blob: 1fccbefd34974c895e3b20a03e4f081bb6db703e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
#lang racket
(define/contract (is-palindrome x)
(-> exact-integer? boolean?)
; get the easy cases out of the way first
; negative numbers are not palindromes, single-digit numbers are
(cond [(x . < . 0) #false]
[(x . < . 10) #true]
[else
; order-of-magnitude returns the scientific notation exponent
; so add 1 to get the number of digits
(define digits
(add1 (order-of-magnitude x)))
; figure out how many digits we need to trim to find the mirrored halves
; if there are an even number of digits 2n, we will remove n of them from the right
; if there are an odd number of digits 2n+1, we will remove n+1 of them from the right
(define half-digits
(cond [(even? digits) (/ digits 2)]
[else (/ (add1 digits) 2)]))
; divide x by a power of 10 to get the digits to match
(define front-half
(quotient x (expt 10 half-digits)))
; reverse the back half with repeated divisions by 10
(define back-half-reversed
(for/fold ([reversed 0]
[remaining (remainder x (expt 10 half-digits))]
; build up the sum of the digits in reversed and return it at the end
#:result reversed)
; if we have an odd number of digits, we don't need to match the middle one
([n (in-range (if (even? digits)
half-digits
(sub1 half-digits)))])
; shift all the accumulated digits in the mirror to the left one place
; and add the next one to the right,
; then chop the right-most digit off the original
(values (+ (* 10 reversed) (remainder remaining 10))
(quotient remaining 10))))
; finally, check to see if the mirrored right is equal to the original left
(= front-half back-half-reversed)]))
|