1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
import gleam/io
import gleam/int
import gleam/list
import gleam/bool
import gleam/pair
import gleam/result as res
import gleam/dict.{type Dict}
import gleam/set.{type Set}
import gleam/function as fun
import gleam/iterator as iter
import ext/intx
import ext/setx
import ext/listx
import ext/resultx as resx
import ext/genericx as genx
import ext/iteratorx as iterx
import util/grid
import util/input_util
import util/dir.{type Dir, East, North, South, West}
import util/pos2.{type Pos2}
import util/parser as p
const tile_size = 10
const monster_pattern = "..................#.\n#....##....##....###\n.#..#..#..#..#..#..."
const monster_side = 20
const monster_area = 15
type Tile {
Tile(id: Int, filled: Set(Pos2))
}
type Layout =
Dict(Pos2, Tile)
fn parse_tiles(input: String) -> List(Tile) {
let tile_parser =
p.literal("Tile ")
|> p.proceed(with: p.int())
|> p.skip(p.literal(":\n"))
|> p.then(p.any_str_of_len(tile_size * tile_size + { tile_size - 1 }))
|> p.map2(fn(id, content) {
Tile(
id,
content
|> grid.parse_grid(with: pair.new),
)
})
let assert Ok(tiles) =
input
|> p.parse_entire(
with: tile_parser
|> p.sep1(by: p.nlnl())
|> p.skip_ws,
)
tiles
}
fn socket_at(tile: Tile, dir: Dir) -> Int {
let #(filter_fn, filter_eq, map_fn) = case dir {
North -> #(pos2.y, 0, pos2.x)
East -> #(pos2.x, tile_size - 1, pos2.y)
South -> #(pos2.y, tile_size - 1, pos2.x)
West -> #(pos2.x, 0, pos2.y)
}
tile.filled
|> set.to_list
|> list.filter(keeping: fn(pos) { filter_fn(pos) == filter_eq })
|> list.map(with: fn(pos) { int.bitwise_shift_left(1, map_fn(pos)) })
|> int.sum
}
fn edge_ids(tile: Tile) -> List(Int) {
let dedup = fn(socket) {
int.min(socket, intx.reverse_bits(socket, tile_size))
}
[
socket_at(tile, North),
socket_at(tile, East),
socket_at(tile, South),
socket_at(tile, West),
]
|> list.map(with: dedup)
}
fn corners(tiles: List(Tile)) -> Set(Int) {
let counts =
tiles
|> list.flat_map(with: edge_ids)
|> listx.counts
tiles
|> list.filter(keeping: fn(tile) {
tile
|> edge_ids
|> list.map(with: fn(edge_id) {
counts
|> dict.get(edge_id)
|> resx.assert_unwrap
})
|> listx.count(satisfying: genx.equals(_, 1))
|> genx.equals(2)
})
|> list.map(with: fn(tile) { tile.id })
|> set.from_list
}
fn flip_pos(pos: Pos2, side: Int) -> Pos2 {
let #(x, y) = pos
#({ side - 1 } - x, y)
}
fn rotate_pos(pos: Pos2, side: Int) -> Pos2 {
let #(x, y) = pos
#({ side - 1 } - y, x)
}
fn shape_variants(
from s0: s,
and side: Int,
with map: fn(s, fn(Pos2) -> Pos2) -> s,
) -> List(s) {
let s1 = map(s0, rotate_pos(_, side))
let s2 = map(s1, rotate_pos(_, side))
let s3 = map(s2, rotate_pos(_, side))
let f0 = map(s0, flip_pos(_, side))
let f1 = map(f0, rotate_pos(_, side))
let f2 = map(f1, rotate_pos(_, side))
let f3 = map(f2, rotate_pos(_, side))
[s0, s1, s2, s3, f0, f1, f2, f3]
}
fn find_layout(
side: Int,
corners: Set(Int),
layout: Layout,
free: List(Tile),
) -> Result(Layout, Nil) {
let selected = dict.size(layout)
use <- bool.guard(when: selected == side * side, return: Ok(layout))
let #(row, col) = #(selected / side, selected % side)
let required_top =
layout
|> dict.get(#(col, row - 1))
|> res.map(with: socket_at(_, South))
let required_left =
layout
|> dict.get(#(col - 1, row))
|> res.map(with: socket_at(_, East))
free
|> list.filter(keeping: fn(candidate) {
case { row == 0 || row == side - 1 } && { col == 0 || col == side - 1 } {
True -> set.contains(corners, candidate.id)
False -> True
}
})
|> list.filter(keeping: fn(candidate) {
res.is_error(required_top)
|| Ok(socket_at(candidate, North)) == required_top
})
|> list.filter(keeping: fn(candidate) {
res.is_error(required_left)
|| Ok(socket_at(candidate, West)) == required_left
})
|> list.filter_map(with: fn(candidate) {
find_layout(
side,
corners,
dict.insert(into: layout, for: #(col, row), insert: candidate),
list.filter(free, keeping: fn(tile) { tile.id != candidate.id }),
)
})
|> list.first
}
fn flatten_layout(layout: Layout) -> Set(Pos2) {
layout
|> dict.to_list
|> list.flat_map(with: fn(entry) {
let #(#(tx, ty), tile) = entry
tile.filled
|> set.to_list
|> list.flat_map(with: fn(pos) {
let #(x, y) = pos
case x == 0 || x == tile_size - 1 || y == 0 || y == tile_size - 1 {
True -> []
False -> [
#(tx * { tile_size - 2 } + x - 1, ty * { tile_size - 2 } + y - 1),
]
}
})
})
|> set.from_list
}
fn count_monsters(positions: Set(Pos2)) -> Int {
let monster_variants =
monster_pattern
|> grid.parse_grid(with: pair.new)
|> shape_variants(and: monster_side, with: setx.map)
let x_bound =
positions
|> setx.map(pos2.x)
|> set.fold(0, int.max)
let y_bound =
positions
|> setx.map(pos2.y)
|> set.fold(0, int.max)
let counts =
monster_variants
|> list.map(with: fn(variant) {
iter.range(-monster_side, y_bound + monster_side)
|> iter.flat_map(with: fn(y) {
iter.range(-monster_side, x_bound + monster_side)
|> iter.map(with: fn(x) {
variant
|> setx.map(with: pos2.add(_, #(x, y)))
|> set.intersection(and: positions)
|> set.size
== monster_area
})
})
|> iterx.count(satisfying: fun.identity)
})
list.fold(over: counts, from: 0, with: int.max)
}
fn part1(input: String) -> Int {
input
|> parse_tiles
|> corners
|> set.to_list
|> int.product
}
fn part2(input: String) -> Int {
let tiles = parse_tiles(input)
let side = intx.sqrt(list.length(tiles))
let assert Ok(layout) =
find_layout(
side,
corners(tiles),
dict.new(),
list.flat_map(tiles, with: fn(t0) {
use tile, transform <- shape_variants(from: t0, and: tile_size)
Tile(tile.id, setx.map(tile.filled, with: transform))
}),
)
let positions = flatten_layout(layout)
set.size(positions) - count_monsters(positions) * monster_area
}
pub fn main() -> Nil {
let testing = input_util.read_text("test20")
let assert 20_899_048_083_289 = part1(testing)
let assert 273 = part2(testing)
let input = input_util.read_text("day20")
io.debug(part1(input))
io.debug(part2(input))
Nil
}
|