diff options
Diffstat (limited to 'src/utf.c')
-rw-r--r-- | src/utf.c | 440 |
1 files changed, 428 insertions, 12 deletions
@@ -12,7 +12,7 @@ ** This file contains routines used to translate between UTF-8, ** UTF-16, UTF-16BE, and UTF-16LE. ** -** $Id: utf.c,v 1.1 2004/05/04 15:00:47 drh Exp $ +** $Id: utf.c,v 1.2 2004/05/06 23:37:53 danielk1977 Exp $ ** ** Notes on UTF-8: ** @@ -29,15 +29,318 @@ ** 110110wwwwxxxxxx 110111yyyyyyyyyy 000uuuuu xxxxxxyy yyyyyyyy ** xxxxxxxxyyyyyyyy 00000000 xxxxxxxx yyyyyyyy ** +** ** BOM or Byte Order Mark: ** 0xff 0xfe little-endian utf-16 follows ** 0xfe 0xff big-endian utf-16 follows +** +** +** Handling of malformed strings: +** +** SQLite accepts and processes malformed strings without an error wherever +** possible. However this is not possible when converting between UTF-8 and +** UTF-16. +** +** When converting malformed UTF-8 strings to UTF-16, one instance of the +** replacement character U+FFFD for each byte that cannot be interpeted as +** part of a valid unicode character. +** +** When converting malformed UTF-16 strings to UTF-8, one instance of the +** replacement character U+FFFD for each pair of bytes that cannot be +** interpeted as part of a valid unicode character. +*/ + +#include <assert.h> +#include <unistd.h> +#include "sqliteInt.h" + +typedef struct UtfString UtfString; +struct UtfString { + unsigned char *pZ; /* Raw string data */ + int n; /* Allocated length of pZ in bytes */ + int c; /* Number of pZ bytes already read or written */ +}; + +/* TODO: Implement this macro in os.h. It should be 1 on big-endian +** machines, and 0 on little-endian. +*/ +#define SQLITE3_NATIVE_BIGENDIAN 0 + +#if SQLITE3_NATIVE_BIGENDIAN == 1 +#define BOM_BIGENDIAN 0x0000FFFE +#define BOM_LITTLEENDIAN 0x0000FEFF +#else +#define BOM_BIGENDIAN 0x0000FEFF +#define BOM_LITTLEENDIAN 0x0000FFFE +#endif + +/* +** These two macros are used to interpret the first two bytes of the +** unsigned char array pZ as a 16-bit unsigned int. BE16() for a big-endian +** interpretation, LE16() for little-endian. +*/ +#define BE16(pZ) (((u16)((pZ)[0])<<8) + (u16)((pZ)[1])) +#define LE16(pZ) (((u16)((pZ)[1])<<8) + (u16)((pZ)[0])) + +/* +** READ_16 interprets the first two bytes of the unsigned char array pZ +** as a 16-bit unsigned int. If big_endian is non-zero the intepretation +** is big-endian, otherwise little-endian. +*/ +#define READ_16(pZ,big_endian) (big_endian?BE16(pZ):LE16(pZ)) + +/* +** Read the BOM from the start of *pStr, if one is present. Return zero +** for little-endian, non-zero for big-endian. If no BOM is present, return +** the machines native byte order. +** +** Return values: +** 1 -> big-endian string +** 0 -> little-endian string +*/ +static int readUtf16Bom(UtfString *pStr){ + /* The BOM must be the first thing read from the string */ + assert( pStr->c==0 ); + + /* If the string data consists of 1 byte or less, the BOM will make no + ** difference anyway. In this case just fall through to the default case + ** and return the native byte-order for this machine. + ** + ** Otherwise, check the first 2 bytes of the string to see if a BOM is + ** present. + */ + if( pStr->n>1 ){ + u32 bom = BE16(pStr->pZ); + if( bom==BOM_BIGENDIAN ){ + pStr->c = 2; + return 1; + } + if( bom==BOM_LITTLEENDIAN ){ + pStr->c = 2; + return 0; + } + } + + return SQLITE3_NATIVE_BIGENDIAN; +} + + +/* +** Read a single unicode character from the UTF-8 encoded string *pStr. The +** value returned is a unicode scalar value. In the case of malformed +** strings, the unicode replacement character U+FFFD may be returned. +*/ +static u32 readUtf8(UtfString *pStr){ + struct Utf8TblRow { + u8 b1_mask; + u8 b1_masked_val; + u8 b1_value_mask; + int trailing_bytes; + }; + static const struct Utf8TblRow utf8tbl[] = { + { 0x80, 0x00, 0x7F, 0 }, + { 0xE0, 0xC0, 0x1F, 1 }, + { 0xF0, 0xE0, 0x0F, 2 }, + { 0xF8, 0xF0, 0x0E, 3 }, + { 0, 0, 0, 0} + }; + + u8 b1; /* First byte of the potentially multi-byte utf-8 character */ + u32 ret = 0; /* Return value */ + int ii; + struct Utf8TblRow const *pRow; + + pRow = &(utf8tbl[0]); + + b1 = pStr->pZ[pStr->c]; + pStr->c++; + while( pRow->b1_mask && (b1&pRow->b1_mask)!=pRow->b1_masked_val ){ + pRow++; + } + if( !pRow->b1_mask ){ + return 0xFFFD; + } + + ret = (u32)(b1&pRow->b1_value_mask); + for( ii=0; ii<pRow->trailing_bytes; ii++ ){ + u8 b = pStr->pZ[pStr->c+ii]; + if( (b&0xC0)!=0x80 ){ + return 0xFFFD; + } + ret = (ret<<6) + (u32)(b&0x3F); + } + + pStr->c += pRow->trailing_bytes; + return ret; +} + +/* +** Write the unicode character 'code' to the string pStr using UTF-8 +** encoding. SQLITE_NOMEM may be returned if sqlite3Malloc() fails. */ +static int writeUtf8(UtfString *pStr, u32 code){ + struct Utf8WriteTblRow { + u32 max_code; + int trailing_bytes; + u8 b1_and_mask; + u8 b1_or_mask; + }; + static const struct Utf8WriteTblRow utf8tbl[] = { + {0x0000007F, 0, 0x7F, 0x00}, + {0x000007FF, 1, 0xDF, 0xC0}, + {0x0000FFFF, 2, 0xEF, 0xE0}, + {0x0010FFFF, 3, 0xF7, 0xF0}, + {0x00000000, 0, 0x00, 0x00} + }; + static const struct Utf8WriteTblRow *pRow = &utf8tbl[0]; + + while( code<=pRow->max_code ){ + assert( pRow->max_code ); + pRow++; + } + + /* Ensure there is enough room left in the output buffer to write + ** this UTF-8 character. + */ + assert( (pStr->n-pStr->c)>=(pRow->trailing_bytes+1) ); + + /* Write the UTF-8 encoded character to pStr. All cases below are + ** intentionally fall-through. + */ + switch( pRow->trailing_bytes ){ + case 3: + pStr->pZ[pStr->c+3] = (((u8)code)&0x3F)|0x80; + code = code>>6; + case 2: + pStr->pZ[pStr->c+2] = (((u8)code)&0x3F)|0x80; + code = code>>6; + case 1: + pStr->pZ[pStr->c+1] = (((u8)code)&0x3F)|0x80; + code = code>>6; + case 0: + pStr->pZ[pStr->c] = (((u8)code)&(pRow->b1_and_mask))|(pRow->b1_or_mask); + } + pStr->c += (pRow->trailing_bytes + 1); + + return 0; +} + +/* +** Read a single unicode character from the UTF-16 encoded string *pStr. The +** value returned is a unicode scalar value. In the case of malformed +** strings, the unicode replacement character U+FFFD may be returned. +** +** If big_endian is true, the string is assumed to be UTF-16BE encoded. +** Otherwise, it is UTF-16LE encoded. +*/ +static u32 readUtf16(UtfString *pStr, int big_endian){ + u32 code_point; /* the first code-point in the character */ + + /* If there is only one byte of data left in the string, return the + ** replacement character. + */ + if( (pStr->n-pStr->c)==1 ){ + pStr->c++; + return (int)0xFFFD; + } + + code_point = READ_16(&(pStr->pZ[pStr->c]), big_endian); + pStr->c += 2; + + /* If this is a non-surrogate code-point, just cast it to an int and + ** return the code-point value. + */ + if( code_point<0xD800 || code_point>0xE000 ){ + return code_point; + } + + /* If this is a trailing surrogate code-point, then the string is + ** malformed; return the replacement character. + */ + if( code_point>0xDBFF ){ + return 0xFFFD; + } + + /* The code-point just read is a leading surrogate code-point. If their + ** is not enough data left or the next code-point is not a trailing + ** surrogate, return the replacement character. + */ + if( (pStr->n-pStr->c)>1 ){ + u32 code_point2 = READ_16(&pStr->pZ[pStr->c], big_endian); + if( code_point2<0xDC00 || code_point>0xDFFF ){ + return 0xFFFD; + } + pStr->c += 2; + + return ( + (((code_point&0x03C0)+0x0040)<<16) + /* uuuuu */ + ((code_point&0x003F)<<10) + /* xxxxxx */ + (code_point2&0x03FF) /* yy yyyyyyyy */ + ); + + }else{ + return (int)0xFFFD; + } + + /* not reached */ +} + +static int writeUtf16(UtfString *pStr, int code, int big_endian){ + int bytes; + unsigned char *hi_byte; + unsigned char *lo_byte; + + bytes = (code>0x0000FFFF?4:2); + + /* Ensure there is enough room left in the output buffer to write + ** this UTF-8 character. + */ + assert( (pStr->n-pStr->c)>=bytes ); + + /* Initialise hi_byte and lo_byte to point at the locations into which + ** the MSB and LSB of the (first) 16-bit unicode code-point written for + ** this character. + */ + hi_byte = (big_endian?&pStr->pZ[pStr->c]:&pStr->pZ[pStr->c+1]); + lo_byte = (big_endian?&pStr->pZ[pStr->c+1]:&pStr->pZ[pStr->c]); + + if( bytes==2 ){ + *hi_byte = (u8)((code&0x0000FF00)>>8); + *lo_byte = (u8)(code&0x000000FF); + }else{ + u32 wrd; + wrd = ((((code&0x001F0000)-0x00010000)+(code&0x0000FC00))>>10)|0x0000D800; + *hi_byte = (u8)((wrd&0x0000FF00)>>8); + *lo_byte = (u8)(wrd&0x000000FF); + + wrd = (code&0x000003FF)|0x0000DC00; + *(hi_byte+2) = (u8)((wrd&0x0000FF00)>>8); + *(lo_byte+2) = (u8)(wrd&0x000000FF); + } + + pStr->c += bytes; + + return 0; +} + +/* +** Return the number of bytes up to (but not including) the first \u0000 +** character in *pStr. +*/ +static int utf16Bytelen(const unsigned char *pZ){ + const unsigned char *pC1 = pZ; + const unsigned char *pC2 = pZ+1; + while( *pC1 || *pC2 ){ + pC1 += 2; + pC2 += 2; + } + return pC1-pZ; +} /* ** Convert a string in UTF-16 native byte (or with a Byte-order-mark or ** "BOM") into a UTF-8 string. The UTF-8 string is written into space -** obtained from sqlit3Malloc() and must be released by the calling function. +** obtained from sqlite3Malloc() and must be released by the calling function. ** ** The parameter N is the number of bytes in the UTF-16 string. If N is ** negative, the entire string up to the first \u0000 character is translated. @@ -45,7 +348,113 @@ ** The returned UTF-8 string is always \000 terminated. */ unsigned char *sqlite3utf16to8(const void *pData, int N){ - unsigned char *in = (unsigned char *)pData; + UtfString in; + UtfString out; + int big_endian; + + out.pZ = 0; + + in.pZ = (unsigned char *)pData; + in.n = N; + in.c = 0; + + if( in.n<0 ){ + in.n = utf16Bytelen(in.pZ); + } + + /* A UTF-8 encoding of a unicode string can require at most 1.5 times as + ** much space to store as the same string encoded using UTF-16. Allocate + ** this now. + */ + out.n = (in.n*1.5) + 1; + out.pZ = sqliteMalloc(in.n); + if( !out.pZ ){ + return 0; + } + out.c = 0; + + big_endian = readUtf16Bom(&in); + while( in.c<in.n ){ + writeUtf8(&out, readUtf16(&in, big_endian)); + } + + /* Add the NULL-terminator character */ + assert( out.c<out.n ); + out.pZ[out.c] = 0x00; + + return out.pZ; +} + +static void *utf8toUtf16(const unsigned char *pIn, int N, int big_endian){ + UtfString in; + UtfString out; + + in.pZ = (unsigned char *)pIn; + in.n = N; + in.c = 0; + + if( in.n<0 ){ + in.n = strlen(in.pZ); + } + + /* A UTF-16 encoding of a unicode string can require at most twice as + ** much space to store as the same string encoded using UTF-8. Allocate + ** this now. + */ + out.n = (in.n*2) + 2; + out.pZ = sqliteMalloc(in.n); + if( !out.pZ ){ + return 0; + } + out.c = 0; + + while( in.c<in.n ){ + writeUtf16(&out, readUtf8(&in), big_endian); + } + + /* Add the NULL-terminator character */ + assert( (out.c+1)<out.n ); + out.pZ[out.c] = 0x00; + out.pZ[out.c+1] = 0x00; + + return out.pZ; +} + +/* +** Translate UTF-8 to UTF-16BE or UTF-16LE +*/ +void *sqlite3utf8to16be(const unsigned char *pIn, int N){ + return utf8toUtf16(pIn, N, 1); +} + +void *sqlite3utf8to16le(const unsigned char *pIn, int N){ + return utf8toUtf16(pIn, N, 0); +} + +/* +** This routine does the work for sqlite3utf16to16le() and +** sqlite3utf16to16be(). If big_endian is 1 the input string is +** transformed in place to UTF-16BE encoding. If big_endian is 0 then +** the input is transformed to UTF-16LE. +** +** Unless the first two bytes of the input string is a BOM, the input is +** assumed to be UTF-16 encoded using the machines native byte ordering. +*/ +static void utf16to16(void *pData, int N, int big_endian){ + UtfString inout; + inout.pZ = (unsigned char *)pData; + inout.c = 0; + inout.n = N; + + if( inout.n<0 ){ + inout.n = utf16Bytelen(inout.pZ); + } + + if( readUtf16Bom(&inout)!=big_endian ){ + swab(&inout.pZ[inout.c], inout.pZ, inout.n-inout.c); + }else if( inout.c ){ + memmove(inout.pZ, &inout.pZ[inout.c], inout.n-inout.c); + } } /* @@ -57,21 +466,28 @@ unsigned char *sqlite3utf16to8(const void *pData, int N){ ** If the native byte order is little-endian and there is no BOM, then ** this routine is a no-op. If there is a BOM at the start of the string, ** it is removed. +** +** Translation from UTF-16LE to UTF-16BE and back again is accomplished +** using the library function swab(). */ void sqlite3utf16to16le(void *pData, int N){ -} -void sqlite3utf16to16be(void *pData, int N){ + utf16to16(pData, N, 0); } /* +** Convert a string in UTF-16 native byte or with a BOM into a UTF-16BE +** string. The conversion occurs in-place. The output overwrites the +** input. N bytes are converted. If N is negative everything is converted +** up to the first \u0000 character. +** +** If the native byte order is little-endian and there is no BOM, then +** this routine is a no-op. If there is a BOM at the start of the string, +** it is removed. +** ** Translation from UTF-16LE to UTF-16BE and back again is accomplished ** using the library function swab(). */ - -/* -** Translate UTF-8 to UTF-16BE or UTF-16LE -*/ -void *sqlite3utf8to16be(const unsigned char *pIn, int N){ -} -void *sqlite3utf8to16le(const unsigned char *pIn, int N){ +void sqlite3utf16to16be(void *pData, int N){ + utf16to16(pData, N, 1); } + |