1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
import adglent.{First, Second}
import gleam/io
import gleam/list
import gleam/string
import gleam/bool
type SymmetryType {
Horizontal(Int)
Vertical(Int)
}
fn is_symmetric(xss: List(List(a)), errs: Int) {
let assert [left, ..right] = xss
do_is_symmetric([left], right, errs)
}
fn do_is_symmetric(
left: List(List(a)),
right: List(List(a)),
errors: Int,
) -> Result(Int, Nil) {
use <- bool.guard(list.is_empty(right), Error(Nil))
let assert [h, ..t] = right
let found_errors =
list.zip(list.flatten(left), list.flatten(right))
|> list.filter(fn(tup) { tup.1 != tup.0 })
|> list.length
case found_errors == errors {
True -> Ok(list.length(left))
False -> do_is_symmetric([h, ..left], t, errors)
}
}
fn get_symmetry_type(xss: List(List(String)), errors: Int) {
case is_symmetric(xss, errors) {
Ok(n) -> Horizontal(n)
_ -> {
let assert Ok(n) = is_symmetric(list.transpose(xss), errors)
Vertical(n)
}
}
}
fn summarize_notes(symmetries: List(SymmetryType)) {
use acc, note <- list.fold(symmetries, 0)
acc
+ case note {
Horizontal(n) -> 100 * n
Vertical(n) -> n
}
}
fn solve(input: String, errors: Int) {
input
|> string.split("\n\n")
|> list.map(fn(strs) {
strs
|> string.split("\n")
|> list.map(string.to_graphemes)
|> get_symmetry_type(errors)
})
|> summarize_notes
|> string.inspect
}
pub fn part1(input: String) {
solve(input, 0)
}
pub fn part2(input: String) {
solve(input, 1)
}
pub fn main() {
let assert Ok(part) = adglent.get_part()
let assert Ok(input) = adglent.get_input("13")
case part {
First ->
part1(input)
|> adglent.inspect
|> io.println
Second ->
part2(input)
|> adglent.inspect
|> io.println
}
}
|