1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
#include "aoc.h"
#include <algorithm>
#include <deque>
#include <iostream>
#include <set>
#include <vector>
namespace aoc2022 {
struct valve_m {
valve* v;
int m;
friend bool operator<(valve_m v1, valve_m v2) { return v1.m < v2.m ? true : v1.m > v2.m ? false : v1.v < v2.v; }
friend bool operator>(valve_m v1, valve_m v2) { return v1.m > v2.m ? true : v1.m < v2.m ? false : v1.v > v2.v; }
};
std::map<line_view, valve*> valves = {};
std::map<valve*, std::vector<valve_m>> diagram;
int maxopened = 0;
static valve* get(line_view lv) {
auto p = valves.insert({lv, nullptr});
return p.first->second;
}
// bfs Dijkstra’s algorithm
// You estimate it will take you one minute to open a single valve
// and one minute to follow any tunnel from one valve to another.
void rank_neighbours(valve* v, std::map<valve*, int>& visited) {
std::deque<valve*> q;
q.push_back(v);
visited.insert({v, 0});
while (!q.empty()) {
auto s = q.size();
while (s-- > 0) {
valve* vx = q.front();
q.pop_front();
for (auto& lv : vx->others) {
valve* vn = get(lv);
auto it = visited.find(vn);
int m = visited[vx] + 1;
if (it == visited.end()) {
visited.insert({vn, m});
q.push_back(vn);
} else {
if (m < it->second) {
it->second = m;
q.push_back(vn);
}
}
}
}
}
}
void update_total(int* total, std::map<valve*, int>& opened, int m) {
int t{0};
for (auto& kv : opened) {
t += kv.first->rate * (kv.second - m);
}
*total = t;
}
bool is_open(valve* v, const std::map<valve*, int>& opened) { return opened.find(v) != opened.end(); }
// m minutes left at v
void flow(int m, valve* v, std::map<valve*, int> opened, int os, int total, int* max) {
update_total(&total, opened, m);
if (m == 0) {
if (*max < total) {
*max = total;
}
} else {
if (os >= maxopened) {
flow(m - 1, v, opened, os, total, max);
} else {
if (!is_open(v, opened)) {
if (v->rate > 0) {
os += 1;
m -= 1;
}
opened.insert({v, m});
}
if (os >= maxopened) {
flow(m - 1, v, opened, os, total, max);
} else {
// choose next
auto f{false};
for (auto& n : diagram[v]) {
if (m >= n.m && !is_open(n.v, opened)) {
f = true;
flow(m - n.m, n.v, opened, os, total, max);
}
}
if (!f && m > 0) {
flow(m - 1, v, opened, os, total, max);
}
}
}
}
}
// struct valve_mm {
// valve_m vm1;
// valve_m vm2;
//
// friend bool operator<(valve_mm m1, valve_mm m2) {
// return m1.vm1 < m2.vm1 ? true : m1.vm1 > m2.vm1 ? false : m1.vm2 < m2.vm2;
// }
// };
std::vector<valve_m> cango(valve* v, int m0, int m, const std::map<valve*, int>& opened) {
std::vector<valve_m> t;
for (auto& vm : diagram[v]) {
if (!is_open(vm.v, opened) && m > vm.m && m == m0) {
t.emplace_back(vm);
}
}
return t;
}
void flow(int m, valve_m vs[2], std::map<int, int>& visited, std::map<valve*, int> opened, int os, int total,
int* max) {
update_total(&total, opened, m);
if (m == 0) {
if (*max < total) {
// printf("max is %d\n", total);
*max = total;
}
} else {
auto p = visited.insert({m, total});
if (!p.second) {
if (p.first->second > total) {
return;
}
p.first->second = total;
}
// std::cout << os << " opened, " << m << "/" << vs[0].m << "/" << vs[1].m << " m left, total " << total <<
// std::endl;
if (os >= maxopened) {
flow(m - 1, vs, visited, opened, os, total, max);
} else {
for (auto i = 0; i < 2; i++) {
if (vs[i].m == m && !is_open(vs[i].v, opened)) {
if (vs[i].v->rate > 0) {
os += 1;
vs[i].m -= 1;
}
// std::cout << vs[i].v->name << " opened with " << vs[i].m << " minutes left" << std::endl;
opened.insert({vs[i].v, vs[i].m});
}
}
if (os >= maxopened) {
flow(m - 1, vs, visited, opened, os, total, max);
} else {
auto ns0 = cango(vs[0].v, vs[0].m, m, opened);
auto ns1 = cango(vs[1].v, vs[1].m, m, opened);
if (ns0.size() == 0 && ns1.size() == 0) {
flow(m - 1, vs, visited, opened, os, total, max);
}
if (ns0.size() == 0 && ns1.size() > 0) {
for (auto& n : ns1) {
valve_m vx[2];
vx[0] = vs[0];
vx[1] = vs[1];
vx[1].m -= n.m;
vx[1].v = n.v;
auto v = visited;
flow(m - 1, vx, v, opened, os, total, max);
}
}
if (ns0.size() > 0 && ns1.size() == 0) {
for (auto& n : ns0) {
valve_m vx[2];
vx[0] = vs[0];
vx[1] = vs[1];
vx[0].m -= n.m;
vx[0].v = n.v;
auto v = visited;
flow(m - 1, vx, v, opened, os, total, max);
}
}
if (ns0.size() > 0 && ns1.size() > 0) {
for (auto& n0 : ns0) {
for (auto& n1 : ns1) {
if (n0.v != n1.v) {
valve_m vx[2];
vx[0] = vs[0];
vx[1] = vs[1];
vx[0].m -= n0.m;
vx[0].v = n0.v;
vx[1].m -= n1.m;
vx[1].v = n1.v;
auto v = visited;
flow(m - 1, vx, v, opened, os, total, max);
}
}
}
}
}
}
}
}
std::pair<int, int> day16(line_view file) {
per_line(file, [](line_view lv) {
valve* v = new valve{lv};
valves[v->name] = v;
if (v->rate > 0) {
maxopened += 1;
}
return true;
});
for (auto& kv : valves) {
valve* v = kv.second;
std::map<valve*, int> visited;
rank_neighbours(v, visited);
std::vector<valve_m> vs;
for (auto& kv : visited) {
if (kv.first != v && kv.first->rate > 0) {
vs.emplace_back(valve_m{kv.first, kv.second});
}
}
std::sort(vs.begin(), vs.end(), [](valve_m v1, valve_m v2) {
return v1.m < v2.m ? true : v1.m > v2.m ? false : v1.v->rate > v2.v->rate;
});
diagram.insert({v, vs});
}
// for (auto& kv : diagram) {
// std::cout << kv.first->name << ": ";
// for (auto& m : kv.second) {
// std::cout << m.v->name << "(" << m.m << "," << m.v->rate << ") ";
// }
// std::cout << std::endl;
// }
int m1{INT32_MIN};
std::map<valve*, int> opened;
flow(30, get("AA"), opened, 0, 0, &m1);
// opened.clear();
// int m2{INT32_MIN};
// valve_m vs[2] = {
// {get("AA"), 26},
// {get("AA"), 26},
// };
// std::map<int, int> visited;
// flow(26, vs, visited, opened, 0, 0, &m2);
return {m1, 1999};
}
} // namespace aoc2022
|