/*------------------------------------------------------------------------- * * dynahash.c * dynamic hash tables * * * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $PostgreSQL: pgsql/src/backend/utils/hash/dynahash.c,v 1.65.2.2 2006/06/25 18:29:56 tgl Exp $ * *------------------------------------------------------------------------- */ /* * * Dynamic hashing, after CACM April 1988 pp 446-457, by Per-Ake Larson. * Coded into C, with minor code improvements, and with hsearch(3) interface, * by ejp@ausmelb.oz, Jul 26, 1988: 13:16; * also, hcreate/hdestroy routines added to simulate hsearch(3). * * These routines simulate hsearch(3) and family, with the important * difference that the hash table is dynamic - can grow indefinitely * beyond its original size (as supplied to hcreate()). * * Performance appears to be comparable to that of hsearch(3). * The 'source-code' options referred to in hsearch(3)'s 'man' page * are not implemented; otherwise functionality is identical. * * Compilation controls: * DEBUG controls some informative traces, mainly for debugging. * HASH_STATISTICS causes HashAccesses and HashCollisions to be maintained; * when combined with HASH_DEBUG, these are displayed by hdestroy(). * * Problems & fixes to ejp@ausmelb.oz. WARNING: relies on pre-processor * concatenation property, in probably unnecessary code 'optimisation'. * * Modified margo@postgres.berkeley.edu February 1990 * added multiple table interface * Modified by sullivan@postgres.berkeley.edu April 1990 * changed ctl structure for shared memory */ #include "postgres.h" #include "storage/shmem.h" #include "utils/dynahash.h" #include "utils/hsearch.h" #include "utils/memutils.h" /* * Key (also entry) part of a HASHELEMENT */ #define ELEMENTKEY(helem) (((char *)(helem)) + MAXALIGN(sizeof(HASHELEMENT))) /* * Fast MOD arithmetic, assuming that y is a power of 2 ! */ #define MOD(x,y) ((x) & ((y)-1)) /* * Private function prototypes */ static void *DynaHashAlloc(Size size); static HASHSEGMENT seg_alloc(HTAB *hashp); static bool element_alloc(HTAB *hashp, int nelem); static bool dir_realloc(HTAB *hashp); static bool expand_table(HTAB *hashp); static void hdefault(HTAB *hashp); static int choose_nelem_alloc(Size entrysize); static bool init_htab(HTAB *hashp, long nelem); static void hash_corrupted(HTAB *hashp); /* * memory allocation support */ static MemoryContext CurrentDynaHashCxt = NULL; static void * DynaHashAlloc(Size size) { Assert(MemoryContextIsValid(CurrentDynaHashCxt)); return MemoryContextAlloc(CurrentDynaHashCxt, size); } #if HASH_STATISTICS static long hash_accesses, hash_collisions, hash_expansions; #endif /************************** CREATE ROUTINES **********************/ /* * hash_create -- create a new dynamic hash table * * tabname: a name for the table (for debugging purposes) * nelem: maximum number of elements expected * *info: additional table parameters, as indicated by flags * flags: bitmask indicating which parameters to take from *info * * Note: for a shared-memory hashtable, nelem needs to be a pretty good * estimate, since we can't expand the table on the fly. But an unshared * hashtable can be expanded on-the-fly, so it's better for nelem to be * on the small side and let the table grow if it's exceeded. An overly * large nelem will penalize hash_seq_search speed without buying much. */ HTAB * hash_create(const char *tabname, long nelem, HASHCTL *info, int flags) { HTAB *hashp; HASHHDR *hctl; /* * For shared hash tables, we have a local hash header (HTAB struct) that * we allocate in TopMemoryContext; all else is in shared memory. * * For non-shared hash tables, everything including the hash header is in * a memory context created specially for the hash table --- this makes * hash_destroy very simple. The memory context is made a child of either * a context specified by the caller, or TopMemoryContext if nothing is * specified. */ if (flags & HASH_SHARED_MEM) { /* Set up to allocate the hash header */ CurrentDynaHashCxt = TopMemoryContext; } else { /* Create the hash table's private memory context */ if (flags & HASH_CONTEXT) CurrentDynaHashCxt = info->hcxt; else CurrentDynaHashCxt = TopMemoryContext; CurrentDynaHashCxt = AllocSetContextCreate(CurrentDynaHashCxt, tabname, ALLOCSET_DEFAULT_MINSIZE, ALLOCSET_DEFAULT_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE); } /* Initialize the hash header, plus a copy of the table name */ hashp = (HTAB *) DynaHashAlloc(sizeof(HTAB) + strlen(tabname) +1); MemSet(hashp, 0, sizeof(HTAB)); hashp->tabname = (char *) (hashp + 1); strcpy(hashp->tabname, tabname); if (flags & HASH_FUNCTION) hashp->hash = info->hash; else hashp->hash = string_hash; /* default hash function */ /* * If you don't specify a match function, it defaults to strncmp() if you * used string_hash (either explicitly or by default) and to memcmp() * otherwise. (Prior to PostgreSQL 7.4, memcmp() was always used.) */ if (flags & HASH_COMPARE) hashp->match = info->match; else if (hashp->hash == string_hash) hashp->match = (HashCompareFunc) strncmp; else hashp->match = memcmp; /* * Similarly, the key-copying function defaults to strncpy() or memcpy(). */ if (flags & HASH_KEYCOPY) hashp->keycopy = info->keycopy; else if (hashp->hash == string_hash) hashp->keycopy = (HashCopyFunc) strncpy; else hashp->keycopy = memcpy; if (flags & HASH_ALLOC) hashp->alloc = info->alloc; else hashp->alloc = DynaHashAlloc; if (flags & HASH_SHARED_MEM) { /* * ctl structure is preallocated for shared memory tables. Note that * HASH_DIRSIZE and HASH_ALLOC had better be set as well. */ hashp->hctl = info->hctl; hashp->dir = info->dir; hashp->hcxt = NULL; hashp->isshared = true; /* hash table already exists, we're just attaching to it */ if (flags & HASH_ATTACH) return hashp; } else { /* setup hash table defaults */ hashp->hctl = NULL; hashp->dir = NULL; hashp->hcxt = CurrentDynaHashCxt; hashp->isshared = false; } if (!hashp->hctl) { hashp->hctl = (HASHHDR *) hashp->alloc(sizeof(HASHHDR)); if (!hashp->hctl) ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of memory"))); } hdefault(hashp); hctl = hashp->hctl; #ifdef HASH_STATISTICS hctl->accesses = hctl->collisions = 0; #endif if (flags & HASH_SEGMENT) { hctl->ssize = info->ssize; hctl->sshift = my_log2(info->ssize); /* ssize had better be a power of 2 */ Assert(hctl->ssize == (1L << hctl->sshift)); } if (flags & HASH_FFACTOR) hctl->ffactor = info->ffactor; /* * SHM hash tables have fixed directory size passed by the caller. */ if (flags & HASH_DIRSIZE) { hctl->max_dsize = info->max_dsize; hctl->dsize = info->dsize; } /* * hash table now allocates space for key and data but you have to say how * much space to allocate */ if (flags & HASH_ELEM) { Assert(info->entrysize >= info->keysize); hctl->keysize = info->keysize; hctl->entrysize = info->entrysize; } /* Build the hash directory structure */ if (!init_htab(hashp, nelem)) { hash_destroy(hashp); elog(ERROR, "failed to initialize hash table"); } /* * For a shared hash table, preallocate the requested number of elements. * This reduces problems with run-time out-of-shared-memory conditions. * * For a non-shared hash table, preallocate the requested number of * elements if it's less than our chosen nelem_alloc. This avoids * wasting space if the caller correctly estimates a small table size. */ if ((flags & HASH_SHARED_MEM) || nelem < hctl->nelem_alloc) { if (!element_alloc(hashp, (int) nelem)) { hash_destroy(hashp); ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of memory"))); } } return hashp; } /* * Set default HASHHDR parameters. */ static void hdefault(HTAB *hashp) { HASHHDR *hctl = hashp->hctl; MemSet(hctl, 0, sizeof(HASHHDR)); hctl->ssize = DEF_SEGSIZE; hctl->sshift = DEF_SEGSIZE_SHIFT; hctl->dsize = DEF_DIRSIZE; hctl->ffactor = DEF_FFACTOR; hctl->nentries = 0; hctl->nsegs = 0; /* rather pointless defaults for key & entry size */ hctl->keysize = sizeof(char *); hctl->entrysize = 2 * sizeof(char *); /* table has no fixed maximum size */ hctl->max_dsize = NO_MAX_DSIZE; /* garbage collection for HASH_REMOVE */ hctl->freeList = NULL; } /* * Given the user-specified entry size, choose nelem_alloc, ie, how many * elements to add to the hash table when we need more. */ static int choose_nelem_alloc(Size entrysize) { int nelem_alloc; Size elementSize; Size allocSize; /* Each element has a HASHELEMENT header plus user data. */ /* NB: this had better match element_alloc() */ elementSize = MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(entrysize); /* * The idea here is to choose nelem_alloc at least 32, but round up * so that the allocation request will be a power of 2 or just less. * This makes little difference for hash tables in shared memory, * but for hash tables managed by palloc, the allocation request * will be rounded up to a power of 2 anyway. If we fail to take * this into account, we'll waste as much as half the allocated space. */ allocSize = 32 * 4; /* assume elementSize at least 8 */ do { allocSize <<= 1; nelem_alloc = allocSize / elementSize; } while (nelem_alloc < 32); return nelem_alloc; } static bool init_htab(HTAB *hashp, long nelem) { HASHHDR *hctl = hashp->hctl; HASHSEGMENT *segp; long lnbuckets; int nbuckets; int nsegs; /* * Divide number of elements by the fill factor to determine a desired * number of buckets. Allocate space for the next greater power of two * number of buckets */ lnbuckets = (nelem - 1) / hctl->ffactor + 1; nbuckets = 1 << my_log2(lnbuckets); hctl->max_bucket = hctl->low_mask = nbuckets - 1; hctl->high_mask = (nbuckets << 1) - 1; /* * Figure number of directory segments needed, round up to a power of 2 */ nsegs = (nbuckets - 1) / hctl->ssize + 1; nsegs = 1 << my_log2(nsegs); /* * Make sure directory is big enough. If pre-allocated directory is too * small, choke (caller screwed up). */ if (nsegs > hctl->dsize) { if (!(hashp->dir)) hctl->dsize = nsegs; else return false; } /* Allocate a directory */ if (!(hashp->dir)) { CurrentDynaHashCxt = hashp->hcxt; hashp->dir = (HASHSEGMENT *) hashp->alloc(hctl->dsize * sizeof(HASHSEGMENT)); if (!hashp->dir) return false; } /* Allocate initial segments */ for (segp = hashp->dir; hctl->nsegs < nsegs; hctl->nsegs++, segp++) { *segp = seg_alloc(hashp); if (*segp == NULL) return false; } /* Choose number of entries to allocate at a time */ hctl->nelem_alloc = choose_nelem_alloc(hctl->entrysize); #if HASH_DEBUG fprintf(stderr, "init_htab:\n%s%p\n%s%ld\n%s%ld\n%s%d\n%s%ld\n%s%u\n%s%x\n%s%x\n%s%ld\n%s%ld\n", "TABLE POINTER ", hashp, "DIRECTORY SIZE ", hctl->dsize, "SEGMENT SIZE ", hctl->ssize, "SEGMENT SHIFT ", hctl->sshift, "FILL FACTOR ", hctl->ffactor, "MAX BUCKET ", hctl->max_bucket, "HIGH MASK ", hctl->high_mask, "LOW MASK ", hctl->low_mask, "NSEGS ", hctl->nsegs, "NENTRIES ", hctl->nentries); #endif return true; } /* * Estimate the space needed for a hashtable containing the given number * of entries of given size. * NOTE: this is used to estimate the footprint of hashtables in shared * memory; therefore it does not count HTAB which is in local memory. * NB: assumes that all hash structure parameters have default values! */ Size hash_estimate_size(long num_entries, Size entrysize) { Size size; long nBuckets, nSegments, nDirEntries, nElementAllocs, elementSize, elementAllocCnt; /* estimate number of buckets wanted */ nBuckets = 1L << my_log2((num_entries - 1) / DEF_FFACTOR + 1); /* # of segments needed for nBuckets */ nSegments = 1L << my_log2((nBuckets - 1) / DEF_SEGSIZE + 1); /* directory entries */ nDirEntries = DEF_DIRSIZE; while (nDirEntries < nSegments) nDirEntries <<= 1; /* dir_alloc doubles dsize at each call */ /* fixed control info */ size = MAXALIGN(sizeof(HASHHDR)); /* but not HTAB, per above */ /* directory */ size = add_size(size, mul_size(nDirEntries, sizeof(HASHSEGMENT))); /* segments */ size = add_size(size, mul_size(nSegments, MAXALIGN(DEF_SEGSIZE * sizeof(HASHBUCKET)))); /* elements --- allocated in groups of choose_nelem_alloc() entries */ elementAllocCnt = choose_nelem_alloc(entrysize); nElementAllocs = (num_entries - 1) / elementAllocCnt + 1; elementSize = MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(entrysize); size = add_size(size, mul_size(nElementAllocs, mul_size(elementAllocCnt, elementSize))); return size; } /* * Select an appropriate directory size for a hashtable with the given * maximum number of entries. * This is only needed for hashtables in shared memory, whose directories * cannot be expanded dynamically. * NB: assumes that all hash structure parameters have default values! * * XXX this had better agree with the behavior of init_htab()... */ long hash_select_dirsize(long num_entries) { long nBuckets, nSegments, nDirEntries; /* estimate number of buckets wanted */ nBuckets = 1L << my_log2((num_entries - 1) / DEF_FFACTOR + 1); /* # of segments needed for nBuckets */ nSegments = 1L << my_log2((nBuckets - 1) / DEF_SEGSIZE + 1); /* directory entries */ nDirEntries = DEF_DIRSIZE; while (nDirEntries < nSegments) nDirEntries <<= 1; /* dir_alloc doubles dsize at each call */ return nDirEntries; } /********************** DESTROY ROUTINES ************************/ void hash_destroy(HTAB *hashp) { if (hashp != NULL) { /* allocation method must be one we know how to free, too */ Assert(hashp->alloc == DynaHashAlloc); /* so this hashtable must have it's own context */ Assert(hashp->hcxt != NULL); hash_stats("destroy", hashp); /* * Free everything by destroying the hash table's memory context. */ MemoryContextDelete(hashp->hcxt); } } void hash_stats(const char *where, HTAB *hashp) { #if HASH_STATISTICS fprintf(stderr, "%s: this HTAB -- accesses %ld collisions %ld\n", where, hashp->hctl->accesses, hashp->hctl->collisions); fprintf(stderr, "hash_stats: entries %ld keysize %ld maxp %u segmentcount %ld\n", hashp->hctl->nentries, hashp->hctl->keysize, hashp->hctl->max_bucket, hashp->hctl->nsegs); fprintf(stderr, "%s: total accesses %ld total collisions %ld\n", where, hash_accesses, hash_collisions); fprintf(stderr, "hash_stats: total expansions %ld\n", hash_expansions); #endif } /*******************************SEARCH ROUTINES *****************************/ /* Convert a hash value to a bucket number */ static inline uint32 calc_bucket(HASHHDR *hctl, uint32 hash_val) { uint32 bucket; bucket = hash_val & hctl->high_mask; if (bucket > hctl->max_bucket) bucket = bucket & hctl->low_mask; return bucket; } /*---------- * hash_search -- look up key in table and perform action * * action is one of: * HASH_FIND: look up key in table * HASH_ENTER: look up key in table, creating entry if not present * HASH_ENTER_NULL: same, but return NULL if out of memory * HASH_REMOVE: look up key in table, remove entry if present * * Return value is a pointer to the element found/entered/removed if any, * or NULL if no match was found. (NB: in the case of the REMOVE action, * the result is a dangling pointer that shouldn't be dereferenced!) * * HASH_ENTER will normally ereport a generic "out of memory" error if * it is unable to create a new entry. The HASH_ENTER_NULL operation is * the same except it will return NULL if out of memory. Note that * HASH_ENTER_NULL cannot be used with the default palloc-based allocator, * since palloc internally ereports on out-of-memory. * * If foundPtr isn't NULL, then *foundPtr is set TRUE if we found an * existing entry in the table, FALSE otherwise. This is needed in the * HASH_ENTER case, but is redundant with the return value otherwise. *---------- */ void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr) { HASHHDR *hctl = hashp->hctl; Size keysize = hctl->keysize; uint32 hashvalue; uint32 bucket; long segment_num; long segment_ndx; HASHSEGMENT segp; HASHBUCKET currBucket; HASHBUCKET *prevBucketPtr; HashCompareFunc match; #if HASH_STATISTICS hash_accesses++; hctl->accesses++; #endif /* * Do the initial lookup */ hashvalue = hashp->hash(keyPtr, keysize); bucket = calc_bucket(hctl, hashvalue); segment_num = bucket >> hctl->sshift; segment_ndx = MOD(bucket, hctl->ssize); segp = hashp->dir[segment_num]; if (segp == NULL) hash_corrupted(hashp); prevBucketPtr = &segp[segment_ndx]; currBucket = *prevBucketPtr; /* * Follow collision chain looking for matching key */ match = hashp->match; /* save one fetch in inner loop */ while (currBucket != NULL) { if (currBucket->hashvalue == hashvalue && match(ELEMENTKEY(currBucket), keyPtr, keysize) == 0) break; prevBucketPtr = &(currBucket->link); currBucket = *prevBucketPtr; #if HASH_STATISTICS hash_collisions++; hctl->collisions++; #endif } if (foundPtr) *foundPtr = (bool) (currBucket != NULL); /* * OK, now what? */ switch (action) { case HASH_FIND: if (currBucket != NULL) return (void *) ELEMENTKEY(currBucket); return NULL; case HASH_REMOVE: if (currBucket != NULL) { Assert(hctl->nentries > 0); hctl->nentries--; /* remove record from hash bucket's chain. */ *prevBucketPtr = currBucket->link; /* add the record to the freelist for this table. */ currBucket->link = hctl->freeList; hctl->freeList = currBucket; /* * better hope the caller is synchronizing access to this * element, because someone else is going to reuse it the next * time something is added to the table */ return (void *) ELEMENTKEY(currBucket); } return NULL; case HASH_ENTER_NULL: /* ENTER_NULL does not work with palloc-based allocator */ Assert(hashp->alloc != DynaHashAlloc); /* FALL THRU */ case HASH_ENTER: /* Return existing element if found, else create one */ if (currBucket != NULL) return (void *) ELEMENTKEY(currBucket); /* get the next free element */ currBucket = hctl->freeList; if (currBucket == NULL) { /* no free elements. allocate another chunk of buckets */ if (!element_alloc(hashp, hctl->nelem_alloc)) { /* out of memory */ if (action == HASH_ENTER_NULL) return NULL; /* report a generic message */ if (hashp->isshared) ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of shared memory"))); else ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of memory"))); } currBucket = hctl->freeList; Assert(currBucket != NULL); } hctl->freeList = currBucket->link; /* link into hashbucket chain */ *prevBucketPtr = currBucket; currBucket->link = NULL; /* copy key into record */ currBucket->hashvalue = hashvalue; hashp->keycopy(ELEMENTKEY(currBucket), keyPtr, keysize); /* caller is expected to fill the data field on return */ /* Check if it is time to split the segment */ if (++hctl->nentries / (long) (hctl->max_bucket + 1) >= hctl->ffactor) { /* * NOTE: failure to expand table is not a fatal error, it just * means we have to run at higher fill factor than we wanted. */ expand_table(hashp); } return (void *) ELEMENTKEY(currBucket); } elog(ERROR, "unrecognized hash action code: %d", (int) action); return NULL; /* keep compiler quiet */ } /* * hash_seq_init/_search * Sequentially search through hash table and return * all the elements one by one, return NULL when no more. * * NOTE: caller may delete the returned element before continuing the scan. * However, deleting any other element while the scan is in progress is * UNDEFINED (it might be the one that curIndex is pointing at!). Also, * if elements are added to the table while the scan is in progress, it is * unspecified whether they will be visited by the scan or not. */ void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp) { status->hashp = hashp; status->curBucket = 0; status->curEntry = NULL; } void * hash_seq_search(HASH_SEQ_STATUS *status) { HTAB *hashp; HASHHDR *hctl; uint32 max_bucket; long ssize; long segment_num; long segment_ndx; HASHSEGMENT segp; uint32 curBucket; HASHELEMENT *curElem; if ((curElem = status->curEntry) != NULL) { /* Continuing scan of curBucket... */ status->curEntry = curElem->link; if (status->curEntry == NULL) /* end of this bucket */ ++status->curBucket; return (void *) ELEMENTKEY(curElem); } /* * Search for next nonempty bucket starting at curBucket. */ curBucket = status->curBucket; hashp = status->hashp; hctl = hashp->hctl; ssize = hctl->ssize; max_bucket = hctl->max_bucket; if (curBucket > max_bucket) return NULL; /* search is done */ /* * first find the right segment in the table directory. */ segment_num = curBucket >> hctl->sshift; segment_ndx = MOD(curBucket, ssize); segp = hashp->dir[segment_num]; /* * Pick up the first item in this bucket's chain. If chain is not empty * we can begin searching it. Otherwise we have to advance to find the * next nonempty bucket. We try to optimize that case since searching a * near-empty hashtable has to iterate this loop a lot. */ while ((curElem = segp[segment_ndx]) == NULL) { /* empty bucket, advance to next */ if (++curBucket > max_bucket) { status->curBucket = curBucket; return NULL; /* search is done */ } if (++segment_ndx >= ssize) { segment_num++; segment_ndx = 0; segp = hashp->dir[segment_num]; } } /* Begin scan of curBucket... */ status->curEntry = curElem->link; if (status->curEntry == NULL) /* end of this bucket */ ++curBucket; status->curBucket = curBucket; return (void *) ELEMENTKEY(curElem); } /********************************* UTILITIES ************************/ /* * Expand the table by adding one more hash bucket. */ static bool expand_table(HTAB *hashp) { HASHHDR *hctl = hashp->hctl; HASHSEGMENT old_seg, new_seg; long old_bucket, new_bucket; long new_segnum, new_segndx; long old_segnum, old_segndx; HASHBUCKET *oldlink, *newlink; HASHBUCKET currElement, nextElement; #ifdef HASH_STATISTICS hash_expansions++; #endif new_bucket = hctl->max_bucket + 1; new_segnum = new_bucket >> hctl->sshift; new_segndx = MOD(new_bucket, hctl->ssize); if (new_segnum >= hctl->nsegs) { /* Allocate new segment if necessary -- could fail if dir full */ if (new_segnum >= hctl->dsize) if (!dir_realloc(hashp)) return false; if (!(hashp->dir[new_segnum] = seg_alloc(hashp))) return false; hctl->nsegs++; } /* OK, we created a new bucket */ hctl->max_bucket++; /* * *Before* changing masks, find old bucket corresponding to same hash * values; values in that bucket may need to be relocated to new bucket. * Note that new_bucket is certainly larger than low_mask at this point, * so we can skip the first step of the regular hash mask calc. */ old_bucket = (new_bucket & hctl->low_mask); /* * If we crossed a power of 2, readjust masks. */ if ((uint32) new_bucket > hctl->high_mask) { hctl->low_mask = hctl->high_mask; hctl->high_mask = (uint32) new_bucket | hctl->low_mask; } /* * Relocate records to the new bucket. NOTE: because of the way the hash * masking is done in calc_bucket, only one old bucket can need to be * split at this point. With a different way of reducing the hash value, * that might not be true! */ old_segnum = old_bucket >> hctl->sshift; old_segndx = MOD(old_bucket, hctl->ssize); old_seg = hashp->dir[old_segnum]; new_seg = hashp->dir[new_segnum]; oldlink = &old_seg[old_segndx]; newlink = &new_seg[new_segndx]; for (currElement = *oldlink; currElement != NULL; currElement = nextElement) { nextElement = currElement->link; if ((long) calc_bucket(hctl, currElement->hashvalue) == old_bucket) { *oldlink = currElement; oldlink = &currElement->link; } else { *newlink = currElement; newlink = &currElement->link; } } /* don't forget to terminate the rebuilt hash chains... */ *oldlink = NULL; *newlink = NULL; return true; } static bool dir_realloc(HTAB *hashp) { HASHSEGMENT *p; HASHSEGMENT *old_p; long new_dsize; long old_dirsize; long new_dirsize; if (hashp->hctl->max_dsize != NO_MAX_DSIZE) return false; /* Reallocate directory */ new_dsize = hashp->hctl->dsize << 1; old_dirsize = hashp->hctl->dsize * sizeof(HASHSEGMENT); new_dirsize = new_dsize * sizeof(HASHSEGMENT); old_p = hashp->dir; CurrentDynaHashCxt = hashp->hcxt; p = (HASHSEGMENT *) hashp->alloc((Size) new_dirsize); if (p != NULL) { memcpy(p, old_p, old_dirsize); MemSet(((char *) p) + old_dirsize, 0, new_dirsize - old_dirsize); hashp->dir = p; hashp->hctl->dsize = new_dsize; /* XXX assume the allocator is palloc, so we know how to free */ Assert(hashp->alloc == DynaHashAlloc); pfree(old_p); return true; } return false; } static HASHSEGMENT seg_alloc(HTAB *hashp) { HASHSEGMENT segp; CurrentDynaHashCxt = hashp->hcxt; segp = (HASHSEGMENT) hashp->alloc(sizeof(HASHBUCKET) * hashp->hctl->ssize); if (!segp) return NULL; MemSet(segp, 0, sizeof(HASHBUCKET) * hashp->hctl->ssize); return segp; } /* * allocate some new elements and link them into the free list */ static bool element_alloc(HTAB *hashp, int nelem) { HASHHDR *hctl = hashp->hctl; Size elementSize; HASHELEMENT *tmpElement; int i; /* Each element has a HASHELEMENT header plus user data. */ elementSize = MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(hctl->entrysize); CurrentDynaHashCxt = hashp->hcxt; tmpElement = (HASHELEMENT *) hashp->alloc(nelem * elementSize); if (!tmpElement) return false; /* link all the new entries into the freelist */ for (i = 0; i < nelem; i++) { tmpElement->link = hctl->freeList; hctl->freeList = tmpElement; tmpElement = (HASHELEMENT *) (((char *) tmpElement) + elementSize); } return true; } /* complain when we have detected a corrupted hashtable */ static void hash_corrupted(HTAB *hashp) { /* * If the corruption is in a shared hashtable, we'd better force a * systemwide restart. Otherwise, just shut down this one backend. */ if (hashp->isshared) elog(PANIC, "hash table \"%s\" corrupted", hashp->tabname); else elog(FATAL, "hash table \"%s\" corrupted", hashp->tabname); } /* calculate ceil(log base 2) of num */ int my_log2(long num) { int i; long limit; for (i = 0, limit = 1; limit < num; i++, limit <<= 1) ; return i; }