1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
|
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements. Also found here are subroutines
** to generate VDBE code to evaluate expressions.
**
** $Id: where.c,v 1.20 2001/09/16 00:13:27 drh Exp $
*/
#include "sqliteInt.h"
/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause. Each WHERE
** clause subexpression is separated from the others by an AND operator.
*/
typedef struct ExprInfo ExprInfo;
struct ExprInfo {
Expr *p; /* Pointer to the subexpression */
int indexable; /* True if this subexprssion is usable by an index */
int idxLeft; /* p->pLeft is a column in this table number. -1 if
** p->pLeft is not the column of any table */
int idxRight; /* p->pRight is a column in this table number. -1 if
** p->pRight is not the column of any table */
unsigned prereqLeft; /* Tables referenced by p->pLeft */
unsigned prereqRight; /* Tables referenced by p->pRight */
};
/*
** Determine the number of elements in an array.
*/
#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
/*
** This routine is used to divide the WHERE expression into subexpressions
** separated by the AND operator.
**
** aSlot[] is an array of subexpressions structures.
** There are nSlot spaces left in this array. This routine attempts to
** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
** The return value is the number of slots filled.
*/
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
int cnt = 0;
if( pExpr==0 || nSlot<1 ) return 0;
if( nSlot==1 || pExpr->op!=TK_AND ){
aSlot[0].p = pExpr;
return 1;
}
if( pExpr->pLeft->op!=TK_AND ){
aSlot[0].p = pExpr->pLeft;
cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
}else{
cnt = exprSplit(nSlot, aSlot, pExpr->pRight);
cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pLeft);
}
return cnt;
}
/*
** This routine walks (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree. Bit 0 of the mask is set if table 0 is used. But 1 is set
** if table 1 is used. And so forth.
**
** In order for this routine to work, the calling function must have
** previously invoked sqliteExprResolveIds() on the expression. See
** the header comment on that routine for additional information.
**
** "base" is the cursor number (the value of the iTable field) that
** corresponds to the first entry in the table list. This is the
** same as pParse->nTab.
*/
static int exprTableUsage(int base, Expr *p){
unsigned int mask = 0;
if( p==0 ) return 0;
if( p->op==TK_COLUMN ){
return 1<< (p->iTable - base);
}
if( p->pRight ){
mask = exprTableUsage(base, p->pRight);
}
if( p->pLeft ){
mask |= exprTableUsage(base, p->pLeft);
}
return mask;
}
/*
** The input to this routine is an ExprInfo structure with only the
** "p" field filled in. The job of this routine is to analyze the
** subexpression and populate all the other fields of the ExprInfo
** structure.
**
** "base" is the cursor number (the value of the iTable field) that
** corresponds to the first entyr in the table list. This is the
** same as pParse->nTab.
*/
static void exprAnalyze(int base, ExprInfo *pInfo){
Expr *pExpr = pInfo->p;
pInfo->prereqLeft = exprTableUsage(base, pExpr->pLeft);
pInfo->prereqRight = exprTableUsage(base, pExpr->pRight);
pInfo->indexable = 0;
pInfo->idxLeft = -1;
pInfo->idxRight = -1;
if( pExpr->op==TK_EQ && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
if( pExpr->pRight->op==TK_COLUMN ){
pInfo->idxRight = pExpr->pRight->iTable - base;
pInfo->indexable = 1;
}
if( pExpr->pLeft->op==TK_COLUMN ){
pInfo->idxLeft = pExpr->pLeft->iTable - base;
pInfo->indexable = 1;
}
}
}
/*
** Generating the beginning of the loop used for WHERE clause processing.
** The return value is a pointer to an (opaque) structure that contains
** information needed to terminate the loop. Later, the calling routine
** should invoke sqliteWhereEnd() with the return value of this function
** in order to complete the WHERE clause processing.
**
** If an error occurs, this routine returns NULL.
*/
WhereInfo *sqliteWhereBegin(
Parse *pParse, /* The parser context */
IdList *pTabList, /* A list of all tables */
Expr *pWhere, /* The WHERE clause */
int pushKey /* If TRUE, leave the table key on the stack */
){
int i; /* Loop counter */
WhereInfo *pWInfo; /* Will become the return value of this function */
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
int brk, cont; /* Addresses used during code generation */
int *aOrder; /* Order in which pTabList entries are searched */
int nExpr; /* Number of subexpressions in the WHERE clause */
int loopMask; /* One bit set for each outer loop */
int haveKey; /* True if KEY is on the stack */
int base; /* First available index for OP_Open opcodes */
Index *aIdx[32]; /* Index to use on each nested loop. */
int aDirect[32]; /* If TRUE, then index this table using ROWID */
ExprInfo aExpr[50]; /* The WHERE clause is divided into these expressions */
/* Allocate space for aOrder[]. */
aOrder = sqliteMalloc( sizeof(int) * pTabList->nId );
/* Allocate and initialize the WhereInfo structure that will become the
** return value.
*/
pWInfo = sqliteMalloc( sizeof(WhereInfo) );
if( sqlite_malloc_failed ){
sqliteFree(aOrder);
sqliteFree(pWInfo);
return 0;
}
pWInfo->pParse = pParse;
pWInfo->pTabList = pTabList;
base = pWInfo->base = pParse->nTab;
/* Split the WHERE clause into as many as 32 separate subexpressions
** where each subexpression is separated by an AND operator. Any additional
** subexpressions are attached in the aExpr[32] and will not enter
** into the query optimizer computations. 32 is chosen as the cutoff
** since that is the number of bits in an integer that we use for an
** expression-used mask.
*/
memset(aExpr, 0, sizeof(aExpr));
nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
/* Analyze all of the subexpressions.
*/
for(i=0; i<nExpr; i++){
exprAnalyze(pParse->nTab, &aExpr[i]);
}
/* Figure out a good nesting order for the tables. aOrder[0] will
** be the index in pTabList of the outermost table. aOrder[1] will
** be the first nested loop and so on. aOrder[pTabList->nId-1] will
** be the innermost loop.
**
** Someday will put in a good algorithm here to reorder the loops
** for an effiecient query. But for now, just use whatever order the
** tables appear in in the pTabList.
*/
for(i=0; i<pTabList->nId; i++){
aOrder[i] = i;
}
/* Figure out what index to use (if any) for each nested loop.
** Make aIdx[i] point to the index to use for the i-th nested loop
** where i==0 is the outer loop and i==pTabList->nId-1 is the inner
** loop. If the expression uses only the ROWID field, then set
** aDirect[i] to 1.
**
** Actually, if there are more than 32 tables in the join, only the
** first 32 tables are candidates for indices.
*/
loopMask = 0;
for(i=0; i<pTabList->nId && i<ARRAYSIZE(aIdx); i++){
int j;
int idx = aOrder[i];
Table *pTab = pTabList->a[idx].pTab;
Index *pIdx;
Index *pBestIdx = 0;
/* Check to see if there is an expression that uses only the
** ROWID field of this table. If so, set aDirect[i] to 1.
** If not, set aDirect[i] to 0.
*/
aDirect[i] = 0;
for(j=0; j<nExpr; j++){
if( aExpr[j].idxLeft==idx && aExpr[j].p->pLeft->iColumn<0
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
aDirect[i] = 1;
break;
}
if( aExpr[j].idxRight==idx && aExpr[j].p->pRight->iColumn<0
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
aDirect[i] = 1;
break;
}
}
if( aDirect[i] ){
loopMask |= 1<<idx;
aIdx[i] = 0;
continue;
}
/* Do a search for usable indices. Leave pBestIdx pointing to
** the most specific usable index.
**
** "Most specific" means that pBestIdx is the usable index that
** has the largest value for nColumn. A usable index is one for
** which there are subexpressions to compute every column of the
** index.
*/
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
int columnMask = 0;
if( pIdx->nColumn>32 ) continue;
for(j=0; j<nExpr; j++){
if( aExpr[j].idxLeft==idx
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
int iColumn = aExpr[j].p->pLeft->iColumn;
int k;
for(k=0; k<pIdx->nColumn; k++){
if( pIdx->aiColumn[k]==iColumn ){
columnMask |= 1<<k;
break;
}
}
}
if( aExpr[j].idxRight==idx
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
int iColumn = aExpr[j].p->pRight->iColumn;
int k;
for(k=0; k<pIdx->nColumn; k++){
if( pIdx->aiColumn[k]==iColumn ){
columnMask |= 1<<k;
break;
}
}
}
}
if( columnMask + 1 == (1<<pIdx->nColumn) ){
if( pBestIdx==0 || pBestIdx->nColumn<pIdx->nColumn ){
pBestIdx = pIdx;
}
}
}
aIdx[i] = pBestIdx;
loopMask |= 1<<idx;
}
/* Open all tables in the pTabList and all indices in aIdx[].
*/
for(i=0; i<pTabList->nId; i++){
sqliteVdbeAddOp(v, OP_Open, base+i, pTabList->a[i].pTab->tnum,
pTabList->a[i].pTab->zName, 0);
if( i==0 && !pParse->schemaVerified &&
(pParse->db->flags & SQLITE_InTrans)==0 ){
sqliteVdbeAddOp(v, OP_VerifyCookie, pParse->db->schema_cookie, 0, 0, 0);
pParse->schemaVerified = 1;
}
if( i<ARRAYSIZE(aIdx) && aIdx[i]!=0 ){
sqliteVdbeAddOp(v, OP_Open, base+pTabList->nId+i, aIdx[i]->tnum,
aIdx[i]->zName, 0);
}
}
memcpy(pWInfo->aIdx, aIdx, sizeof(aIdx));
/* Generate the code to do the search
*/
pWInfo->iBreak = brk = sqliteVdbeMakeLabel(v);
loopMask = 0;
for(i=0; i<pTabList->nId; i++){
int j, k;
int idx = aOrder[i];
int goDirect;
Index *pIdx;
if( i<ARRAYSIZE(aIdx) ){
pIdx = aIdx[i];
goDirect = aDirect[i];
}else{
pIdx = 0;
goDirect = 0;
}
if( goDirect ){
/* Case 1: We can directly reference a single row using the ROWID field.
*/
cont = brk;
for(k=0; k<nExpr; k++){
if( aExpr[k].p==0 ) continue;
if( aExpr[k].idxLeft==idx
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
&& aExpr[k].p->pLeft->iColumn<0
){
sqliteExprCode(pParse, aExpr[k].p->pRight);
aExpr[k].p = 0;
break;
}
if( aExpr[k].idxRight==idx
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
&& aExpr[k].p->pRight->iColumn<0
){
sqliteExprCode(pParse, aExpr[k].p->pLeft);
aExpr[k].p = 0;
break;
}
}
sqliteVdbeAddOp(v, OP_AddImm, 0, 0, 0, 0);
if( i==pTabList->nId-1 && pushKey ){
haveKey = 1;
}else{
sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0, 0, 0);
haveKey = 0;
}
}else if( pIdx==0 ){
/* Case 2: There was no usable index. We must do a complete
** scan of the table.
*/
sqliteVdbeAddOp(v, OP_Rewind, base+idx, 0, 0, 0);
cont = sqliteVdbeMakeLabel(v);
sqliteVdbeAddOp(v, OP_Next, base+idx, brk, 0, cont);
haveKey = 0;
}else{
/* Case 3: We do have a usable index in pIdx.
*/
cont = sqliteVdbeMakeLabel(v);
for(j=0; j<pIdx->nColumn; j++){
for(k=0; k<nExpr; k++){
if( aExpr[k].p==0 ) continue;
if( aExpr[k].idxLeft==idx
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
&& aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
){
sqliteExprCode(pParse, aExpr[k].p->pRight);
aExpr[k].p = 0;
break;
}
if( aExpr[k].idxRight==idx
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
&& aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
){
sqliteExprCode(pParse, aExpr[k].p->pLeft);
aExpr[k].p = 0;
break;
}
}
}
sqliteVdbeAddOp(v, OP_MakeKey, pIdx->nColumn, 0, 0, 0);
sqliteVdbeAddOp(v, OP_BeginIdx, base+pTabList->nId+i, 0, 0, 0);
sqliteVdbeAddOp(v, OP_NextIdx, base+pTabList->nId+i, brk, 0, cont);
if( i==pTabList->nId-1 && pushKey ){
haveKey = 1;
}else{
sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0, 0, 0);
haveKey = 0;
}
}
loopMask |= 1<<idx;
/* Insert code to test every subexpression that can be completely
** computed using the current set of tables.
*/
for(j=0; j<nExpr; j++){
if( aExpr[j].p==0 ) continue;
if( (aExpr[j].prereqRight & loopMask)!=aExpr[j].prereqRight ) continue;
if( (aExpr[j].prereqLeft & loopMask)!=aExpr[j].prereqLeft ) continue;
if( haveKey ){
haveKey = 0;
sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0, 0, 0);
}
sqliteExprIfFalse(pParse, aExpr[j].p, cont);
aExpr[j].p = 0;
}
brk = cont;
}
pWInfo->iContinue = cont;
if( pushKey && !haveKey ){
sqliteVdbeAddOp(v, OP_Recno, base, 0, 0, 0);
}
sqliteFree(aOrder);
return pWInfo;
}
/*
** Generate the end of the WHERE loop.
*/
void sqliteWhereEnd(WhereInfo *pWInfo){
Vdbe *v = pWInfo->pParse->pVdbe;
int i;
int brk = pWInfo->iBreak;
int base = pWInfo->base;
sqliteVdbeAddOp(v, OP_Goto, 0, pWInfo->iContinue, 0, 0);
for(i=0; i<pWInfo->pTabList->nId; i++){
sqliteVdbeAddOp(v, OP_Close, base+i, 0, 0, brk);
brk = 0;
if( i<ARRAYSIZE(pWInfo->aIdx) && pWInfo->aIdx[i]!=0 ){
sqliteVdbeAddOp(v, OP_Close, base+pWInfo->pTabList->nId+i, 0, 0, 0);
}
}
if( brk!=0 ){
sqliteVdbeAddOp(v, OP_Noop, 0, 0, 0, brk);
}
sqliteFree(pWInfo);
return;
}
|