aboutsummaryrefslogtreecommitdiff
path: root/src/log.c
blob: 81f808aa6c56f13fc063ce36da041c8dc6ede442 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
/*
** This file contains the implementation of a log file used in 
** "journal_mode=wal" mode.
*/

/*
** LOG FILE FORMAT
**
** A log file consists of a header followed by zero or more log frames.
** The log header is 12 bytes in size and consists of the following three
** big-endian 32-bit unsigned integer values:
**
**     0: Database page size,
**     4: Randomly selected salt value 1,
**     8: Randomly selected salt value 2.
**
** Immediately following the log header are zero or more log frames. Each
** frame itself consists of a 16-byte header followed by a <page-size> bytes
** of page data. The header is broken into 4 big-endian 32-bit unsigned 
** integer values, as follows:
**
**     0: Page number.
**     4: For commit records, the size of the database image in pages 
**        after the commit. For all other records, zero.
**     8: Checksum value 1.
**    12: Checksum value 2.
*/

/* 
** LOG SUMMARY FORMAT
**
** TODO.
*/

#include "log.h"

#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>

typedef struct LogSummaryHdr LogSummaryHdr;
typedef struct LogSummary LogSummary;
typedef struct LogIterator LogIterator;
typedef struct LogLock LogLock;


/*
** The following structure may be used to store the same data that
** is stored in the log-summary header.
**
** Member variables iCheck1 and iCheck2 contain the checksum for the
** last frame written to the log, or 2 and 3 respectively if the log 
** is currently empty.
*/
struct LogSummaryHdr {
  u32 iChange;                    /* Counter incremented each transaction */
  u32 pgsz;                       /* Database page size in bytes */
  u32 iLastPg;                    /* Address of last valid frame in log */
  u32 nPage;                      /* Size of database in pages */
  u32 iCheck1;                    /* Checkpoint value 1 */
  u32 iCheck2;                    /* Checkpoint value 2 */
};

/* Size of serialized LogSummaryHdr object. */
#define LOGSUMMARY_HDR_NFIELD (sizeof(LogSummaryHdr) / sizeof(u32))

#define LOGSUMMARY_FRAME_OFFSET \
  (LOGSUMMARY_HDR_NFIELD + LOG_CKSM_BYTES/sizeof(u32))



/* Size of frame header */
#define LOG_FRAME_HDRSIZE 16
#define LOG_HDRSIZE       12

/*
** Return the offset of frame iFrame in the log file, assuming a database
** page size of pgsz bytes. The offset returned is to the start of the
** log frame-header.
*/
#define logFrameOffset(iFrame, pgsz) (                               \
  LOG_HDRSIZE + ((iFrame)-1)*((pgsz)+LOG_FRAME_HDRSIZE)              \
)

/*
** There is one instance of this structure for each log-summary object
** that this process has a connection to. They are stored in a linked
** list starting at pLogSummary (global variable).
**
** TODO: LogSummary.fd is a unix file descriptor. Unix APIs are used 
**       directly in this implementation because the VFS does not support
**       the required blocking file-locks.
*/
struct LogSummary {
  sqlite3_mutex *mutex;           /* Mutex used to protect this object */
  int nRef;                       /* Number of pointers to this structure */
  int fd;                         /* File descriptor open on log-summary */
  char *zPath;                    /* Path to associated WAL file */
  LogLock *pLock;                 /* Linked list of locks on this object */
  LogSummary *pNext;              /* Next in global list */
  int nData;                      /* Size of aData allocation/mapping */
  u32 *aData;                     /* File body */
};

/*
** This module uses three different types of file-locks. All are taken
** on the log-summary file. The three types of locks are as follows:
**
** MUTEX:  The MUTEX lock is used as a robust inter-process mutex. It
**         is held while the log-summary header is modified, and 
**         sometimes when it is read. It is also held while a new client
**         obtains the DMH lock (see below), and while log recovery is
**         being run.
**
** DMH:    The DMH (Dead Mans Hand mechanism) lock is used to ensure
**         that log-recovery is always run following a system restart.
**         When it first opens a log-summary file, a process takes a
**         SHARED lock on the DMH region. This lock is not released until
**         the log-summary file is closed. 
**
**         The process then attempts to upgrade to an EXCLUSIVE lock. If 
**         successful, then the contents of the log-summary file are deemed 
**         suspect and the log-summary header zeroed. This forces the
**         first process that reads the log-summary file to run log 
**         recovery. After zeroing the log-summary header, the process
**         downgrades to a SHARED lock on the DMH region.
**
**         If the attempt to obtain the EXCLUSIVE lock fails, then the
**         process concludes that some other process is already using the
**         log-summary file, and it can therefore be trusted.
**
**         The procedure described in the previous three paragraphs (taking
**         a SHARED lock and then upgrading to an EXCLUSIVE lock to check
**         if the process is the only one to have an open connection to the 
**         log file) is protected by holding the MUTEX lock. This avoids the
**         race condition wherein the first two clients connect almost 
**         simultaneously following a system restart and each prevents 
**         the other from obtaining the EXCLUSIVE lock.
**
**
** REGION: There are 4 different region locks, regions A, B, C and D.
**         Various EXCLUSIVE and SHARED locks on these regions are obtained
**         when a client reads, writes or checkpoints the database.
**
**    To obtain a reader lock:
**
**         1. Attempt a SHARED lock on regions A and B.
**         2. If step 1 is successful, drop the lock on region B. Or, if
**            it is unsuccessful, attempt a SHARED lock on region D.
**         3. Repeat the above until the lock attempt in step 1 or 2 is 
**            successful.
**
**         The reader lock is released when the read transaction is finished.
**
**    To obtain a writer lock:
**
**         1. Take (wait for) an EXCLUSIVE lock on regions C and D.
**
**         The locks are released after the write transaction is finished
**         and, if any frames were committed to the log, the log-summary
**         file updated.
**
**    To obtain a checkpointer lock:
**
**         1. Take (wait for) an EXCLUSIVE lock on regions B and C.
**         2. Take (wait for) an EXCLUSIVE lock on region A.
**
**         Step 1 waits until any existing writer has finished. And forces
**         all new readers to become "region D" readers.
**
**         Step 2 causes the checkpointer to wait until all existing region A
**         readers have finished their transactions. Once the exclusive lock
**         on region A has been obtained, only "region D" readers exist.
**         These readers are operating on the snapshot at the head of the
**         log. As such, the log can be safely copied into the database file
**         without interfering with the readers.
**
**         Once the checkpoint has finished and the log-summary header
**         updated (to indicate the log contents can now be ignored), all
**         locks are released.
**
**         However, there may still exist region D readers using data in 
**         the body of the log file, so the log file itself cannot be 
**         truncated or overwritten until all region D readers have finished.
**         That requirement is satisfied, because writers (the clients that
**         write to the log file) require an exclusive lock on region D.
**         Which they cannot get until all region D readers have finished.
*/
#define LOG_LOCK_MUTEX  12
#define LOG_LOCK_DMH    13
#define LOG_LOCK_REGION 14

/*
** The four lockable regions associated with each log-summary. A connection
** may take either a SHARED or EXCLUSIVE lock on each. An ORed combination
** of the following bitmasks is passed as the second argument to the
** logLockRegion() function.
*/
#define LOG_REGION_A 0x01
#define LOG_REGION_B 0x02
#define LOG_REGION_C 0x04
#define LOG_REGION_D 0x08

/*
** A single instance of this structure is allocated as part of each 
** connection to a database log. All structures associated with the 
** same log file are linked together into a list using LogLock.pNext
** starting at LogSummary.pLock.
**
** The mLock field of the structure describes the locks (if any) 
** currently held by the connection. If a SHARED lock is held on
** any of the four locking regions, then the associated LOG_REGION_X
** bit (see above) is set. If an EXCLUSIVE lock is held on the region,
** then the (LOG_REGION_X << 8) bit is set.
*/
struct LogLock {
  LogLock *pNext;                 /* Next lock on the same log */
  u32 mLock;                      /* Mask of locks */
};

struct Log {
  LogSummary *pSummary;           /* Log file summary data */
  sqlite3_vfs *pVfs;              /* The VFS used to create pFd */
  sqlite3_file *pFd;              /* File handle for log file */
  int isLocked;                   /* Non-zero if a snapshot is held open */
  int isWriteLocked;              /* True if this is the writer connection */
  LogSummaryHdr hdr;              /* Log summary header for current snapshot */
  LogLock lock;                   /* Lock held by this connection (if any) */
};


/*
** This structure is used to implement an iterator that iterates through
** all frames in the log in database page order. Where two or more frames
** correspond to the same database page, the iterator visits only the 
** frame most recently written to the log.
**
** The internals of this structure are only accessed by:
**
**   logIteratorInit() - Create a new iterator,
**   logIteratorNext() - Step an iterator,
**   logIteratorFree() - Free an iterator.
**
** This functionality is used by the checkpoint code (see logCheckpoint()).
*/
struct LogIterator {
  int nSegment;                   /* Size of LogIterator.aSegment[] array */
  int nFinal;                     /* Elements in segment nSegment-1 */
  struct LogSegment {
    int iNext;                    /* Next aIndex index */
    u8 *aIndex;                   /* Pointer to index array */
    u32 *aDbPage;                 /* Pointer to db page array */
  } aSegment[1];
};



/*
** List of all LogSummary objects created by this process. Protected by
** static mutex LOG_SUMMARY_MUTEX. TODO: Should have a dedicated mutex
** here instead of borrowing the LRU mutex.
*/
#define LOG_SUMMARY_MUTEX SQLITE_MUTEX_STATIC_LRU
static LogSummary *pLogSummary = 0;

/*
** Generate an 8 byte checksum based on the data in array aByte[] and the
** initial values of aCksum[0] and aCksum[1]. The checksum is written into
** aCksum[] before returning.
*/
#define LOG_CKSM_BYTES 8
static void logChecksumBytes(u8 *aByte, int nByte, u32 *aCksum){
  u64 sum1 = aCksum[0];
  u64 sum2 = aCksum[1];
  u32 *a32 = (u32 *)aByte;
  u32 *aEnd = (u32 *)&aByte[nByte];

  assert( LOG_CKSM_BYTES==2*sizeof(u32) );
  assert( (nByte&0x00000003)==0 );

  do {
    sum1 += (*a32++);
    sum2 += sum1;
  } while( a32<aEnd );

  aCksum[0] = sum1 + (sum1>>24);
  aCksum[1] = sum2 + (sum2>>24);
}

/*
** Argument zPath must be a nul-terminated string containing a path-name.
** This function modifies the string in-place by removing any "./" or "../" 
** elements in the path. For example, the following input:
**
**   "/home/user/plans/good/../evil/./world_domination.txt"
**
** is overwritten with the 'normalized' version:
**
**   "/home/user/plans/evil/world_domination.txt"
*/
static void logNormalizePath(char *zPath){
  int i, j;
  char *z = zPath;
  int n = strlen(z);

  while( n>1 && z[n-1]=='/' ){ n--; }
  for(i=j=0; i<n; i++){
    if( z[i]=='/' ){
      if( z[i+1]=='/' ) continue;
      if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
        i += 1;
        continue;
      }
      if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
        while( j>0 && z[j-1]!='/' ){ j--; }
        if( j>0 ){ j--; }
        i += 2;
        continue;
      }
    }
    z[j++] = z[i];
  }
  z[j] = 0;
}

/*
** Memory map the first nByte bytes of the summary file opened with 
** pSummary->fd at pSummary->aData. If the summary file is smaller than
** nByte bytes in size when this function is called, ftruncate() is
** used to expand it before it is mapped.
**
** It is assumed that an exclusive lock is held on the summary file
** by the caller (to protect the ftruncate()).
*/
static int logSummaryMap(LogSummary *pSummary, int nByte){
  struct stat sStat;
  int rc;
  int fd = pSummary->fd;
  void *pMap;

  assert( pSummary->aData==0 );

  /* If the file is less than nByte bytes in size, cause it to grow. */
  rc = fstat(fd, &sStat);
  if( rc!=0 ) return SQLITE_IOERR;
  if( sStat.st_size<nByte ){
    rc = ftruncate(fd, nByte);
    if( rc!=0 ) return SQLITE_IOERR;
  }

  /* Map the file. */
  pMap = mmap(0, nByte, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
  if( pMap==MAP_FAILED ){
    return SQLITE_IOERR;
  }
  pSummary->aData = (u32 *)pMap;
  pSummary->nData = nByte;

  return SQLITE_OK;
}

/*
** Unmap the log-summary mapping and close the file-descriptor. If
** the isTruncate argument is non-zero, truncate the log-summary file
** region to zero bytes.
**
** Regardless of the value of isTruncate, close the file-descriptor
** opened on the log-summary file.
*/
static int logSummaryUnmap(LogSummary *pSummary, int isUnlink){
  int rc = SQLITE_OK;
  if( pSummary->aData ){
    assert( pSummary->fd>0 );
    munmap(pSummary->aData, pSummary->nData);
    pSummary->aData = 0;
    if( isUnlink ){
      char *zFile = sqlite3_mprintf("%s-summary", pSummary->zPath);
      if( !zFile ){
        rc = SQLITE_NOMEM;
      }
      unlink(zFile);
      sqlite3_free(zFile);
    }
  }
  if( pSummary->fd>0 ){
    close(pSummary->fd);
    pSummary->fd = -1;
  }
  return rc;
}

static void logSummaryWriteHdr(LogSummary *pSummary, LogSummaryHdr *pHdr){
  u32 *aData = pSummary->aData;
  memcpy(aData, pHdr, sizeof(LogSummaryHdr));
  aData[LOGSUMMARY_HDR_NFIELD] = 1;
  aData[LOGSUMMARY_HDR_NFIELD+1] = 1;
  logChecksumBytes(
    (u8 *)aData, sizeof(LogSummaryHdr), &aData[LOGSUMMARY_HDR_NFIELD]
  );
}

/*
** This function encodes a single frame header and writes it to a buffer
** supplied by the caller. A log frame-header is made up of a series of 
** 4-byte big-endian integers, as follows:
**
**     0: Database page size in bytes.
**     4: Page number.
**     8: New database size (for commit frames, otherwise zero).
**    12: Frame checksum 1.
**    16: Frame checksum 2.
*/
static void logEncodeFrame(
  u32 *aCksum,                    /* IN/OUT: Checksum values */
  u32 iPage,                      /* Database page number for frame */
  u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
  int nData,                      /* Database page size (size of aData[]) */
  u8 *aData,                      /* Pointer to page data (for checksum) */
  u8 *aFrame                      /* OUT: Write encoded frame here */
){
  assert( LOG_FRAME_HDRSIZE==16 );

  sqlite3Put4byte(&aFrame[0], iPage);
  sqlite3Put4byte(&aFrame[4], nTruncate);

  logChecksumBytes(aFrame, 8, aCksum);
  logChecksumBytes(aData, nData, aCksum);

  sqlite3Put4byte(&aFrame[8], aCksum[0]);
  sqlite3Put4byte(&aFrame[12], aCksum[1]);
}

/*
** Return 1 and populate *piPage, *pnTruncate and aCksum if the 
** frame checksum looks Ok. Otherwise return 0.
*/
static int logDecodeFrame(
  u32 *aCksum,                    /* IN/OUT: Checksum values */
  u32 *piPage,                    /* OUT: Database page number for frame */
  u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
  int nData,                      /* Database page size (size of aData[]) */
  u8 *aData,                      /* Pointer to page data (for checksum) */
  u8 *aFrame                      /* Frame data */
){
  assert( LOG_FRAME_HDRSIZE==16 );

  logChecksumBytes(aFrame, 8, aCksum);
  logChecksumBytes(aData, nData, aCksum);

  if( aCksum[0]!=sqlite3Get4byte(&aFrame[8]) 
   || aCksum[1]!=sqlite3Get4byte(&aFrame[12]) 
  ){
    /* Checksum failed. */
    return 0;
  }

  *piPage = sqlite3Get4byte(&aFrame[0]);
  *pnTruncate = sqlite3Get4byte(&aFrame[4]);
  return 1;
}

static void logMergesort8(
  Pgno *aContent,                 /* Pages in log */
  u8 *aBuffer,                    /* Buffer of at least *pnList items to use */
  u8 *aList,                      /* IN/OUT: List to sort */
  int *pnList                     /* IN/OUT: Number of elements in aList[] */
){
  int nList = *pnList;
  if( nList>1 ){
    int nLeft = nList / 2;        /* Elements in left list */
    int nRight = nList - nLeft;   /* Elements in right list */
    u8 *aLeft = aList;            /* Left list */
    u8 *aRight = &aList[nLeft];   /* Right list */
    int iLeft = 0;                /* Current index in aLeft */
    int iRight = 0;               /* Current index in aright */
    int iOut = 0;                 /* Current index in output buffer */

    /* TODO: Change to non-recursive version. */
    logMergesort8(aContent, aBuffer, aLeft, &nLeft);
    logMergesort8(aContent, aBuffer, aRight, &nRight);

    while( iRight<nRight || iLeft<nLeft ){
      u8 logpage;
      Pgno dbpage;

      if( (iLeft<nLeft) 
       && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
      ){
        logpage = aLeft[iLeft++];
      }else{
        logpage = aRight[iRight++];
      }
      dbpage = aContent[logpage];

      aBuffer[iOut++] = logpage;
      if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;

      assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
      assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
    }
    memcpy(aList, aBuffer, sizeof(aList[0])*iOut);
    *pnList = iOut;
  }

#ifdef SQLITE_DEBUG
  {
    int i;
    for(i=1; i<*pnList; i++){
      assert( aContent[aList[i]] > aContent[aList[i-1]] );
    }
  }
#endif
}


/*
** Return the index in the LogSummary.aData array that corresponds to 
** frame iFrame. The log-summary file consists of a header, followed by
** alternating "map" and "index" blocks.
*/
static int logSummaryEntry(u32 iFrame){
  return ((((iFrame-1)>>8)<<6) + iFrame-1 + 2 + LOGSUMMARY_HDR_NFIELD);
}


/*
** Set an entry in the log-summary map to map log frame iFrame to db 
** page iPage. Values are always appended to the log-summary (i.e. the
** value of iFrame is always exactly one more than the value passed to
** the previous call), but that restriction is not enforced or asserted
** here.
*/
static void logSummaryAppend(LogSummary *pSummary, u32 iFrame, u32 iPage){
  u32 iSlot = logSummaryEntry(iFrame);

  /* Set the log-summary entry itself */
  pSummary->aData[iSlot] = iPage;

  /* If the frame number is a multiple of 256 (frames are numbered starting
  ** at 1), build an index of the most recently added 256 frames.
  */
  if( (iFrame&0x000000FF)==0 ){
    int i;                        /* Iterator used while initializing aIndex */
    u32 *aFrame;                  /* Pointer to array of 256 frames */
    int nIndex;                   /* Number of entries in index */
    u8 *aIndex;                   /* 256 bytes to build index in */
    u8 *aTmp;                     /* Scratch space to use while sorting */

    aFrame = &pSummary->aData[iSlot-255];
    aIndex = (u8 *)&pSummary->aData[iSlot+1];
    aTmp = &aIndex[256];

    nIndex = 256;
    for(i=0; i<256; i++) aIndex[i] = (u8)i;
    logMergesort8(aFrame, aTmp, aIndex, &nIndex);
    memset(&aIndex[nIndex], aIndex[nIndex-1], 256-nIndex);
  }
}


/*
** Recover the log-summary by reading the log file. The caller must hold 
** an exclusive lock on the log-summary file.
*/
static int logSummaryRecover(LogSummary *pSummary, sqlite3_file *pFd){
  int rc;                         /* Return Code */
  i64 nSize;                      /* Size of log file */
  LogSummaryHdr hdr;              /* Recovered log-summary header */

  memset(&hdr, 0, sizeof(hdr));

  rc = sqlite3OsFileSize(pFd, &nSize);
  if( rc!=SQLITE_OK ){
    return rc;
  }

  if( nSize>LOG_FRAME_HDRSIZE ){
    u8 aBuf[LOG_FRAME_HDRSIZE];   /* Buffer to load first frame header into */
    u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
    int nFrame;                   /* Number of bytes at aFrame */
    u8 *aData;                    /* Pointer to data part of aFrame buffer */
    int iFrame;                   /* Index of last frame read */
    i64 iOffset;                  /* Next offset to read from log file */
    int nPgsz;                    /* Page size according to the log */
    u32 aCksum[2];                /* Running checksum */

    /* Read in the first frame header in the file (to determine the 
    ** database page size).
    */
    rc = sqlite3OsRead(pFd, aBuf, LOG_HDRSIZE, 0);
    if( rc!=SQLITE_OK ){
      return rc;
    }

    /* If the database page size is not a power of two, or is greater than
    ** SQLITE_MAX_PAGE_SIZE, conclude that the log file contains no valid data.
    */
    nPgsz = sqlite3Get4byte(&aBuf[0]);
    if( nPgsz&(nPgsz-1) || nPgsz>SQLITE_MAX_PAGE_SIZE ){
      goto finished;
    }
    aCksum[0] = sqlite3Get4byte(&aBuf[4]);
    aCksum[1] = sqlite3Get4byte(&aBuf[8]);

    /* Malloc a buffer to read frames into. */
    nFrame = nPgsz + LOG_FRAME_HDRSIZE;
    aFrame = (u8 *)sqlite3_malloc(nFrame);
    if( !aFrame ){
      return SQLITE_NOMEM;
    }
    aData = &aFrame[LOG_FRAME_HDRSIZE];

    /* Read all frames from the log file. */
    iFrame = 0;
    for(iOffset=LOG_HDRSIZE; (iOffset+nFrame)<=nSize; iOffset+=nFrame){
      u32 pgno;                   /* Database page number for frame */
      u32 nTruncate;              /* dbsize field from frame header */
      int isValid;                /* True if this frame is valid */

      /* Read and decode the next log frame. */
      rc = sqlite3OsRead(pFd, aFrame, nFrame, iOffset);
      if( rc!=SQLITE_OK ) break;
      isValid = logDecodeFrame(aCksum, &pgno, &nTruncate, nPgsz, aData, aFrame);
      if( !isValid ) break;
      logSummaryAppend(pSummary, ++iFrame, pgno);

      /* If nTruncate is non-zero, this is a commit record. */
      if( nTruncate ){
        hdr.iCheck1 = aCksum[0];
        hdr.iCheck2 = aCksum[1];
        hdr.iLastPg = iFrame;
        hdr.nPage = nTruncate;
        hdr.pgsz = nPgsz;
      }
    }

    sqlite3_free(aFrame);
  }else{
    hdr.iCheck1 = 2;
    hdr.iCheck2 = 3;
  }

finished:
  logSummaryWriteHdr(pSummary, &hdr);
  return rc;
}

/*
** Values for the third parameter to logLockRegion().
*/
#define LOG_UNLOCK  0
#define LOG_RDLOCK  1
#define LOG_WRLOCK  2
#define LOG_WRLOCKW 3

static int logLockFd(LogSummary *pSummary, int iStart, int nByte, int op){
  int aType[4] = { 
    F_UNLCK,                    /* LOG_UNLOCK */
    F_RDLCK,                    /* LOG_RDLOCK */
    F_WRLCK,                    /* LOG_WRLOCK */
    F_WRLCK                     /* LOG_WRLOCKW */
  };
  int aOp[4] = { 
    F_SETLK,                    /* LOG_UNLOCK */
    F_SETLK,                    /* LOG_RDLOCK */
    F_SETLK,                    /* LOG_WRLOCK */
    F_SETLKW                    /* LOG_WRLOCKW */
  };

  struct flock f;               /* Locking operation */
  int rc;                       /* Value returned by fcntl() */

  assert( ArraySize(aType)==ArraySize(aOp) );
  assert( op>=0 && op<ArraySize(aType) );

  memset(&f, 0, sizeof(f));
  f.l_type = aType[op];
  f.l_whence = SEEK_SET;
  f.l_start = iStart;
  f.l_len = nByte;
  rc = fcntl(pSummary->fd, aOp[op], &f);
  return (rc==0) ? SQLITE_OK : SQLITE_BUSY;
}

static int logLockRegion(Log *pLog, u32 mRegion, int op){
  LogSummary *pSummary = pLog->pSummary;
  LogLock *p;                     /* Used to iterate through in-process locks */
  u32 mOther;                     /* Locks held by other connections */
  u32 mNew;                       /* New mask for pLog */

  assert( 
       /* Writer lock operations */
          (op==LOG_WRLOCK && mRegion==(LOG_REGION_C|LOG_REGION_D))
       || (op==LOG_UNLOCK && mRegion==(LOG_REGION_C|LOG_REGION_D))

       /* Normal reader lock operations */
       || (op==LOG_RDLOCK && mRegion==(LOG_REGION_A|LOG_REGION_B))
       || (op==LOG_UNLOCK && mRegion==(LOG_REGION_A))
       || (op==LOG_UNLOCK && mRegion==(LOG_REGION_B))

       /* Region D reader lock operations */
       || (op==LOG_RDLOCK && mRegion==(LOG_REGION_D))
       || (op==LOG_RDLOCK && mRegion==(LOG_REGION_A))
       || (op==LOG_UNLOCK && mRegion==(LOG_REGION_D))

       /* Checkpointer lock operations */
       || (op==LOG_WRLOCK && mRegion==(LOG_REGION_B|LOG_REGION_C))
       || (op==LOG_WRLOCK && mRegion==(LOG_REGION_A))
       || (op==LOG_UNLOCK && mRegion==(LOG_REGION_B|LOG_REGION_C))
       || (op==LOG_UNLOCK && mRegion==(LOG_REGION_A|LOG_REGION_B|LOG_REGION_C))
  );

  /* Assert that a connection never tries to go from an EXCLUSIVE to a 
  ** SHARED lock on a region. Moving from SHARED to EXCLUSIVE sometimes
  ** happens though (when a region D reader upgrades to a writer).
  */
  assert( op!=LOG_RDLOCK || 0==(pLog->lock.mLock & (mRegion<<8)) );

  sqlite3_mutex_enter(pSummary->mutex);

  /* Calculate a mask of logs held by all connections in this process apart
  ** from this one. The least significant byte of the mask contains a mask
  ** of the SHARED logs held. The next least significant byte of the mask
  ** indicates the EXCLUSIVE locks held. For example, to test if some other
  ** connection is holding a SHARED lock on region A, or an EXCLUSIVE lock
  ** on region C, do:
  **
  **   hasSharedOnA    = (mOther & (LOG_REGION_A<<0));
  **   hasExclusiveOnC = (mOther & (LOG_REGION_C<<8));
  **
  ** In all masks, if the bit in the EXCLUSIVE byte mask is set, so is the 
  ** corresponding bit in the SHARED mask.
  */
  mOther = 0;
  for(p=pSummary->pLock; p; p=p->pNext){
    assert( (p->mLock & (p->mLock<<8))==(p->mLock&0x0000FF00) );
    if( p!=&pLog->lock ){
      mOther |= p->mLock;
    }
  }

  /* If this call is to lock a region (not to unlock one), test if locks held
  ** by any other connection in this process prevent the new locks from
  ** begin granted. If so, exit the summary mutex and return SQLITE_BUSY.
  */
  if( op && (mOther & (mRegion << (op==LOG_RDLOCK ? 8 : 0))) ){
    sqlite3_mutex_leave(pSummary->mutex);
    return SQLITE_BUSY;
  }

  /* Figure out the new log mask for this connection. */
  switch( op ){
    case LOG_UNLOCK: 
      mNew = (pLog->lock.mLock & ~(mRegion|(mRegion<<8)));
      break;
    case LOG_RDLOCK:
      mNew = (pLog->lock.mLock | mRegion);
      break;
    default:
      assert( op==LOG_WRLOCK );
      mNew = (pLog->lock.mLock | (mRegion<<8) | mRegion);
      break;
  }

  /* Now modify the locks held on the log-summary file descriptor. This
  ** file descriptor is shared by all log connections in this process. 
  ** Therefore:
  **
  **   + If one or more log connections in this process hold a SHARED lock
  **     on a region, the file-descriptor should hold a SHARED lock on
  **     the file region.
  **
  **   + If a log connection in this process holds an EXCLUSIVE lock on a
  **     region, the file-descriptor should also hold an EXCLUSIVE lock on
  **     the region in question.
  **
  ** If this is an LOG_UNLOCK operation, only regions for which no other
  ** connection holds a lock should actually be unlocked. And if this
  ** is a LOG_RDLOCK operation and other connections already hold all
  ** the required SHARED locks, then no system call is required.
  */
  if( op==LOG_UNLOCK ){
    mRegion = (mRegion & ~mOther);
  }
  if( (op==LOG_WRLOCK)
   || (op==LOG_UNLOCK && mRegion) 
   || (op==LOG_RDLOCK && (mOther&mRegion)!=mRegion)
  ){
    struct LockMap {
      int iStart;                 /* Byte offset to start locking operation */
      int iLen;                   /* Length field for locking operation */
    } aMap[] = {
      /* 0000 */ {0, 0},                    /* 0001 */ {4+LOG_LOCK_REGION, 1}, 
      /* 0010 */ {3+LOG_LOCK_REGION, 1},    /* 0011 */ {3+LOG_LOCK_REGION, 2},
      /* 0100 */ {2+LOG_LOCK_REGION, 1},    /* 0101 */ {0, 0}, 
      /* 0110 */ {2+LOG_LOCK_REGION, 2},    /* 0111 */ {2+LOG_LOCK_REGION, 3},
      /* 1000 */ {1+LOG_LOCK_REGION, 1},    /* 1001 */ {0, 0}, 
      /* 1010 */ {0, 0},                    /* 1011 */ {0, 0},
      /* 1100 */ {1+LOG_LOCK_REGION, 2},    /* 1101 */ {0, 0}, 
      /* 1110 */ {0, 0},                    /* 1111 */ {0, 0}
    };
    int rc;                       /* Return code of logLockFd() */

    assert( mRegion<ArraySize(aMap) && aMap[mRegion].iStart!=0 );

    rc = logLockFd(pSummary, aMap[mRegion].iStart, aMap[mRegion].iLen, op);
    if( rc!=0 ){
      sqlite3_mutex_leave(pSummary->mutex);
      return rc;
    }
  }

  pLog->lock.mLock = mNew;
  sqlite3_mutex_leave(pSummary->mutex);
  return SQLITE_OK;
}

static int logLockDMH(LogSummary *pSummary, int eLock){
  assert( eLock==LOG_RDLOCK || eLock==LOG_WRLOCK );
  return logLockFd(pSummary, LOG_LOCK_DMH, 1, eLock);
}

static int logLockMutex(LogSummary *pSummary, int eLock){
  assert( eLock==LOG_WRLOCKW || eLock==LOG_UNLOCK );
  logLockFd(pSummary, LOG_LOCK_MUTEX, 1, eLock);
  return SQLITE_OK;
}



/*
** This function intializes the connection to the log-summary identified
** by struct pSummary.
*/
static int logSummaryInit(
  LogSummary *pSummary,           /* Log summary object to initialize */
  sqlite3_file *pFd               /* File descriptor open on log file */
){
  int rc;                         /* Return Code */
  char *zFile;                    /* File name for summary file */

  assert( pSummary->fd<0 );
  assert( pSummary->aData==0 );
  assert( pSummary->nRef>0 );
  assert( pSummary->zPath );

  /* Open a file descriptor on the summary file. */
  zFile = sqlite3_mprintf("%s-summary", pSummary->zPath);
  if( !zFile ){
    return SQLITE_NOMEM;
  }
  pSummary->fd = open(zFile, O_RDWR|O_CREAT, S_IWUSR|S_IRUSR);
  sqlite3_free(zFile);
  if( pSummary->fd<0 ){
    return SQLITE_IOERR;
  }

  /* Grab an exclusive lock the summary file. Then mmap() it. 
  **
  ** TODO: This code needs to be enhanced to support a growable mapping. 
  ** For now, just make the mapping very large to start with. The 
  ** pages should not be allocated until they are first accessed anyhow,
  ** so using a large mapping consumes no more resources than a smaller
  ** one would.
  */
  assert( sqlite3_mutex_held(pSummary->mutex) );
  rc = logLockMutex(pSummary, LOG_WRLOCKW);
  if( rc!=SQLITE_OK ) return rc;
  rc = logSummaryMap(pSummary, 512*1024);
  if( rc!=SQLITE_OK ) goto out;

  /* Try to obtain an EXCLUSIVE lock on the dead-mans-hand region. If this
  ** is possible, the contents of the log-summary file (if any) may not
  ** be trusted. Zero the log-summary header before continuing.
  */
  rc = logLockDMH(pSummary, LOG_WRLOCK);
  if( rc==SQLITE_OK ){
    memset(pSummary->aData, 0, (LOGSUMMARY_HDR_NFIELD+2)*sizeof(u32) );
  }
  rc = logLockDMH(pSummary, LOG_RDLOCK);
  if( rc!=SQLITE_OK ){
    return SQLITE_IOERR;
  }

 out:
  logLockMutex(pSummary, LOG_UNLOCK);
  return rc;
}

/* 
** Open a connection to the log file associated with database zDb. The
** database file does not actually have to exist. zDb is used only to
** figure out the name of the log file to open. If the log file does not 
** exist it is created by this call.
**
** A SHARED lock should be held on the database file when this function
** is called. The purpose of this SHARED lock is to prevent any other
** client from unlinking the log or log-summary file. If another process
** were to do this just after this client opened one of these files, the
** system would be badly broken.
*/
int sqlite3LogOpen(
  sqlite3_vfs *pVfs,              /* vfs module to open log file with */
  const char *zDb,                /* Name of database file */
  Log **ppLog                     /* OUT: Allocated Log handle */
){
  int rc = SQLITE_OK;             /* Return Code */
  Log *pRet;                      /* Object to allocate and return */
  LogSummary *pSummary = 0;       /* Summary object */
  sqlite3_mutex *mutex = 0;       /* LOG_SUMMARY_MUTEX mutex */
  int flags;                      /* Flags passed to OsOpen() */
  char *zWal = 0;                 /* Path to WAL file */
  int nWal;                       /* Length of zWal in bytes */

  assert( zDb );

  /* Allocate an instance of struct Log to return. */
  *ppLog = 0;
  pRet = (Log *)sqlite3MallocZero(sizeof(Log) + pVfs->szOsFile);
  if( !pRet ) goto out;
  pRet->pVfs = pVfs;
  pRet->pFd = (sqlite3_file *)&pRet[1];

  /* Normalize the path name. */
  zWal = sqlite3_mprintf("%s-wal", zDb);
  if( !zWal ) goto out;
  logNormalizePath(zWal);
  flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_JOURNAL);
  nWal = sqlite3Strlen30(zWal);

  /* Enter the mutex that protects the linked-list of LogSummary structures */
  if( sqlite3GlobalConfig.bCoreMutex ){
    mutex = sqlite3_mutex_alloc(LOG_SUMMARY_MUTEX);
  }
  sqlite3_mutex_enter(mutex);

  /* Search for an existing log summary object in the linked list. If one 
  ** cannot be found, allocate and initialize a new object.
  */
  for(pSummary=pLogSummary; pSummary; pSummary=pSummary->pNext){
    int nPath = sqlite3Strlen30(pSummary->zPath);
    if( nWal==nPath && 0==memcmp(pSummary->zPath, zWal, nPath) ) break;
  }
  if( !pSummary ){
    int nByte = sizeof(LogSummary) + nWal + 1;
    pSummary = (LogSummary *)sqlite3MallocZero(nByte);
    if( !pSummary ){
      rc = SQLITE_NOMEM;
      goto out;
    }
    if( sqlite3GlobalConfig.bCoreMutex ){
      pSummary->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
    }
    pSummary->zPath = (char *)&pSummary[1];
    pSummary->fd = -1;
    memcpy(pSummary->zPath, zWal, nWal);
    pSummary->pNext = pLogSummary;
    pLogSummary = pSummary;
  }
  pSummary->nRef++;
  pRet->pSummary = pSummary;

  /* Exit the mutex protecting the linked-list of LogSummary objects. */
  sqlite3_mutex_leave(mutex);
  mutex = 0;

  /* Open file handle on the log file. */
  rc = sqlite3OsOpen(pVfs, pSummary->zPath, pRet->pFd, flags, &flags);
  if( rc!=SQLITE_OK ) goto out;

  /* Object pSummary is shared between all connections to the database made
  ** by this process. So at this point it may or may not be connected to
  ** the log-summary. If it is not, connect it.
  */
  sqlite3_mutex_enter(pSummary->mutex);
  mutex = pSummary->mutex;
  if( pSummary->fd<0 ){
    rc = logSummaryInit(pSummary, pRet->pFd);
  }

  pRet->lock.pNext = pSummary->pLock;
  pSummary->pLock = &pRet->lock;

 out:
  sqlite3_mutex_leave(mutex);
  sqlite3_free(zWal);
  if( rc!=SQLITE_OK ){
    assert(0);
    if( pRet ){
      sqlite3OsClose(pRet->pFd);
      sqlite3_free(pRet);
    }
    assert( !pSummary || pSummary->nRef==0 );
    sqlite3_free(pSummary);
  }
  *ppLog = pRet;
  return rc;
}

static int logIteratorNext(
  LogIterator *p,               /* Iterator */
  u32 *piPage,                    /* OUT: Next db page to write */
  u32 *piFrame                    /* OUT: Log frame to read from */
){
  u32 iMin = *piPage;
  u32 iRet = 0xFFFFFFFF;
  int i;
  int nBlock = p->nFinal;

  for(i=p->nSegment-1; i>=0; i--){
    struct LogSegment *pSegment = &p->aSegment[i];
    while( pSegment->iNext<nBlock ){
      u32 iPg = pSegment->aDbPage[pSegment->aIndex[pSegment->iNext]];
      if( iPg>iMin ){
        if( iPg<iRet ){
          iRet = iPg;
          *piFrame = i*256 + 1 + pSegment->aIndex[pSegment->iNext];
        }
        break;
      }
      pSegment->iNext++;
    }

    nBlock = 256;
  }

  *piPage = iRet;
  return (iRet==0xFFFFFFFF);
}

static LogIterator *logIteratorInit(Log *pLog){
  u32 *aData = pLog->pSummary->aData;
  LogIterator *p;                 /* Return value */
  int nSegment;                   /* Number of segments to merge */
  u32 iLast;                      /* Last frame in log */
  int nByte;                      /* Number of bytes to allocate */
  int i;                          /* Iterator variable */
  int nFinal;                     /* Number of unindexed entries */
  struct LogSegment *pFinal;      /* Final (unindexed) segment */
  u8 *aTmp;                       /* Temp space used by merge-sort */

  iLast = pLog->hdr.iLastPg;
  nSegment = (iLast >> 8) + 1;
  nFinal = (iLast & 0x000000FF);

  nByte = sizeof(LogIterator) + (nSegment-1)*sizeof(struct LogSegment) + 512;
  p = (LogIterator *)sqlite3_malloc(nByte);
  if( p ){
    memset(p, 0, nByte);
    p->nSegment = nSegment;
    p->nFinal = nFinal;
  }

  for(i=0; i<nSegment-1; i++){
    p->aSegment[i].aDbPage = &aData[logSummaryEntry(i*256+1)];
    p->aSegment[i].aIndex = (u8 *)&aData[logSummaryEntry(i*256+1)+256];
  }
  pFinal = &p->aSegment[nSegment-1];

  pFinal->aDbPage = &aData[logSummaryEntry((nSegment-1)*256+1)];
  pFinal->aIndex = (u8 *)&pFinal[1];
  aTmp = &pFinal->aIndex[256];
  for(i=0; i<nFinal; i++){
    pFinal->aIndex[i] = i;
  }
  logMergesort8(pFinal->aDbPage, aTmp, pFinal->aIndex, &nFinal);
  p->nFinal = nFinal;

  return p;
}

/* 
** Free a log iterator allocated by logIteratorInit().
*/
static void logIteratorFree(LogIterator *p){
  sqlite3_free(p);
}

/*
** Checkpoint the contents of the log file.
*/
static int logCheckpoint(
  Log *pLog,                      /* Log connection */
  sqlite3_file *pFd,              /* File descriptor open on db file */
  int sync_flags,                 /* Flags for OsSync() (or 0) */
  u8 *zBuf                        /* Temporary buffer to use */
){
  int rc;                         /* Return code */
  int pgsz = pLog->hdr.pgsz;      /* Database page-size */
  LogIterator *pIter = 0;         /* Log iterator context */
  u32 iDbpage = 0;                /* Next database page to write */
  u32 iFrame = 0;                 /* Log frame containing data for iDbpage */

  if( pLog->hdr.iLastPg==0 ){
    return SQLITE_OK;
  }

  /* Allocate the iterator */
  pIter = logIteratorInit(pLog);
  if( !pIter ) return SQLITE_NOMEM;

  /* Sync the log file to disk */
  if( sync_flags ){
    rc = sqlite3OsSync(pLog->pFd, sync_flags);
    if( rc!=SQLITE_OK ) goto out;
  }

  /* Iterate through the contents of the log, copying data to the db file. */
  while( 0==logIteratorNext(pIter, &iDbpage, &iFrame) ){
    rc = sqlite3OsRead(pLog->pFd, zBuf, pgsz, 
        logFrameOffset(iFrame, pgsz) + LOG_FRAME_HDRSIZE
    );
    if( rc!=SQLITE_OK ) goto out;
    rc = sqlite3OsWrite(pFd, zBuf, pgsz, (iDbpage-1)*pgsz);
    if( rc!=SQLITE_OK ) goto out;
  }

  /* Truncate the database file */
  rc = sqlite3OsTruncate(pFd, ((i64)pLog->hdr.nPage*(i64)pgsz));
  if( rc!=SQLITE_OK ) goto out;

  /* Sync the database file. If successful, update the log-summary. */
  if( sync_flags ){
    rc = sqlite3OsSync(pFd, sync_flags);
    if( rc!=SQLITE_OK ) goto out;
  }
  pLog->hdr.iLastPg = 0;
  pLog->hdr.iCheck1 = 2;
  pLog->hdr.iCheck2 = 3;
  logSummaryWriteHdr(pLog->pSummary, &pLog->hdr);

  /* TODO: If a crash occurs and the current log is copied into the 
  ** database there is no problem. However, if a crash occurs while
  ** writing the next transaction into the start of the log, such that:
  **
  **   * The first transaction currently in the log is left intact, but
  **   * The second (or subsequent) transaction is damaged,
  **
  ** then the database could become corrupt.
  **
  ** The easiest thing to do would be to write and sync a dummy header
  ** into the log at this point. Unfortunately, that turns out to be
  ** an unwelcome performance hit. Alternatives are...
  */
#if 0 
  memset(zBuf, 0, LOG_FRAME_HDRSIZE);
  rc = sqlite3OsWrite(pLog->pFd, zBuf, LOG_FRAME_HDRSIZE, 0);
  if( rc!=SQLITE_OK ) goto out;
  rc = sqlite3OsSync(pLog->pFd, pLog->sync_flags);
#endif

 out:
  logIteratorFree(pIter);
  return rc;
}

/*
** Close a connection to a log file.
*/
int sqlite3LogClose(
  Log *pLog,                      /* Log to close */
  sqlite3_file *pFd,              /* Database file */
  int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
  u8 *zBuf                        /* Buffer of at least page-size bytes */
){
  int rc = SQLITE_OK;
  if( pLog ){
    LogLock **ppL;
    LogSummary *pSummary = pLog->pSummary;
    sqlite3_mutex *mutex = 0;

    sqlite3_mutex_enter(pSummary->mutex);
    for(ppL=&pSummary->pLock; *ppL!=&pLog->lock; ppL=&(*ppL)->pNext);
    *ppL = pLog->lock.pNext;
    sqlite3_mutex_leave(pSummary->mutex);

    if( sqlite3GlobalConfig.bCoreMutex ){
      mutex = sqlite3_mutex_alloc(LOG_SUMMARY_MUTEX);
    }
    sqlite3_mutex_enter(mutex);

    /* Decrement the reference count on the log summary. If this is the last
    ** reference to the log summary object in this process, the object will
    ** be freed. If this is also the last connection to the database, then
    ** checkpoint the database and truncate the log and log-summary files
    ** to zero bytes in size.
    **/
    pSummary->nRef--;
    if( pSummary->nRef==0 ){
      int rc;
      LogSummary **pp;
      for(pp=&pLogSummary; *pp!=pSummary; pp=&(*pp)->pNext);
      *pp = (*pp)->pNext;

      sqlite3_mutex_leave(mutex);

      rc = sqlite3OsLock(pFd, SQLITE_LOCK_EXCLUSIVE);
      if( rc==SQLITE_OK ){

        /* This is the last connection to the database (including other
        ** processes). Do three things:
        **
        **   1. Checkpoint the db.
        **   2. Truncate the log file.
        **   3. Unlink the log-summary file.
        */
        rc = logCheckpoint(pLog, pFd, sync_flags, zBuf);
        if( rc==SQLITE_OK ){
          rc = sqlite3OsDelete(pLog->pVfs, pSummary->zPath, 0);
        }

        logSummaryUnmap(pSummary, 1);
      }else{
        if( rc==SQLITE_BUSY ){
          rc = SQLITE_OK;
        }
        logSummaryUnmap(pSummary, 0);
      }
      sqlite3OsUnlock(pFd, SQLITE_LOCK_NONE);

      sqlite3_mutex_free(pSummary->mutex);
      sqlite3_free(pSummary);
    }else{
      sqlite3_mutex_leave(mutex);
    }

    /* Close the connection to the log file and free the Log handle. */
    sqlite3OsClose(pLog->pFd);
    sqlite3_free(pLog);
  }
  return rc;
}

/*
** Enter and leave the log-summary mutex. In this context, entering the
** log-summary mutex means:
**
**   1. Obtaining mutex pLog->pSummary->mutex, and
**   2. Taking an exclusive lock on the log-summary file.
**
** i.e. this mutex locks out other processes as well as other threads
** hosted in this address space.
*/
static int logEnterMutex(Log *pLog){
  LogSummary *pSummary = pLog->pSummary;
  int rc;

  sqlite3_mutex_enter(pSummary->mutex);
  rc = logLockMutex(pSummary, LOG_WRLOCKW);
  if( rc!=SQLITE_OK ){
    sqlite3_mutex_leave(pSummary->mutex);
  }
  return rc;
}
static void logLeaveMutex(Log *pLog){
  LogSummary *pSummary = pLog->pSummary;
  logLockMutex(pSummary, LOG_UNLOCK);
  sqlite3_mutex_leave(pSummary->mutex);
}

/*
** Try to read the log-summary header. Attempt to verify the header
** checksum. If the checksum can be verified, copy the log-summary
** header into structure pLog->hdr. If the contents of pLog->hdr are
** modified by this and pChanged is not NULL, set *pChanged to 1. 
** Otherwise leave *pChanged unmodified.
**
** If the checksum cannot be verified return SQLITE_ERROR.
*/
int logSummaryTryHdr(Log *pLog, int *pChanged){
  u32 aCksum[2] = {1, 1};
  u32 aHdr[LOGSUMMARY_HDR_NFIELD+2];

  /* First try to read the header without a lock. Verify the checksum
  ** before returning. This will almost always work.  
  */
  memcpy(aHdr, pLog->pSummary->aData, sizeof(aHdr));
  logChecksumBytes((u8*)aHdr, sizeof(u32)*LOGSUMMARY_HDR_NFIELD, aCksum);
  if( aCksum[0]!=aHdr[LOGSUMMARY_HDR_NFIELD]
   || aCksum[1]!=aHdr[LOGSUMMARY_HDR_NFIELD+1]
  ){
    return SQLITE_ERROR;
  }

  if( memcmp(&pLog->hdr, aHdr, sizeof(LogSummaryHdr)) ){
    if( pChanged ){
      *pChanged = 1;
    }
    memcpy(&pLog->hdr, aHdr, sizeof(LogSummaryHdr));
  }
  return SQLITE_OK;
}

/*
** Read the log-summary header from the log-summary file into structure 
** pLog->hdr. If attempting to verify the header checksum fails, try
** to recover the log before returning.
**
** If the log-summary header is successfully read, return SQLITE_OK. 
** Otherwise an SQLite error code.
*/
int logSummaryReadHdr(Log *pLog, int *pChanged){
  int rc;

  /* First try to read the header without a lock. Verify the checksum
  ** before returning. This will almost always work.  
  */
  if( SQLITE_OK==logSummaryTryHdr(pLog, pChanged) ){
    return SQLITE_OK;
  }

  /* If the first attempt to read the header failed, lock the log-summary
  ** file and try again. If the header checksum verification fails this
  ** time as well, run log recovery.
  */
  if( SQLITE_OK==(rc = logEnterMutex(pLog)) ){
    if( SQLITE_OK!=logSummaryTryHdr(pLog, pChanged) ){
      if( pChanged ){
        *pChanged = 1;
      }
      rc = logSummaryRecover(pLog->pSummary, pLog->pFd);
      if( rc==SQLITE_OK ){
        rc = logSummaryTryHdr(pLog, 0);
      }
    }
    logLeaveMutex(pLog);
  }

  return rc;
}

/*
** Lock a snapshot.
**
** If this call obtains a new read-lock and the database contents have been
** modified since the most recent call to LogCloseSnapshot() on this Log
** connection, then *pChanged is set to 1 before returning. Otherwise, it 
** is left unmodified. This is used by the pager layer to determine whether 
** or not any cached pages may be safely reused.
*/
int sqlite3LogOpenSnapshot(Log *pLog, int *pChanged){
  int rc = SQLITE_OK;
  if( pLog->isLocked==0 ){
    int nAttempt;

    /* Obtain a snapshot-lock on the log-summary file. The procedure
    ** for obtaining the snapshot log is:
    **
    **    1. Attempt a SHARED lock on regions A and B.
    **    2a. If step 1 is successful, drop the lock on region B.
    **    2b. If step 1 is unsuccessful, attempt a SHARED lock on region D.
    **    3. Repeat the above until the lock attempt in step 1 or 2b is 
    **       successful.
    **
    ** If neither of the locks can be obtained after 5 tries, presumably
    ** something is wrong (i.e. a process not following the locking protocol). 
    ** Return an error code in this case.
    */
    rc = SQLITE_BUSY;
    for(nAttempt=0; nAttempt<5 && rc==SQLITE_BUSY; nAttempt++){
      rc = logLockRegion(pLog, LOG_REGION_A|LOG_REGION_B, LOG_RDLOCK);
      if( rc==SQLITE_BUSY ){
        rc = logLockRegion(pLog, LOG_REGION_D, LOG_RDLOCK);
        if( rc==SQLITE_OK ) pLog->isLocked = LOG_REGION_D;
      }else{
        logLockRegion(pLog, LOG_REGION_B, LOG_UNLOCK);
        pLog->isLocked = LOG_REGION_A;
      }
    }
    if( rc!=SQLITE_OK ){
      return rc;
    }

    rc = logSummaryReadHdr(pLog, pChanged);
    if( rc!=SQLITE_OK ){
      /* An error occured while attempting log recovery. */
      sqlite3LogCloseSnapshot(pLog);
    }
  }
  return rc;
}

/*
** Unlock the current snapshot.
*/
void sqlite3LogCloseSnapshot(Log *pLog){
  if( pLog->isLocked ){
    assert( pLog->isLocked==LOG_REGION_A || pLog->isLocked==LOG_REGION_D );
    logLockRegion(pLog, pLog->isLocked, LOG_UNLOCK);
  }
  pLog->isLocked = 0;
}

/* 
** Read a page from the log, if it is present. 
*/
int sqlite3LogRead(Log *pLog, Pgno pgno, int *pInLog, u8 *pOut){
  u32 iRead = 0;
  u32 *aData = pLog->pSummary->aData;
  int iFrame = (pLog->hdr.iLastPg & 0xFFFFFF00);

  assert( pLog->isLocked );

  /* Do a linear search of the unindexed block of page-numbers (if any) 
  ** at the end of the log-summary. An alternative to this would be to
  ** build an index in private memory each time a read transaction is
  ** opened on a new snapshot.
  */
  if( pLog->hdr.iLastPg ){
    u32 *pi = &aData[logSummaryEntry(pLog->hdr.iLastPg)];
    u32 *piStop = pi - (pLog->hdr.iLastPg & 0xFF);
    while( *pi!=pgno && pi!=piStop ) pi--;
    if( pi!=piStop ){
      iRead = (pi-piStop) + iFrame;
    }
  }
  assert( iRead==0 || aData[logSummaryEntry(iRead)]==pgno );

  while( iRead==0 && iFrame>0 ){
    int iLow = 0;
    int iHigh = 255;
    u32 *aFrame;
    u8 *aIndex;

    iFrame -= 256;
    aFrame = &aData[logSummaryEntry(iFrame+1)];
    aIndex = (u8 *)&aFrame[256];

    while( iLow<=iHigh ){
      int iTest = (iLow+iHigh)>>1;
      u32 iPg = aFrame[aIndex[iTest]];

      if( iPg==pgno ){
        iRead = iFrame + 1 + aIndex[iTest];
        break;
      }
      else if( iPg<pgno ){
        iLow = iTest+1;
      }else{
        iHigh = iTest-1;
      }
    }
  }
  assert( iRead==0 || aData[logSummaryEntry(iRead)]==pgno );

  /* If iRead is non-zero, then it is the log frame number that contains the
  ** required page. Read and return data from the log file.
  */
  if( iRead ){
    i64 iOffset = logFrameOffset(iRead, pLog->hdr.pgsz) + LOG_FRAME_HDRSIZE;
    *pInLog = 1;
    return sqlite3OsRead(pLog->pFd, pOut, pLog->hdr.pgsz, iOffset);
  }

  *pInLog = 0;
  return SQLITE_OK;
}


/* 
** Set *pPgno to the size of the database file (or zero, if unknown).
*/
void sqlite3LogMaxpgno(Log *pLog, Pgno *pPgno){
  assert( pLog->isLocked );
  *pPgno = pLog->hdr.nPage;
}

/* 
** This function returns SQLITE_OK if the caller may write to the database.
** Otherwise, if the caller is operating on a snapshot that has already
** been overwritten by another writer, SQLITE_BUSY is returned.
*/
int sqlite3LogWriteLock(Log *pLog, int op){
  assert( pLog->isLocked );
  if( op ){

    /* Obtain the writer lock */
    int rc = logLockRegion(pLog, LOG_REGION_C|LOG_REGION_D, LOG_WRLOCK);
    if( rc!=SQLITE_OK ){
      return rc;
    }

    /* If this is connection is a region D reader, then the SHARED lock on 
    ** region D has just been upgraded to EXCLUSIVE. But no lock at all is 
    ** held on region A. This means that if the write-transaction is committed
    ** and this connection downgrades to a reader, it will be left with no
    ** lock at all. And so its snapshot could get clobbered by a checkpoint
    ** operation. 
    **
    ** To stop this from happening, grab a SHARED lock on region A now.
    ** This should always be successful, as the only time a client holds
    ** an EXCLUSIVE lock on region A, it must also be holding an EXCLUSIVE
    ** lock on region C (a checkpointer does this). This is not possible,
    ** as this connection currently has the EXCLUSIVE lock on region C.
    */
    if( pLog->isLocked==LOG_REGION_D ){
      logLockRegion(pLog, LOG_REGION_A, LOG_RDLOCK);
      pLog->isLocked = LOG_REGION_A;
    }

    /* If this connection is not reading the most recent database snapshot,
    ** it is not possible to write to the database. In this case release
    ** the write locks and return SQLITE_BUSY.
    */
    if( memcmp(&pLog->hdr, pLog->pSummary->aData, sizeof(pLog->hdr)) ){
      logLockRegion(pLog, LOG_REGION_C|LOG_REGION_D, LOG_UNLOCK);
      return SQLITE_BUSY;
    }
    pLog->isWriteLocked = 1;

  }else if( pLog->isWriteLocked ){
    logLockRegion(pLog, LOG_REGION_C|LOG_REGION_D, LOG_UNLOCK);
    memcpy(&pLog->hdr, pLog->pSummary->aData, sizeof(pLog->hdr));
    pLog->isWriteLocked = 0;
  }
  return SQLITE_OK;
}

/* 
** Write a set of frames to the log. The caller must hold at least a
** RESERVED lock on the database file.
*/
int sqlite3LogFrames(
  Log *pLog,                      /* Log handle to write to */
  int nPgsz,                      /* Database page-size in bytes */
  PgHdr *pList,                   /* List of dirty pages to write */
  Pgno nTruncate,                 /* Database size after this commit */
  int isCommit,                   /* True if this is a commit */
  int sync_flags                  /* Flags to pass to OsSync() (or 0) */
){
  int rc;                         /* Used to catch return codes */
  u32 iFrame;                     /* Next frame address */
  u8 aFrame[LOG_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
  PgHdr *p;                       /* Iterator to run through pList with. */
  u32 aCksum[2];                  /* Checksums */
  PgHdr *pLast;                   /* Last frame in list */
  int nLast = 0;                  /* Number of extra copies of last page */

  assert( LOG_FRAME_HDRSIZE==(4 * 2 + LOG_CKSM_BYTES) );
  assert( pList );

  /* If this is the first frame written into the log, write the log 
  ** header to the start of the log file. See comments at the top of
  ** this file for a description of the log-header format.
  */
  assert( LOG_FRAME_HDRSIZE>=LOG_HDRSIZE );
  iFrame = pLog->hdr.iLastPg;
  if( iFrame==0 ){
    sqlite3Put4byte(aFrame, nPgsz);
    sqlite3_randomness(8, &aFrame[4]);
    pLog->hdr.iCheck1 = sqlite3Get4byte(&aFrame[4]);
    pLog->hdr.iCheck2 = sqlite3Get4byte(&aFrame[8]);
    rc = sqlite3OsWrite(pLog->pFd, aFrame, LOG_HDRSIZE, 0);
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }

  aCksum[0] = pLog->hdr.iCheck1;
  aCksum[1] = pLog->hdr.iCheck2;

  /* Write the log file. */
  for(p=pList; p; p=p->pDirty){
    u32 nDbsize;                  /* Db-size field for frame header */
    i64 iOffset;                  /* Write offset in log file */

    iOffset = logFrameOffset(++iFrame, nPgsz);
    
    /* Populate and write the frame header */
    nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
    logEncodeFrame(aCksum, p->pgno, nDbsize, nPgsz, p->pData, aFrame);
    rc = sqlite3OsWrite(pLog->pFd, aFrame, sizeof(aFrame), iOffset);
    if( rc!=SQLITE_OK ){
      return rc;
    }

    /* Write the page data */
    rc = sqlite3OsWrite(pLog->pFd, p->pData, nPgsz, iOffset + sizeof(aFrame));
    if( rc!=SQLITE_OK ){
      return rc;
    }
    pLast = p;
  }

  /* Sync the log file if the 'isSync' flag was specified. */
  if( sync_flags ){
    i64 iSegment = sqlite3OsSectorSize(pLog->pFd);
    i64 iOffset = logFrameOffset(iFrame+1, nPgsz);

    assert( isCommit );

    if( iSegment<SQLITE_DEFAULT_SECTOR_SIZE ){
      iSegment = SQLITE_DEFAULT_SECTOR_SIZE;
    }
    iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
    while( iOffset<iSegment ){
      logEncodeFrame(aCksum,pLast->pgno,nTruncate,nPgsz,pLast->pData,aFrame);
      rc = sqlite3OsWrite(pLog->pFd, aFrame, sizeof(aFrame), iOffset);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      iOffset += LOG_FRAME_HDRSIZE;
      rc = sqlite3OsWrite(pLog->pFd, pLast->pData, nPgsz, iOffset); 
      if( rc!=SQLITE_OK ){
        return rc;
      }
      nLast++;
      iOffset += nPgsz;
    }

    rc = sqlite3OsSync(pLog->pFd, sync_flags);
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }

  /* Append data to the log summary. It is not necessary to lock the 
  ** log-summary to do this as the RESERVED lock held on the db file
  ** guarantees that there are no other writers, and no data that may
  ** be in use by existing readers is being overwritten.
  */
  iFrame = pLog->hdr.iLastPg;
  for(p=pList; p; p=p->pDirty){
    iFrame++;
    logSummaryAppend(pLog->pSummary, iFrame, p->pgno);
  }
  while( nLast>0 ){
    iFrame++;
    nLast--;
    logSummaryAppend(pLog->pSummary, iFrame, pLast->pgno);
  }

  /* Update the private copy of the header. */
  pLog->hdr.pgsz = nPgsz;
  pLog->hdr.iLastPg = iFrame;
  if( isCommit ){
    pLog->hdr.iChange++;
    pLog->hdr.nPage = nTruncate;
  }
  pLog->hdr.iCheck1 = aCksum[0];
  pLog->hdr.iCheck2 = aCksum[1];

  /* If this is a commit, update the log-summary header too. */
  if( isCommit && SQLITE_OK==(rc = logEnterMutex(pLog)) ){
    logSummaryWriteHdr(pLog->pSummary, &pLog->hdr);
    logLeaveMutex(pLog);
  }

  return SQLITE_OK;
}

/* 
** Checkpoint the database:
**
**   1. Wait for an EXCLUSIVE lock on regions B and C.
**   2. Wait for an EXCLUSIVE lock on region A.
**   3. Copy the contents of the log into the database file.
**   4. Zero the log-summary header (so new readers will ignore the log).
**   5. Drop the locks obtained in steps 1 and 2.
*/
int sqlite3LogCheckpoint(
  Log *pLog,                      /* Log connection */
  sqlite3_file *pFd,              /* File descriptor open on db file */
  int sync_flags,                 /* Flags to sync db file with (or 0) */
  u8 *zBuf,                       /* Temporary buffer to use */
  int (*xBusyHandler)(void *),    /* Pointer to busy-handler function */
  void *pBusyHandlerArg           /* Argument to pass to xBusyHandler */
){
  int rc;                         /* Return code */

  assert( !pLog->isLocked );

  /* Wait for an EXCLUSIVE lock on regions B and C. */
  do {
    rc = logLockRegion(pLog, LOG_REGION_B|LOG_REGION_C, LOG_WRLOCK);
  }while( rc==SQLITE_BUSY && xBusyHandler(pBusyHandlerArg) );
  if( rc!=SQLITE_OK ) return rc;

  /* Wait for an EXCLUSIVE lock on region A. */
  do {
    rc = logLockRegion(pLog, LOG_REGION_A, LOG_WRLOCK);
  }while( rc==SQLITE_BUSY && xBusyHandler(pBusyHandlerArg) );
  if( rc!=SQLITE_OK ){
    logLockRegion(pLog, LOG_REGION_B|LOG_REGION_C, LOG_UNLOCK);
    return rc;
  }

  /* Copy data from the log to the database file. */
  rc = logSummaryReadHdr(pLog, 0);
  if( rc==SQLITE_OK ){
    rc = logCheckpoint(pLog, pFd, sync_flags, zBuf);
  }

  /* Release the locks. */
  logLockRegion(pLog, LOG_REGION_A|LOG_REGION_B|LOG_REGION_C, LOG_UNLOCK);
  return rc;
}