diff options
author | drh <drh@noemail.net> | 2014-12-04 23:35:08 +0000 |
---|---|---|
committer | drh <drh@noemail.net> | 2014-12-04 23:35:08 +0000 |
commit | 34794c3d0cd985100f5fe3f4ff8e6ffa9ffa18da (patch) | |
tree | 39986308fca5eaa2515c2dcaa2a92dc76fbb3133 /src | |
parent | 6e09b16852d92fa44582ca69882f2f2b6501cd51 (diff) | |
parent | dea7d70d1b9516956a7550d0ffde1b4560fc77ca (diff) | |
download | sqlite-34794c3d0cd985100f5fe3f4ff8e6ffa9ffa18da.tar.gz sqlite-34794c3d0cd985100f5fe3f4ff8e6ffa9ffa18da.zip |
Incorporate the SQLITE_CHECKPOINT_TRUNCATE enhancement and a couple of
obscure bug fixes from trunk.
FossilOrigin-Name: 34ffa3b3c002b0e87d8382ad76e87dbaec0b2bc6
Diffstat (limited to 'src')
-rw-r--r-- | src/expr.c | 3 | ||||
-rw-r--r-- | src/main.c | 15 | ||||
-rw-r--r-- | src/pager.c | 3 | ||||
-rw-r--r-- | src/pragma.c | 4 | ||||
-rw-r--r-- | src/resolve.c | 4 | ||||
-rw-r--r-- | src/select.c | 3 | ||||
-rw-r--r-- | src/sqlite.h.in | 214 | ||||
-rw-r--r-- | src/sqliteInt.h | 3 | ||||
-rw-r--r-- | src/test1.c | 3 | ||||
-rw-r--r-- | src/vdbe.c | 5 | ||||
-rw-r--r-- | src/wal.c | 123 | ||||
-rw-r--r-- | src/where.c | 5 |
12 files changed, 238 insertions, 147 deletions
diff --git a/src/expr.c b/src/expr.c index c28f19622..817975ab3 100644 --- a/src/expr.c +++ b/src/expr.c @@ -1414,7 +1414,8 @@ int sqlite3ExprCanBeNull(const Expr *p){ return 0; case TK_COLUMN: assert( p->pTab!=0 ); - return p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0; + return ExprHasProperty(p, EP_CanBeNull) || + (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); default: return 1; } diff --git a/src/main.c b/src/main.c index 2acc94edf..47f96ac64 100644 --- a/src/main.c +++ b/src/main.c @@ -1957,10 +1957,13 @@ int sqlite3_wal_checkpoint_v2( if( pnLog ) *pnLog = -1; if( pnCkpt ) *pnCkpt = -1; - assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE ); - assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART ); - assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART ); - if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){ + assert( SQLITE_CHECKPOINT_PASSIVE==0 ); + assert( SQLITE_CHECKPOINT_FULL==1 ); + assert( SQLITE_CHECKPOINT_RESTART==2 ); + assert( SQLITE_CHECKPOINT_TRUNCATE==3 ); + if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_TRUNCATE ){ + /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint + ** mode: */ return SQLITE_MISUSE; } @@ -1988,7 +1991,9 @@ int sqlite3_wal_checkpoint_v2( ** checkpointed. */ int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ - return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0); + /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to + ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */ + return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0); } #ifndef SQLITE_OMIT_WAL diff --git a/src/pager.c b/src/pager.c index e0ede87f0..a2ae9cc41 100644 --- a/src/pager.c +++ b/src/pager.c @@ -7075,7 +7075,8 @@ int sqlite3PagerCheckpoint(Pager *pPager, int eMode, int *pnLog, int *pnCkpt){ int rc = SQLITE_OK; if( pPager->pWal ){ rc = sqlite3WalCheckpoint(pPager->pWal, eMode, - pPager->xBusyHandler, pPager->pBusyHandlerArg, + (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler), + pPager->pBusyHandlerArg, pPager->ckptSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, pnLog, pnCkpt ); diff --git a/src/pragma.c b/src/pragma.c index 543f265ba..ab9a28362 100644 --- a/src/pragma.c +++ b/src/pragma.c @@ -2195,7 +2195,7 @@ void sqlite3Pragma( #ifndef SQLITE_OMIT_WAL /* - ** PRAGMA [database.]wal_checkpoint = passive|full|restart + ** PRAGMA [database.]wal_checkpoint = passive|full|restart|truncate ** ** Checkpoint the database. */ @@ -2207,6 +2207,8 @@ void sqlite3Pragma( eMode = SQLITE_CHECKPOINT_FULL; }else if( sqlite3StrICmp(zRight, "restart")==0 ){ eMode = SQLITE_CHECKPOINT_RESTART; + }else if( sqlite3StrICmp(zRight, "truncate")==0 ){ + eMode = SQLITE_CHECKPOINT_TRUNCATE; } } sqlite3VdbeSetNumCols(v, 3); diff --git a/src/resolve.c b/src/resolve.c index 8fb580b3a..d4bd548c9 100644 --- a/src/resolve.c +++ b/src/resolve.c @@ -320,6 +320,10 @@ static int lookupName( if( pMatch ){ pExpr->iTable = pMatch->iCursor; pExpr->pTab = pMatch->pTab; + assert( (pMatch->jointype & JT_RIGHT)==0 ); /* RIGHT JOIN not (yet) supported */ + if( (pMatch->jointype & JT_LEFT)!=0 ){ + ExprSetProperty(pExpr, EP_CanBeNull); + } pSchema = pExpr->pTab->pSchema; } } /* if( pSrcList ) */ diff --git a/src/select.c b/src/select.c index 3b422f110..070ac0041 100644 --- a/src/select.c +++ b/src/select.c @@ -4829,7 +4829,7 @@ int sqlite3Select( ** ** is transformed to: ** - ** SELECT xyz FROM ... GROUP BY xyz + ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz ** ** The second form is preferred as a single index (or temp-table) may be ** used for both the ORDER BY and DISTINCT processing. As originally @@ -4842,7 +4842,6 @@ int sqlite3Select( p->selFlags &= ~SF_Distinct; p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); pGroupBy = p->pGroupBy; - sSort.pOrderBy = 0; /* Notice that even thought SF_Distinct has been cleared from p->selFlags, ** the sDistinct.isTnct is still set. Hence, isTnct represents the ** original setting of the SF_Distinct flag, not the current setting */ diff --git a/src/sqlite.h.in b/src/sqlite.h.in index db0601bdb..afa4d89eb 100644 --- a/src/sqlite.h.in +++ b/src/sqlite.h.in @@ -1216,7 +1216,7 @@ struct sqlite3_vfs { ** </ul> ** ** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as -** was given no the corresponding lock. +** was given on the corresponding lock. ** ** The xShmLock method can transition between unlocked and SHARED or ** between unlocked and EXCLUSIVE. It cannot transition between SHARED @@ -1519,8 +1519,8 @@ struct sqlite3_mem_methods { ** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt> ** <dd> ^The SQLITE_CONFIG_MEMSTATUS option takes single argument of type int, ** interpreted as a boolean, which enables or disables the collection of -** memory allocation statistics. ^(When memory allocation statistics are disabled, the -** following SQLite interfaces become non-operational: +** memory allocation statistics. ^(When memory allocation statistics are +** disabled, the following SQLite interfaces become non-operational: ** <ul> ** <li> [sqlite3_memory_used()] ** <li> [sqlite3_memory_highwater()] @@ -1561,7 +1561,8 @@ struct sqlite3_mem_methods { ** This configuration should not be used if an application-define page ** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2] ** configuration option. -** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned +** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to +** 8-byte aligned ** memory, the size of each page buffer (sz), and the number of pages (N). ** The sz argument should be the size of the largest database page ** (a power of two between 512 and 32768) plus some extra bytes for each @@ -1581,7 +1582,8 @@ struct sqlite3_mem_methods { ** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt> ** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer ** that SQLite will use for all of its dynamic memory allocation needs -** beyond those provided for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE]. +** beyond those provided for by [SQLITE_CONFIG_SCRATCH] and +** [SQLITE_CONFIG_PAGECACHE]. ** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled ** with either [SQLITE_ENABLE_MEMSYS3] or [SQLITE_ENABLE_MEMSYS5] and returns ** [SQLITE_ERROR] if invoked otherwise. @@ -1601,9 +1603,9 @@ struct sqlite3_mem_methods { ** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt> ** <dd> ^(The SQLITE_CONFIG_MUTEX option takes a single argument which is a ** pointer to an instance of the [sqlite3_mutex_methods] structure. -** The argument specifies alternative low-level mutex routines to be used in place -** the mutex routines built into SQLite.)^ ^SQLite makes a copy of the -** content of the [sqlite3_mutex_methods] structure before the call to +** The argument specifies alternative low-level mutex routines to be used +** in place the mutex routines built into SQLite.)^ ^SQLite makes a copy of +** the content of the [sqlite3_mutex_methods] structure before the call to ** [sqlite3_config()] returns. ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** the entire mutexing subsystem is omitted from the build and hence calls to @@ -1641,8 +1643,8 @@ struct sqlite3_mem_methods { ** ** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt> ** <dd> ^(The SQLITE_CONFIG_GETPCACHE2 option takes a single argument which -** is a pointer to an [sqlite3_pcache_methods2] object. SQLite copies of the current -** page cache implementation into that object.)^ </dd> +** is a pointer to an [sqlite3_pcache_methods2] object. SQLite copies of +** the current page cache implementation into that object.)^ </dd> ** ** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt> ** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite @@ -1667,8 +1669,9 @@ struct sqlite3_mem_methods { ** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI ** <dd>^(The SQLITE_CONFIG_URI option takes a single argument of type int. ** If non-zero, then URI handling is globally enabled. If the parameter is zero, -** then URI handling is globally disabled.)^ ^If URI handling is globally enabled, -** all filenames passed to [sqlite3_open()], [sqlite3_open_v2()], [sqlite3_open16()] or +** then URI handling is globally disabled.)^ ^If URI handling is globally +** enabled, all filenames passed to [sqlite3_open()], [sqlite3_open_v2()], +** [sqlite3_open16()] or ** specified as part of [ATTACH] commands are interpreted as URIs, regardless ** of whether or not the [SQLITE_OPEN_URI] flag is set when the database ** connection is opened. ^If it is globally disabled, filenames are @@ -1730,8 +1733,8 @@ struct sqlite3_mem_methods { ** [[SQLITE_CONFIG_WIN32_HEAPSIZE]] ** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE ** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is -** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro defined. -** ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value +** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro +** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value ** that specifies the maximum size of the created heap. ** </dl> ** @@ -1739,8 +1742,8 @@ struct sqlite3_mem_methods { ** <dt>SQLITE_CONFIG_PCACHE_HDRSZ ** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which ** is a pointer to an integer and writes into that integer the number of extra -** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE]. The amount of -** extra space required can change depending on the compiler, +** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE]. +** The amount of extra space required can change depending on the compiler, ** target platform, and SQLite version. ** </dl> */ @@ -2044,6 +2047,7 @@ int sqlite3_complete16(const void *sql); /* ** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors +** KEYWORDS: {busy-handler callback} {busy handler} ** ** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X ** that might be invoked with argument P whenever @@ -2060,7 +2064,7 @@ int sqlite3_complete16(const void *sql); ** ^The first argument to the busy handler is a copy of the void* pointer which ** is the third argument to sqlite3_busy_handler(). ^The second argument to ** the busy handler callback is the number of times that the busy handler has -** been invoked for the same locking event. ^If the +** been invoked previously for the same locking event. ^If the ** busy callback returns 0, then no additional attempts are made to ** access the database and [SQLITE_BUSY] is returned ** to the application. @@ -4515,7 +4519,8 @@ typedef void (*sqlite3_destructor_type)(void*); ** the [sqlite3_context] pointer, the results are undefined. */ void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); -void sqlite3_result_blob64(sqlite3_context*,const void*,sqlite3_uint64,void(*)(void*)); +void sqlite3_result_blob64(sqlite3_context*,const void*, + sqlite3_uint64,void(*)(void*)); void sqlite3_result_double(sqlite3_context*, double); void sqlite3_result_error(sqlite3_context*, const char*, int); void sqlite3_result_error16(sqlite3_context*, const void*, int); @@ -7241,97 +7246,114 @@ int sqlite3_wal_autocheckpoint(sqlite3 *db, int N); /* ** CAPI3REF: Checkpoint a database ** -** ^The [sqlite3_wal_checkpoint(D,X)] interface causes database named X -** on [database connection] D to be [checkpointed]. ^If X is NULL or an -** empty string, then a checkpoint is run on all databases of -** connection D. ^If the database connection D is not in -** [WAL | write-ahead log mode] then this interface is a harmless no-op. -** ^The [sqlite3_wal_checkpoint(D,X)] interface initiates a -** [sqlite3_wal_checkpoint_v2|PASSIVE] checkpoint. -** Use the [sqlite3_wal_checkpoint_v2()] interface to get a FULL -** or RESET checkpoint. +** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to +** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^ ** -** ^The [wal_checkpoint pragma] can be used to invoke this interface -** from SQL. ^The [sqlite3_wal_autocheckpoint()] interface and the -** [wal_autocheckpoint pragma] can be used to cause this interface to be -** run whenever the WAL reaches a certain size threshold. +** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the +** [write-ahead log] for database X on [database connection] D to be +** transferred into the database file and for the write-ahead log to +** be reset. See the [checkpointing] documentation for addition +** information. ** -** See also: [sqlite3_wal_checkpoint_v2()] +** This interface used to be the only way to cause a checkpoint to +** occur. But then the newer and more powerful [sqlite3_wal_checkpoint_v2()] +** interface was added. This interface is retained for backwards +** compatibility and as a convenience for applications that need to manually +** start a callback but which do not need the full power (and corresponding +** complication) of [sqlite3_wal_checkpoint_v2()]. */ int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb); /* ** CAPI3REF: Checkpoint a database ** -** Run a checkpoint operation on WAL database zDb attached to database -** handle db. The specific operation is determined by the value of the -** eMode parameter: +** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint +** operation on database X of [database connection] D in mode M. Status +** information is written back into integers pointed to by L and C.)^ +** ^(The M parameter must be a valid [checkpoint mode]:)^ ** ** <dl> ** <dt>SQLITE_CHECKPOINT_PASSIVE<dd> -** Checkpoint as many frames as possible without waiting for any database -** readers or writers to finish. Sync the db file if all frames in the log -** are checkpointed. This mode is the same as calling -** sqlite3_wal_checkpoint(). The [sqlite3_busy_handler|busy-handler callback] -** is never invoked. +** ^Checkpoint as many frames as possible without waiting for any database +** readers or writers to finish, then sync the database file if all frames +** in the log were checkpointed. ^The [busy-handler callback] +** is never invoked in the SQLITE_CHECKPOINT_PASSIVE mode. +** ^On the other hand, passive mode might leave the checkpoint unfinished +** if there are concurrent readers or writers. ** ** <dt>SQLITE_CHECKPOINT_FULL<dd> -** This mode blocks (it invokes the +** ^This mode blocks (it invokes the ** [sqlite3_busy_handler|busy-handler callback]) until there is no ** database writer and all readers are reading from the most recent database -** snapshot. It then checkpoints all frames in the log file and syncs the -** database file. This call blocks database writers while it is running, -** but not database readers. +** snapshot. ^It then checkpoints all frames in the log file and syncs the +** database file. ^This mode blocks new database writers while it is pending, +** but new database readers are allowed to continue unimpeded. ** ** <dt>SQLITE_CHECKPOINT_RESTART<dd> -** This mode works the same way as SQLITE_CHECKPOINT_FULL, except after -** checkpointing the log file it blocks (calls the -** [sqlite3_busy_handler|busy-handler callback]) -** until all readers are reading from the database file only. This ensures -** that the next client to write to the database file restarts the log file -** from the beginning. This call blocks database writers while it is running, -** but not database readers. +** ^This mode works the same way as SQLITE_CHECKPOINT_FULL with the addition +** that after checkpointing the log file it blocks (calls the +** [busy-handler callback]) +** until all readers are reading from the database file only. ^This ensures +** that the next writer will restart the log file from the beginning. +** ^Like SQLITE_CHECKPOINT_FULL, this mode blocks new +** database writer attempts while it is pending, but does not impede readers. +** +** <dt>SQLITE_CHECKPOINT_TRUNCATE<dd> +** ^This mode works the same way as SQLITE_CHECKPOINT_RESTART with the +** addition that it also truncates the log file to zero bytes just prior +** to a successful return. ** </dl> ** -** If pnLog is not NULL, then *pnLog is set to the total number of frames in -** the log file before returning. If pnCkpt is not NULL, then *pnCkpt is set to -** the total number of checkpointed frames (including any that were already -** checkpointed when this function is called). *pnLog and *pnCkpt may be -** populated even if sqlite3_wal_checkpoint_v2() returns other than SQLITE_OK. -** If no values are available because of an error, they are both set to -1 -** before returning to communicate this to the caller. -** -** All calls obtain an exclusive "checkpoint" lock on the database file. If +** ^If pnLog is not NULL, then *pnLog is set to the total number of frames in +** the log file or to -1 if the checkpoint could not run because +** of an error or because the database is not in [WAL mode]. ^If pnCkpt is not +** NULL,then *pnCkpt is set to the total number of checkpointed frames in the +** log file (including any that were already checkpointed before the function +** was called) or to -1 if the checkpoint could not run due to an error or +** because the database is not in WAL mode. ^Note that upon successful +** completion of an SQLITE_CHECKPOINT_TRUNCATE, the log file will have been +** truncated to zero bytes and so both *pnLog and *pnCkpt will be set to zero. +** +** ^All calls obtain an exclusive "checkpoint" lock on the database file. ^If ** any other process is running a checkpoint operation at the same time, the -** lock cannot be obtained and SQLITE_BUSY is returned. Even if there is a +** lock cannot be obtained and SQLITE_BUSY is returned. ^Even if there is a ** busy-handler configured, it will not be invoked in this case. ** -** The SQLITE_CHECKPOINT_FULL and RESTART modes also obtain the exclusive -** "writer" lock on the database file. If the writer lock cannot be obtained -** immediately, and a busy-handler is configured, it is invoked and the writer -** lock retried until either the busy-handler returns 0 or the lock is -** successfully obtained. The busy-handler is also invoked while waiting for -** database readers as described above. If the busy-handler returns 0 before +** ^The SQLITE_CHECKPOINT_FULL, RESTART and TRUNCATE modes also obtain the +** exclusive "writer" lock on the database file. ^If the writer lock cannot be +** obtained immediately, and a busy-handler is configured, it is invoked and +** the writer lock retried until either the busy-handler returns 0 or the lock +** is successfully obtained. ^The busy-handler is also invoked while waiting for +** database readers as described above. ^If the busy-handler returns 0 before ** the writer lock is obtained or while waiting for database readers, the ** checkpoint operation proceeds from that point in the same way as ** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible -** without blocking any further. SQLITE_BUSY is returned in this case. +** without blocking any further. ^SQLITE_BUSY is returned in this case. ** -** If parameter zDb is NULL or points to a zero length string, then the -** specified operation is attempted on all WAL databases. In this case the -** values written to output parameters *pnLog and *pnCkpt are undefined. If +** ^If parameter zDb is NULL or points to a zero length string, then the +** specified operation is attempted on all WAL databases [attached] to +** [database connection] db. In this case the +** values written to output parameters *pnLog and *pnCkpt are undefined. ^If ** an SQLITE_BUSY error is encountered when processing one or more of the ** attached WAL databases, the operation is still attempted on any remaining -** attached databases and SQLITE_BUSY is returned to the caller. If any other +** attached databases and SQLITE_BUSY is returned at the end. ^If any other ** error occurs while processing an attached database, processing is abandoned -** and the error code returned to the caller immediately. If no error +** and the error code is returned to the caller immediately. ^If no error ** (SQLITE_BUSY or otherwise) is encountered while processing the attached ** databases, SQLITE_OK is returned. ** -** If database zDb is the name of an attached database that is not in WAL -** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. If +** ^If database zDb is the name of an attached database that is not in WAL +** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. ^If ** zDb is not NULL (or a zero length string) and is not the name of any ** attached database, SQLITE_ERROR is returned to the caller. +** +** ^Unless it returns SQLITE_MISUSE, +** the sqlite3_wal_checkpoint_v2() interface +** sets the error information that is queried by +** [sqlite3_errcode()] and [sqlite3_errmsg()]. +** +** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface +** from SQL. */ int sqlite3_wal_checkpoint_v2( sqlite3 *db, /* Database handle */ @@ -7342,16 +7364,18 @@ int sqlite3_wal_checkpoint_v2( ); /* -** CAPI3REF: Checkpoint operation parameters +** CAPI3REF: Checkpoint Mode Values +** KEYWORDS: {checkpoint mode} ** -** These constants can be used as the 3rd parameter to -** [sqlite3_wal_checkpoint_v2()]. See the [sqlite3_wal_checkpoint_v2()] -** documentation for additional information about the meaning and use of -** each of these values. +** These constants define all valid values for the "checkpoint mode" passed +** as the third parameter to the [sqlite3_wal_checkpoint_v2()] interface. +** See the [sqlite3_wal_checkpoint_v2()] documentation for details on the +** meaning of each of these checkpoint modes. */ -#define SQLITE_CHECKPOINT_PASSIVE 0 -#define SQLITE_CHECKPOINT_FULL 1 -#define SQLITE_CHECKPOINT_RESTART 2 +#define SQLITE_CHECKPOINT_PASSIVE 0 /* Do as much as possible w/o blocking */ +#define SQLITE_CHECKPOINT_FULL 1 /* Wait for writers, then checkpoint */ +#define SQLITE_CHECKPOINT_RESTART 2 /* Like FULL but wait for for readers */ +#define SQLITE_CHECKPOINT_TRUNCATE 3 /* Like RESTART but also truncate WAL */ /* ** CAPI3REF: Virtual Table Interface Configuration @@ -7450,12 +7474,12 @@ int sqlite3_vtab_on_conflict(sqlite3 *); ** ** <dl> ** [[SQLITE_SCANSTAT_NLOOP]] <dt>SQLITE_SCANSTAT_NLOOP</dt> -** <dd>^The [sqlite3_int64] variable pointed to by the T parameter will be set to the -** total number of times that the X-th loop has run.</dd> +** <dd>^The [sqlite3_int64] variable pointed to by the T parameter will be +** set to the total number of times that the X-th loop has run.</dd> ** ** [[SQLITE_SCANSTAT_NVISIT]] <dt>SQLITE_SCANSTAT_NVISIT</dt> -** <dd>^The [sqlite3_int64] variable pointed to by the T parameter will be set to the -** total number of rows examined by all iterations of the X-th loop.</dd> +** <dd>^The [sqlite3_int64] variable pointed to by the T parameter will be set +** to the total number of rows examined by all iterations of the X-th loop.</dd> ** ** [[SQLITE_SCANSTAT_EST]] <dt>SQLITE_SCANSTAT_EST</dt> ** <dd>^The "double" variable pointed to by the T parameter will be set to the @@ -7466,14 +7490,14 @@ int sqlite3_vtab_on_conflict(sqlite3 *); ** be the NLOOP value for the current loop. ** ** [[SQLITE_SCANSTAT_NAME]] <dt>SQLITE_SCANSTAT_NAME</dt> -** <dd>^The "const char *" variable pointed to by the T parameter will be set to -** a zero-terminated UTF-8 string containing the name of the index or table used -** for the X-th loop. +** <dd>^The "const char *" variable pointed to by the T parameter will be set +** to a zero-terminated UTF-8 string containing the name of the index or table +** used for the X-th loop. ** ** [[SQLITE_SCANSTAT_EXPLAIN]] <dt>SQLITE_SCANSTAT_EXPLAIN</dt> -** <dd>^The "const char *" variable pointed to by the T parameter will be set to -** a zero-terminated UTF-8 string containing the [EXPLAIN QUERY PLAN] description -** for the X-th loop. +** <dd>^The "const char *" variable pointed to by the T parameter will be set +** to a zero-terminated UTF-8 string containing the [EXPLAIN QUERY PLAN] +** description for the X-th loop. ** ** [[SQLITE_SCANSTAT_SELECTID]] <dt>SQLITE_SCANSTAT_SELECT</dt> ** <dd>^The "int" variable pointed to by the T parameter will be set to the @@ -7496,8 +7520,8 @@ int sqlite3_vtab_on_conflict(sqlite3 *); ** Return status data for a single loop within query pStmt. ** ** The "iScanStatusOp" parameter determines which status information to return. -** The "iScanStatusOp" must be one of the [scanstatus options] or the behavior of -** this interface is undefined. +** The "iScanStatusOp" must be one of the [scanstatus options] or the behavior +** of this interface is undefined. ** ^The requested measurement is written into a variable pointed to by ** the "pOut" parameter. ** Parameter "idx" identifies the specific loop to retrieve statistics for. diff --git a/src/sqliteInt.h b/src/sqliteInt.h index 8824e3129..2b300f8e3 100644 --- a/src/sqliteInt.h +++ b/src/sqliteInt.h @@ -2023,7 +2023,7 @@ struct Expr { /* ** The following are the meanings of bits in the Expr.flags field. */ -#define EP_FromJoin 0x000001 /* Originated in ON or USING clause of a join */ +#define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ #define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */ #define EP_Error 0x000008 /* Expression contains one or more errors */ @@ -2043,6 +2043,7 @@ struct Expr { #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ #define EP_Constant 0x080000 /* Node is a constant */ +#define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ /* ** These macros can be used to test, set, or clear bits in the diff --git a/src/test1.c b/src/test1.c index 1c4386154..be4ad92c1 100644 --- a/src/test1.c +++ b/src/test1.c @@ -5690,10 +5690,11 @@ static int test_wal_checkpoint_v2( int nCkpt = -555; Tcl_Obj *pRet; - const char * aMode[] = { "passive", "full", "restart", 0 }; + const char * aMode[] = { "passive", "full", "restart", "truncate", 0 }; assert( SQLITE_CHECKPOINT_PASSIVE==0 ); assert( SQLITE_CHECKPOINT_FULL==1 ); assert( SQLITE_CHECKPOINT_RESTART==2 ); + assert( SQLITE_CHECKPOINT_TRUNCATE==3 ); if( objc!=3 && objc!=4 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB MODE ?NAME?"); diff --git a/src/vdbe.c b/src/vdbe.c index 890e41e1e..48b080ecf 100644 --- a/src/vdbe.c +++ b/src/vdbe.c @@ -5765,8 +5765,8 @@ case OP_AggFinal: { /* Opcode: Checkpoint P1 P2 P3 * * ** ** Checkpoint database P1. This is a no-op if P1 is not currently in -** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL -** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns +** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, +** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns ** SQLITE_BUSY or not, respectively. Write the number of pages in the ** WAL after the checkpoint into mem[P3+1] and the number of pages ** in the WAL that have been checkpointed after the checkpoint @@ -5784,6 +5784,7 @@ case OP_Checkpoint: { assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE || pOp->p2==SQLITE_CHECKPOINT_FULL || pOp->p2==SQLITE_CHECKPOINT_RESTART + || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE ); rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); if( rc==SQLITE_BUSY ){ @@ -1624,6 +1624,38 @@ static int walPagesize(Wal *pWal){ } /* +** The following is guaranteed when this function is called: +** +** a) the WRITER lock is held, +** b) the entire log file has been checkpointed, and +** c) any existing readers are reading exclusively from the database +** file - there are no readers that may attempt to read a frame from +** the log file. +** +** This function updates the shared-memory structures so that the next +** client to write to the database (which may be this one) does so by +** writing frames into the start of the log file. +** +** The value of parameter salt1 is used as the aSalt[1] value in the +** new wal-index header. It should be passed a pseudo-random value (i.e. +** one obtained from sqlite3_randomness()). +*/ +static void walRestartHdr(Wal *pWal, u32 salt1){ + volatile WalCkptInfo *pInfo = walCkptInfo(pWal); + int i; /* Loop counter */ + u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ + pWal->nCkpt++; + pWal->hdr.mxFrame = 0; + sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); + memcpy(&pWal->hdr.aSalt[1], &salt1, 4); + walIndexWriteHdr(pWal); + pInfo->nBackfill = 0; + pInfo->aReadMark[1] = 0; + for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; + assert( pInfo->aReadMark[0]==0 ); +} + +/* ** Copy as much content as we can from the WAL back into the database file ** in response to an sqlite3_wal_checkpoint() request or the equivalent. ** @@ -1657,7 +1689,7 @@ static int walPagesize(Wal *pWal){ static int walCheckpoint( Wal *pWal, /* Wal connection */ int eMode, /* One of PASSIVE, FULL or RESTART */ - int (*xBusyCall)(void*), /* Function to call when busy */ + int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int sync_flags, /* Flags for OsSync() (or 0) */ u8 *zBuf /* Temporary buffer to use */ @@ -1671,7 +1703,6 @@ static int walCheckpoint( u32 mxPage; /* Max database page to write */ int i; /* Loop counter */ volatile WalCkptInfo *pInfo; /* The checkpoint status information */ - int (*xBusy)(void*) = 0; /* Function to call when waiting for locks */ szPage = walPagesize(pWal); testcase( szPage<=32768 ); @@ -1686,7 +1717,9 @@ static int walCheckpoint( } assert( pIter ); - if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall; + /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked + ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ + assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); /* Compute in mxSafeFrame the index of the last frame of the WAL that is ** safe to write into the database. Frames beyond mxSafeFrame might @@ -1775,19 +1808,38 @@ static int walCheckpoint( rc = SQLITE_OK; } - /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal - ** file has been copied into the database file, then block until all - ** readers have finished using the wal file. This ensures that the next - ** process to write to the database restarts the wal file. + /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the + ** entire wal file has been copied into the database file, then block + ** until all readers have finished using the wal file. This ensures that + ** the next process to write to the database restarts the wal file. */ if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ assert( pWal->writeLock ); if( pInfo->nBackfill<pWal->hdr.mxFrame ){ rc = SQLITE_BUSY; - }else if( eMode==SQLITE_CHECKPOINT_RESTART ){ + }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ + u32 salt1; + sqlite3_randomness(4, &salt1); assert( mxSafeFrame==pWal->hdr.mxFrame ); rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); if( rc==SQLITE_OK ){ + if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ + /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as + ** SQLITE_CHECKPOINT_RESTART with the addition that it also + ** truncates the log file to zero bytes just prior to a + ** successful return. + ** + ** In theory, it might be safe to do this without updating the + ** wal-index header in shared memory, as all subsequent reader or + ** writer clients should see that the entire log file has been + ** checkpointed and behave accordingly. This seems unsafe though, + ** as it would leave the system in a state where the contents of + ** the wal-index header do not match the contents of the + ** file-system. To avoid this, update the wal-index header to + ** indicate that the log file contains zero valid frames. */ + walRestartHdr(pWal, salt1); + rc = sqlite3OsTruncate(pWal->pWalFd, 0); + } walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); } } @@ -2573,7 +2625,6 @@ int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ return rc; } - /* ** This function is called just before writing a set of frames to the log ** file (see sqlite3WalFrames()). It checks to see if, instead of appending @@ -2606,20 +2657,8 @@ static int walRestartLog(Wal *pWal){ ** In theory it would be Ok to update the cache of the header only ** at this point. But updating the actual wal-index header is also ** safe and means there is no special case for sqlite3WalUndo() - ** to handle if this transaction is rolled back. - */ - int i; /* Loop counter */ - u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ - - pWal->nCkpt++; - pWal->hdr.mxFrame = 0; - sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); - aSalt[1] = salt1; - walIndexWriteHdr(pWal); - pInfo->nBackfill = 0; - pInfo->aReadMark[1] = 0; - for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; - assert( pInfo->aReadMark[0]==0 ); + ** to handle if this transaction is rolled back. */ + walRestartHdr(pWal, salt1); walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); }else if( rc!=SQLITE_BUSY ){ return rc; @@ -2907,7 +2946,7 @@ int sqlite3WalFrames( */ int sqlite3WalCheckpoint( Wal *pWal, /* Wal connection */ - int eMode, /* PASSIVE, FULL or RESTART */ + int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int sync_flags, /* Flags to sync db file with (or 0) */ @@ -2919,29 +2958,42 @@ int sqlite3WalCheckpoint( int rc; /* Return code */ int isChanged = 0; /* True if a new wal-index header is loaded */ int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ + int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ assert( pWal->ckptLock==0 ); assert( pWal->writeLock==0 ); + /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked + ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ + assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); + if( pWal->readOnly ) return SQLITE_READONLY; WALTRACE(("WAL%p: checkpoint begins\n", pWal)); + + /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive + ** "checkpoint" lock on the database file. */ rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); if( rc ){ - /* Usually this is SQLITE_BUSY meaning that another thread or process - ** is already running a checkpoint, or maybe a recovery. But it might - ** also be SQLITE_IOERR. */ + /* EVIDENCE-OF: R-10421-19736 If any other process is running a + ** checkpoint operation at the same time, the lock cannot be obtained and + ** SQLITE_BUSY is returned. + ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, + ** it will not be invoked in this case. + */ + testcase( rc==SQLITE_BUSY ); + testcase( xBusy!=0 ); return rc; } pWal->ckptLock = 1; - /* If this is a blocking-checkpoint, then obtain the write-lock as well - ** to prevent any writers from running while the checkpoint is underway. - ** This has to be done before the call to walIndexReadHdr() below. + /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and + ** TRUNCATE modes also obtain the exclusive "writer" lock on the database + ** file. ** - ** If the writer lock cannot be obtained, then a passive checkpoint is - ** run instead. Since the checkpointer is not holding the writer lock, - ** there is no point in blocking waiting for any readers. Assuming no - ** other error occurs, this function will return SQLITE_BUSY to the caller. + ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained + ** immediately, and a busy-handler is configured, it is invoked and the + ** writer lock retried until either the busy-handler returns 0 or the + ** lock is successfully obtained. */ if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); @@ -2949,6 +3001,7 @@ int sqlite3WalCheckpoint( pWal->writeLock = 1; }else if( rc==SQLITE_BUSY ){ eMode2 = SQLITE_CHECKPOINT_PASSIVE; + xBusy2 = 0; rc = SQLITE_OK; } } @@ -2966,7 +3019,7 @@ int sqlite3WalCheckpoint( if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ rc = SQLITE_CORRUPT_BKPT; }else{ - rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf); + rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); } /* If no error occurred, set the output variables. */ diff --git a/src/where.c b/src/where.c index 277c8833e..bda2a801e 100644 --- a/src/where.c +++ b/src/where.c @@ -3591,10 +3591,9 @@ static Bitmask codeOneLoopStart( Expr *pExpr = pWC->a[iTerm].pExpr; if( &pWC->a[iTerm] == pTerm ) continue; if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; - testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); - testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); - if( pWC->a[iTerm].wtFlags & (TERM_ORINFO|TERM_VIRTUAL) ) continue; + if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue; if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; + testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); pExpr = sqlite3ExprDup(db, pExpr, 0); pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); } |