagically does the right thing for free()
// calls and doesn't invoke hooks.
tc_free(p2);
ASSERT_EQ(g_DeleteHook_calls, 0);
tc_free(p1);
VerifyDeleteHookWasCalled();
}
TEST(TCMallocTest, EmergencyMallocNoHook) {
auto portal = TestingPortal::Get();
if (!portal->HasEmergencyMalloc()) {
printf("EmergencyMallocNoHook test skipped\n");
return;
}
void* p1 = noopt(tc_malloc)(32);
void* p2 = nullptr;
void* p3 = nullptr;
void* p4 = nullptr;
portal->WithEmergencyMallocEnabled([&] () {
p2 = noopt(malloc)(32);
for (int i = 11; i < 999; i++) {
free(p3);
p3 = tc_calloc(1, i);
}
p4 = tc_calloc(4096, 1024);
});
ASSERT_NE(p2, nullptr);
ASSERT_NE(p3, nullptr);
ASSERT_NE(p4, nullptr);
// Emergency malloc doesn't return pointers recognized by MallocExtension
ASSERT_EQ(MallocExtension::instance()->GetOwnership(p1), MallocExtension::kOwned);
ASSERT_EQ(MallocExtension::instance()->GetOwnership(p2), MallocExtension::kNotOwned);
ASSERT_EQ(MallocExtension::instance()->GetOwnership(p3), MallocExtension::kNotOwned);
ASSERT_EQ(MallocExtension::instance()->GetOwnership(p4), MallocExtension::kNotOwned);
SetNewHook();
SetDeleteHook();
tcmalloc::Cleanup unhook([] () {
ResetNewHook();
ResetDeleteHook();
});
// Emergency malloc automagically does the right thing for free()
// calls and doesn't invoke hooks.
tc_free(p4);
tc_free(p3);
tc_free(p2);
ASSERT_EQ(g_DeleteHook_calls, 0);
tc_free(p1);
VerifyDeleteHookWasCalled();
}
TEST(TCMallocTest, Version) {
// Test tc_version()
int major;
int minor;
const char* patch;
char mmp[64];
const char* human_version = tc_version(&major, &minor, &patch);
int used = snprintf(mmp, sizeof(mmp), "gperftools %d.%d%s", major, minor, patch);
ASSERT_LT(used, sizeof(mmp));
ASSERT_EQ(strcmp(TC_VERSION_STRING, human_version), 0);
}
#ifdef _WIN32
#undef environ
#undef execle
#define environ _environ
#define execle tcmalloc_windows_execle
static intptr_t tcmalloc_windows_execle(const char* pathname, const char* argv0, const char* nl, const char* envp[]) {
CHECK_EQ(nl, nullptr);
const char* args[2] = {argv0, nullptr};
MallocExtension::instance()->MarkThreadIdle();
MallocExtension::instance()->ReleaseFreeMemory();
// MS's CRT _execle while kinda "similar" to real thing, is totally
// wrong (!!!). So we simulate it by doing spawn with _P_WAIT and
// exiting with status that we got.
intptr_t rv = _spawnve(_P_WAIT, pathname, args, envp);
if (rv < 0) {
perror("_spawnve");
abort();
}
_exit(static_cast<int>(rv));
}
#endif // _WIN32
// POSIX standard oddly requires users to define environ variable
// themselves. 3 of 3 bsd-derived systems I tested on actually
// don't bother having environ in their headers. Relevant ticket has
// been closed as "won't fix" in FreeBSD ticket tracker:
// https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=238672
//
// Just in case, we wrap this declaration with ifdef, so that if
// anyone has environ as macro (see windows case above), we won't be
// breaking anything.
#if !defined(environ)
extern "C" {
extern char** environ;
}
#endif
struct EnvProperty {
const char* const name;
constexpr EnvProperty(const char* name) : name(name) {}
std::string_view Get() const {
const char* v = getenv(name);
if (v == nullptr) {
return {};
}
return {v};
}
using override_set = std::vector<std::pair<std::string, std::string>>;
using env_override_fn = std::function<void(override_set*)>;
static std::function<std::vector<const char*>()> DuplicateAndUpdateEnv(env_override_fn fn) {
return [fn] () {
override_set overrides;
fn(&overrides);
return DoDuplicateAndUpdateEnv(std::move(overrides));
};
}
static std::vector<const char*> DoDuplicateAndUpdateEnv(override_set overrides) {
std::vector<const char*> vec;
for (const char* const *p = environ; *p; p++) {
std::string_view k_and_v{*p};
auto pos = k_and_v.find('=');
CHECK(pos != std::string_view::npos);
std::string_view k = k_and_v.substr(0, pos);
int i = overrides.size() - 1;;
for (; i >= 0; i--) {
if (overrides[i].first == k) {
break;
}
}
if (i < 0) {
vec.push_back(*p);
}
}
for (const auto& [k, v] : overrides) {
if (v.empty()) {
continue;
}
size_t sz = k.size() + v.size() + 1 + 1;
char* new_k_and_v = new char[sz];
auto it = std::copy(k.begin(), k.end(), new_k_and_v);
*it++ = '=';
it = std::copy(v.begin(), v.end(), it);
*it++ = '\0';
CHECK_EQ(it, new_k_and_v + sz);
vec.push_back(new_k_and_v);
}
vec.push_back(nullptr);
return vec;
}
void Set(override_set* overrides, const char* new_value) const {
overrides->emplace_back(std::string(name), std::string(new_value));
}
void SetAndPrint(override_set* overrides, const char* new_value) const {
printf("Testing %s=%s\n", name, new_value);
return Set(overrides, new_value);
}
};
// We want to run tests with several runtime configuration tweaks. For
// improved test coverage. Previously we had shell script driving
// this, now we handle this by exec-ing just at the end of all tests.
//
// Do note, though, that this logic is only activated if test program
// is run with no args. I.e. if you're debugging specific unit-test(s)
// by passing --gtest_filter or other flags, you'll need to set up
// environment variables yourself. See SetupExec below.
//
// We test 4 extra settings:
//
// * TCMALLOC_TRANSFER_NUM_OBJ = 40
//
// * TCMALLOC_TRANSFER_NUM_OBJ = 4096
//
// * TCMALLOC_AGGRESSIVE_DECOMMIT = t
//
// * TCMALLOC_HEAP_LIMIT_MB = 512
//
// * TCMALLOC_ENABLE_SIZED_DELETE = t (note, this one is no-op in most
// common builds)
std::function<std::vector<const char*>()> PrepareEnv() {
static constexpr EnvProperty kUpdateNoEnv{"TCMALLOC_UNITTEST_ENV_UPDATE_NO"};
static constexpr EnvProperty kTransferNumObjEnv{"TCMALLOC_TRANSFER_NUM_OBJ"};
static constexpr EnvProperty kAggressiveDecommitEnv{"TCMALLOC_AGGRESSIVE_DECOMMIT"};
static constexpr EnvProperty kHeapLimitEnv{"TCMALLOC_HEAP_LIMIT_MB"};
static constexpr EnvProperty kEnableSizedDeleteEnv{"TCMALLOC_ENABLE_SIZED_DELETE"};
std::string_view testno = kUpdateNoEnv.Get();
using override_set = EnvProperty::override_set;
if (testno == "") {
return EnvProperty::DuplicateAndUpdateEnv([] (override_set* overrides) {
kTransferNumObjEnv.SetAndPrint(overrides, "40");
kUpdateNoEnv.Set(overrides, "1");
});
}
if (testno == "1") {
return EnvProperty::DuplicateAndUpdateEnv([] (override_set* overrides) {
kTransferNumObjEnv.SetAndPrint(overrides, "4096");
kUpdateNoEnv.Set(overrides, "2");
});
}
if (testno == "2") {
return EnvProperty::DuplicateAndUpdateEnv([] (override_set* overrides) {
kTransferNumObjEnv.Set(overrides, "");
kAggressiveDecommitEnv.SetAndPrint(overrides, "t");
kUpdateNoEnv.Set(overrides, "3");
});
}
if (testno == "3") {
return EnvProperty::DuplicateAndUpdateEnv([] (override_set* overrides) {
kAggressiveDecommitEnv.Set(overrides, "");
kHeapLimitEnv.SetAndPrint(overrides, "512");
kUpdateNoEnv.Set(overrides, "4");
});
}
if (testno == "4") {
return EnvProperty::DuplicateAndUpdateEnv([] (override_set* overrides) {
kHeapLimitEnv.Set(overrides, "");
kEnableSizedDeleteEnv.SetAndPrint(overrides, "t");
kUpdateNoEnv.Set(overrides, "5");
});
}
if (testno == "5") {
return {};
}
printf("Unknown %s: %.*s\n", kUpdateNoEnv.name, static_cast<int>(testno.size()), testno.data());
abort();
}
std::function<void()> SetupExec(int argc, char** argv) {
if (argc != 1) {
return {};
}
std::function<std::vector<const char*>()> env_fn = PrepareEnv();
if (!env_fn) {
return env_fn;
}
const char* program_name = strdup(argv[0]);
// printf("program_name = %s\n", program_name);
return [program_name, env_fn] () {
std::vector<const char*> vec = env_fn();
// printf("pre-exec:\n");
// for (const char* k_and_v : vec) {
// if (k_and_v) {
// printf("%s\n", k_and_v);
// }
// }
// printf("\n");
CHECK_EQ(execle(program_name, program_name, nullptr, vec.data()), 0);
};
}
int main(int argc, char** argv) {
std::function<void()> exec_fn = SetupExec(argc, argv);
if (TestingPortal::Get()->IsDebuggingMalloc()) {
// return freed blocks to tcmalloc immediately
TestingPortal::Get()->GetMaxFreeQueueSize() = 0;
}
#if defined(__linux) || defined(_WIN32)
// We know that Linux and Windows have functional memory releasing
// support. So don't let us degrade on that.
if (!getenv("DONT_TEST_SYSTEM_RELEASE")) {
CHECK(TestingPortal::Get()->HaveSystemRelease());
}
#endif
testing::InitGoogleTest(&argc, argv);
int err_code = RUN_ALL_TESTS();
if (err_code || !exec_fn) {
return err_code;
}
// if exec_fn is not empty and we've passed tests so far, lets try
// to continue testing by updating environment variables and
// self-execing.
exec_fn();
printf("Shouldn't be reachable\n");
}
|