/*------------------------------------------------------------------------- * * predtest.c * Routines to attempt to prove logical implications between predicate * expressions. * * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $PostgreSQL: pgsql/src/backend/optimizer/util/predtest.c,v 1.4 2005/10/15 02:49:21 momjian Exp $ * *------------------------------------------------------------------------- */ #include "postgres.h" #include "catalog/pg_amop.h" #include "catalog/pg_proc.h" #include "catalog/pg_type.h" #include "executor/executor.h" #include "optimizer/clauses.h" #include "optimizer/predtest.h" #include "utils/catcache.h" #include "utils/lsyscache.h" #include "utils/syscache.h" static bool predicate_implied_by_recurse(Node *clause, Node *predicate); static bool predicate_refuted_by_recurse(Node *clause, Node *predicate); static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause); static bool predicate_refuted_by_simple_clause(Expr *predicate, Node *clause); static bool btree_predicate_proof(Expr *predicate, Node *clause, bool refute_it); /* * predicate_implied_by * Recursively checks whether the clauses in restrictinfo_list imply * that the given predicate is true. * * The top-level List structure of each list corresponds to an AND list. * We assume that eval_const_expressions() has been applied and so there * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND, * including AND just below the top-level List structure). * If this is not true we might fail to prove an implication that is * valid, but no worse consequences will ensue. * * We assume the predicate has already been checked to contain only * immutable functions and operators. (In most current uses this is true * because the predicate is part of an index predicate that has passed * CheckPredicate().) We dare not make deductions based on non-immutable * functions, because they might change answers between the time we make * the plan and the time we execute the plan. */ bool predicate_implied_by(List *predicate_list, List *restrictinfo_list) { ListCell *item; if (predicate_list == NIL) return true; /* no predicate: implication is vacuous */ if (restrictinfo_list == NIL) return false; /* no restriction: implication must fail */ /* * In all cases where the predicate is an AND-clause, * predicate_implied_by_recurse() will prefer to iterate over the * predicate's components. So we can just do that to start with here, and * eliminate the need for predicate_implied_by_recurse() to handle a bare * List on the predicate side. * * Logic is: restriction must imply each of the AND'ed predicate items. */ foreach(item, predicate_list) { if (!predicate_implied_by_recurse((Node *) restrictinfo_list, lfirst(item))) return false; } return true; } /* * predicate_refuted_by * Recursively checks whether the clauses in restrictinfo_list refute * the given predicate (that is, prove it false). * * This is NOT the same as !(predicate_implied_by), though it is similar * in the technique and structure of the code. * * The top-level List structure of each list corresponds to an AND list. * We assume that eval_const_expressions() has been applied and so there * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND, * including AND just below the top-level List structure). * If this is not true we might fail to prove an implication that is * valid, but no worse consequences will ensue. * * We assume the predicate has already been checked to contain only * immutable functions and operators. We dare not make deductions based on * non-immutable functions, because they might change answers between the * time we make the plan and the time we execute the plan. */ bool predicate_refuted_by(List *predicate_list, List *restrictinfo_list) { if (predicate_list == NIL) return false; /* no predicate: no refutation is possible */ if (restrictinfo_list == NIL) return false; /* no restriction: refutation must fail */ /* * Unlike the implication case, predicate_refuted_by_recurse needs to be * able to see the top-level AND structure on both sides --- otherwise it * will fail to handle the case where one restriction clause is an OR that * can refute the predicate AND as a whole, but not each predicate clause * separately. */ return predicate_refuted_by_recurse((Node *) restrictinfo_list, (Node *) predicate_list); } /*---------- * predicate_implied_by_recurse * Does the predicate implication test for non-NULL restriction and * predicate clauses. * * The logic followed here is ("=>" means "implies"): * atom A => atom B iff: predicate_implied_by_simple_clause says so * atom A => AND-expr B iff: A => each of B's components * atom A => OR-expr B iff: A => any of B's components * AND-expr A => atom B iff: any of A's components => B * AND-expr A => AND-expr B iff: A => each of B's components * AND-expr A => OR-expr B iff: A => any of B's components, * *or* any of A's components => B * OR-expr A => atom B iff: each of A's components => B * OR-expr A => AND-expr B iff: A => each of B's components * OR-expr A => OR-expr B iff: each of A's components => any of B's * * An "atom" is anything other than an AND or OR node. Notice that we don't * have any special logic to handle NOT nodes; these should have been pushed * down or eliminated where feasible by prepqual.c. * * We can't recursively expand either side first, but have to interleave * the expansions per the above rules, to be sure we handle all of these * examples: * (x OR y) => (x OR y OR z) * (x AND y AND z) => (x AND y) * (x AND y) => ((x AND y) OR z) * ((x OR y) AND z) => (x OR y) * This is still not an exhaustive test, but it handles most normal cases * under the assumption that both inputs have been AND/OR flattened. * * A bare List node on the restriction side is interpreted as an AND clause, * in order to handle the top-level restriction List properly. However we * need not consider a List on the predicate side since predicate_implied_by() * already expanded it. * * We have to be prepared to handle RestrictInfo nodes in the restrictinfo * tree, though not in the predicate tree. *---------- */ static bool predicate_implied_by_recurse(Node *clause, Node *predicate) { ListCell *item; Assert(clause != NULL); /* skip through RestrictInfo */ if (IsA(clause, RestrictInfo)) { clause = (Node *) ((RestrictInfo *) clause)->clause; Assert(clause != NULL); Assert(!IsA(clause, RestrictInfo)); } Assert(predicate != NULL); /* * Since a restriction List clause is handled the same as an AND clause, * we can avoid duplicate code like this: */ if (and_clause(clause)) clause = (Node *) ((BoolExpr *) clause)->args; if (IsA(clause, List)) { if (and_clause(predicate)) { /* AND-clause => AND-clause if A implies each of B's items */ foreach(item, ((BoolExpr *) predicate)->args) { if (!predicate_implied_by_recurse(clause, lfirst(item))) return false; } return true; } else if (or_clause(predicate)) { /* AND-clause => OR-clause if A implies any of B's items */ /* Needed to handle (x AND y) => ((x AND y) OR z) */ foreach(item, ((BoolExpr *) predicate)->args) { if (predicate_implied_by_recurse(clause, lfirst(item))) return true; } /* Also check if any of A's items implies B */ /* Needed to handle ((x OR y) AND z) => (x OR y) */ foreach(item, (List *) clause) { if (predicate_implied_by_recurse(lfirst(item), predicate)) return true; } return false; } else { /* AND-clause => atom if any of A's items implies B */ foreach(item, (List *) clause) { if (predicate_implied_by_recurse(lfirst(item), predicate)) return true; } return false; } } else if (or_clause(clause)) { if (or_clause(predicate)) { /* * OR-clause => OR-clause if each of A's items implies any of B's * items. Messy but can't do it any more simply. */ foreach(item, ((BoolExpr *) clause)->args) { Node *citem = lfirst(item); ListCell *item2; foreach(item2, ((BoolExpr *) predicate)->args) { if (predicate_implied_by_recurse(citem, lfirst(item2))) break; } if (item2 == NULL) return false; /* doesn't imply any of B's */ } return true; } else { /* OR-clause => AND-clause if each of A's items implies B */ /* OR-clause => atom if each of A's items implies B */ foreach(item, ((BoolExpr *) clause)->args) { if (!predicate_implied_by_recurse(lfirst(item), predicate)) return false; } return true; } } else { if (and_clause(predicate)) { /* atom => AND-clause if A implies each of B's items */ foreach(item, ((BoolExpr *) predicate)->args) { if (!predicate_implied_by_recurse(clause, lfirst(item))) return false; } return true; } else if (or_clause(predicate)) { /* atom => OR-clause if A implies any of B's items */ foreach(item, ((BoolExpr *) predicate)->args) { if (predicate_implied_by_recurse(clause, lfirst(item))) return true; } return false; } else { /* atom => atom is the base case */ return predicate_implied_by_simple_clause((Expr *) predicate, clause); } } } /*---------- * predicate_refuted_by_recurse * Does the predicate refutation test for non-NULL restriction and * predicate clauses. * * The logic followed here is ("R=>" means "refutes"): * atom A R=> atom B iff: predicate_refuted_by_simple_clause says so * atom A R=> AND-expr B iff: A R=> any of B's components * atom A R=> OR-expr B iff: A R=> each of B's components * AND-expr A R=> atom B iff: any of A's components R=> B * AND-expr A R=> AND-expr B iff: A R=> any of B's components, * *or* any of A's components R=> B * AND-expr A R=> OR-expr B iff: A R=> each of B's components * OR-expr A R=> atom B iff: each of A's components R=> B * OR-expr A R=> AND-expr B iff: each of A's components R=> any of B's * OR-expr A R=> OR-expr B iff: A R=> each of B's components * * Other comments are as for predicate_implied_by_recurse(), except that * we have to handle a top-level AND list on both sides. *---------- */ static bool predicate_refuted_by_recurse(Node *clause, Node *predicate) { ListCell *item; Assert(clause != NULL); /* skip through RestrictInfo */ if (IsA(clause, RestrictInfo)) { clause = (Node *) ((RestrictInfo *) clause)->clause; Assert(clause != NULL); Assert(!IsA(clause, RestrictInfo)); } Assert(predicate != NULL); /* * Since a restriction List clause is handled the same as an AND clause, * we can avoid duplicate code like this: */ if (and_clause(clause)) clause = (Node *) ((BoolExpr *) clause)->args; /* Ditto for predicate AND-clause and List */ if (and_clause(predicate)) predicate = (Node *) ((BoolExpr *) predicate)->args; if (IsA(clause, List)) { if (IsA(predicate, List)) { /* AND-clause R=> AND-clause if A refutes any of B's items */ /* Needed to handle (x AND y) R=> ((!x OR !y) AND z) */ foreach(item, (List *) predicate) { if (predicate_refuted_by_recurse(clause, lfirst(item))) return true; } /* Also check if any of A's items refutes B */ /* Needed to handle ((x OR y) AND z) R=> (!x AND !y) */ foreach(item, (List *) clause) { if (predicate_refuted_by_recurse(lfirst(item), predicate)) return true; } return false; } else if (or_clause(predicate)) { /* AND-clause R=> OR-clause if A refutes each of B's items */ foreach(item, ((BoolExpr *) predicate)->args) { if (!predicate_refuted_by_recurse(clause, lfirst(item))) return false; } return true; } else { /* AND-clause R=> atom if any of A's items refutes B */ foreach(item, (List *) clause) { if (predicate_refuted_by_recurse(lfirst(item), predicate)) return true; } return false; } } else if (or_clause(clause)) { if (or_clause(predicate)) { /* OR-clause R=> OR-clause if A refutes each of B's items */ foreach(item, ((BoolExpr *) predicate)->args) { if (!predicate_refuted_by_recurse(clause, lfirst(item))) return false; } return true; } else if (IsA(predicate, List)) { /* * OR-clause R=> AND-clause if each of A's items refutes any of * B's items. */ foreach(item, ((BoolExpr *) clause)->args) { Node *citem = lfirst(item); ListCell *item2; foreach(item2, (List *) predicate) { if (predicate_refuted_by_recurse(citem, lfirst(item2))) break; } if (item2 == NULL) return false; /* citem refutes nothing */ } return true; } else { /* OR-clause R=> atom if each of A's items refutes B */ foreach(item, ((BoolExpr *) clause)->args) { if (!predicate_refuted_by_recurse(lfirst(item), predicate)) return false; } return true; } } else { if (IsA(predicate, List)) { /* atom R=> AND-clause if A refutes any of B's items */ foreach(item, (List *) predicate) { if (predicate_refuted_by_recurse(clause, lfirst(item))) return true; } return false; } else if (or_clause(predicate)) { /* atom R=> OR-clause if A refutes each of B's items */ foreach(item, ((BoolExpr *) predicate)->args) { if (!predicate_refuted_by_recurse(clause, lfirst(item))) return false; } return true; } else { /* atom R=> atom is the base case */ return predicate_refuted_by_simple_clause((Expr *) predicate, clause); } } } /*---------- * predicate_implied_by_simple_clause * Does the predicate implication test for a "simple clause" predicate * and a "simple clause" restriction. * * We return TRUE if able to prove the implication, FALSE if not. * * We have three strategies for determining whether one simple clause * implies another: * * A simple and general way is to see if they are equal(); this works for any * kind of expression. (Actually, there is an implied assumption that the * functions in the expression are immutable, ie dependent only on their input * arguments --- but this was checked for the predicate by the caller.) * * When the predicate is of the form "foo IS NOT NULL", we can conclude that * the predicate is implied if the clause is a strict operator or function * that has "foo" as an input. In this case the clause must yield NULL when * "foo" is NULL, which we can take as equivalent to FALSE because we know * we are within an AND/OR subtree of a WHERE clause. (Again, "foo" is * already known immutable, so the clause will certainly always fail.) * * Finally, we may be able to deduce something using knowledge about btree * operator classes; this is encapsulated in btree_predicate_proof(). *---------- */ static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause) { /* First try the equal() test */ if (equal((Node *) predicate, clause)) return true; /* Next try the IS NOT NULL case */ if (predicate && IsA(predicate, NullTest) && ((NullTest *) predicate)->nulltesttype == IS_NOT_NULL) { Expr *nonnullarg = ((NullTest *) predicate)->arg; if (is_opclause(clause) && list_member(((OpExpr *) clause)->args, nonnullarg) && op_strict(((OpExpr *) clause)->opno)) return true; if (is_funcclause(clause) && list_member(((FuncExpr *) clause)->args, nonnullarg) && func_strict(((FuncExpr *) clause)->funcid)) return true; return false; /* we can't succeed below... */ } /* Else try btree operator knowledge */ return btree_predicate_proof(predicate, clause, false); } /*---------- * predicate_refuted_by_simple_clause * Does the predicate refutation test for a "simple clause" predicate * and a "simple clause" restriction. * * We return TRUE if able to prove the refutation, FALSE if not. * * Unlike the implication case, checking for equal() clauses isn't * helpful. (XXX is it worth looking at "x vs NOT x" cases? Probably * not seeing that canonicalization tries to get rid of NOTs.) * * When the predicate is of the form "foo IS NULL", we can conclude that * the predicate is refuted if the clause is a strict operator or function * that has "foo" as an input. See notes for implication case. * * Finally, we may be able to deduce something using knowledge about btree * operator classes; this is encapsulated in btree_predicate_proof(). *---------- */ static bool predicate_refuted_by_simple_clause(Expr *predicate, Node *clause) { /* First try the IS NULL case */ if (predicate && IsA(predicate, NullTest) && ((NullTest *) predicate)->nulltesttype == IS_NULL) { Expr *isnullarg = ((NullTest *) predicate)->arg; if (is_opclause(clause) && list_member(((OpExpr *) clause)->args, isnullarg) && op_strict(((OpExpr *) clause)->opno)) return true; if (is_funcclause(clause) && list_member(((FuncExpr *) clause)->args, isnullarg) && func_strict(((FuncExpr *) clause)->funcid)) return true; return false; /* we can't succeed below... */ } /* Else try btree operator knowledge */ return btree_predicate_proof(predicate, clause, true); } /* * Define an "operator implication table" for btree operators ("strategies"), * and a similar table for refutation. * * The strategy numbers defined by btree indexes (see access/skey.h) are: * (1) < (2) <= (3) = (4) >= (5) > * and in addition we use (6) to represent <>. <> is not a btree-indexable * operator, but we assume here that if the equality operator of a btree * opclass has a negator operator, the negator behaves as <> for the opclass. * * The interpretation of: * * test_op = BT_implic_table[given_op-1][target_op-1] * * where test_op, given_op and target_op are strategy numbers (from 1 to 6) * of btree operators, is as follows: * * If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you * want to determine whether "ATTR target_op CONST2" must also be true, then * you can use "CONST2 test_op CONST1" as a test. If this test returns true, * then the target expression must be true; if the test returns false, then * the target expression may be false. * * For example, if clause is "Quantity > 10" and pred is "Quantity > 5" * then we test "5 <= 10" which evals to true, so clause implies pred. * * Similarly, the interpretation of a BT_refute_table entry is: * * If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you * want to determine whether "ATTR target_op CONST2" must be false, then * you can use "CONST2 test_op CONST1" as a test. If this test returns true, * then the target expression must be false; if the test returns false, then * the target expression may be true. * * For example, if clause is "Quantity > 10" and pred is "Quantity < 5" * then we test "5 <= 10" which evals to true, so clause refutes pred. * * An entry where test_op == 0 means the implication cannot be determined. */ #define BTLT BTLessStrategyNumber #define BTLE BTLessEqualStrategyNumber #define BTEQ BTEqualStrategyNumber #define BTGE BTGreaterEqualStrategyNumber #define BTGT BTGreaterStrategyNumber #define BTNE 6 static const StrategyNumber BT_implic_table[6][6] = { /* * The target operator: * * LT LE EQ GE GT NE */ {BTGE, BTGE, 0, 0, 0, BTGE}, /* LT */ {BTGT, BTGE, 0, 0, 0, BTGT}, /* LE */ {BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */ {0, 0, 0, BTLE, BTLT, BTLT}, /* GE */ {0, 0, 0, BTLE, BTLE, BTLE}, /* GT */ {0, 0, 0, 0, 0, BTEQ} /* NE */ }; static const StrategyNumber BT_refute_table[6][6] = { /* * The target operator: * * LT LE EQ GE GT NE */ {0, 0, BTGE, BTGE, BTGE, 0}, /* LT */ {0, 0, BTGT, BTGT, BTGE, 0}, /* LE */ {BTLE, BTLT, BTNE, BTGT, BTGE, BTEQ}, /* EQ */ {BTLE, BTLT, BTLT, 0, 0, 0}, /* GE */ {BTLE, BTLE, BTLE, 0, 0, 0}, /* GT */ {0, 0, BTEQ, 0, 0, 0} /* NE */ }; /*---------- * btree_predicate_proof * Does the predicate implication or refutation test for a "simple clause" * predicate and a "simple clause" restriction, when both are simple * operator clauses using related btree operators. * * When refute_it == false, we want to prove the predicate true; * when refute_it == true, we want to prove the predicate false. * (There is enough common code to justify handling these two cases * in one routine.) We return TRUE if able to make the proof, FALSE * if not able to prove it. * * What we look for here is binary boolean opclauses of the form * "foo op constant", where "foo" is the same in both clauses. The operators * and constants can be different but the operators must be in the same btree * operator class. We use the above operator implication tables to * derive implications between nonidentical clauses. (Note: "foo" is known * immutable, and constants are surely immutable, but we have to check that * the operators are too. As of 8.0 it's possible for opclasses to contain * operators that are merely stable, and we dare not make deductions with * these.) *---------- */ static bool btree_predicate_proof(Expr *predicate, Node *clause, bool refute_it) { Node *leftop, *rightop; Node *pred_var, *clause_var; Const *pred_const, *clause_const; bool pred_var_on_left, clause_var_on_left, pred_op_negated; Oid pred_op, clause_op, pred_op_negator, clause_op_negator, test_op = InvalidOid; Oid opclass_id; bool found = false; StrategyNumber pred_strategy, clause_strategy, test_strategy; Oid clause_subtype; Expr *test_expr; ExprState *test_exprstate; Datum test_result; bool isNull; CatCList *catlist; int i; EState *estate; MemoryContext oldcontext; /* * Both expressions must be binary opclauses with a Const on one side, and * identical subexpressions on the other sides. Note we don't have to * think about binary relabeling of the Const node, since that would have * been folded right into the Const. * * If either Const is null, we also fail right away; this assumes that the * test operator will always be strict. */ if (!is_opclause(predicate)) return false; leftop = get_leftop(predicate); rightop = get_rightop(predicate); if (rightop == NULL) return false; /* not a binary opclause */ if (IsA(rightop, Const)) { pred_var = leftop; pred_const = (Const *) rightop; pred_var_on_left = true; } else if (IsA(leftop, Const)) { pred_var = rightop; pred_const = (Const *) leftop; pred_var_on_left = false; } else return false; /* no Const to be found */ if (pred_const->constisnull) return false; if (!is_opclause(clause)) return false; leftop = get_leftop((Expr *) clause); rightop = get_rightop((Expr *) clause); if (rightop == NULL) return false; /* not a binary opclause */ if (IsA(rightop, Const)) { clause_var = leftop; clause_const = (Const *) rightop; clause_var_on_left = true; } else if (IsA(leftop, Const)) { clause_var = rightop; clause_const = (Const *) leftop; clause_var_on_left = false; } else return false; /* no Const to be found */ if (clause_const->constisnull) return false; /* * Check for matching subexpressions on the non-Const sides. We used to * only allow a simple Var, but it's about as easy to allow any * expression. Remember we already know that the pred expression does not * contain any non-immutable functions, so identical expressions should * yield identical results. */ if (!equal(pred_var, clause_var)) return false; /* * Okay, get the operators in the two clauses we're comparing. Commute * them if needed so that we can assume the variables are on the left. */ pred_op = ((OpExpr *) predicate)->opno; if (!pred_var_on_left) { pred_op = get_commutator(pred_op); if (!OidIsValid(pred_op)) return false; } clause_op = ((OpExpr *) clause)->opno; if (!clause_var_on_left) { clause_op = get_commutator(clause_op); if (!OidIsValid(clause_op)) return false; } /* * Try to find a btree opclass containing the needed operators. * * We must find a btree opclass that contains both operators, else the * implication can't be determined. Also, the pred_op has to be of * default subtype (implying left and right input datatypes are the same); * otherwise it's unsafe to put the pred_const on the left side of the * test. Also, the opclass must contain a suitable test operator matching * the clause_const's type (which we take to mean that it has the same * subtype as the original clause_operator). * * If there are multiple matching opclasses, assume we can use any one to * determine the logical relationship of the two operators and the correct * corresponding test operator. This should work for any logically * consistent opclasses. */ catlist = SearchSysCacheList(AMOPOPID, 1, ObjectIdGetDatum(pred_op), 0, 0, 0); /* * If we couldn't find any opclass containing the pred_op, perhaps it is a * <> operator. See if it has a negator that is in an opclass. */ pred_op_negated = false; if (catlist->n_members == 0) { pred_op_negator = get_negator(pred_op); if (OidIsValid(pred_op_negator)) { pred_op_negated = true; ReleaseSysCacheList(catlist); catlist = SearchSysCacheList(AMOPOPID, 1, ObjectIdGetDatum(pred_op_negator), 0, 0, 0); } } /* Also may need the clause_op's negator */ clause_op_negator = get_negator(clause_op); /* Now search the opclasses */ for (i = 0; i < catlist->n_members; i++) { HeapTuple pred_tuple = &catlist->members[i]->tuple; Form_pg_amop pred_form = (Form_pg_amop) GETSTRUCT(pred_tuple); HeapTuple clause_tuple; opclass_id = pred_form->amopclaid; /* must be btree */ if (!opclass_is_btree(opclass_id)) continue; /* predicate operator must be default within this opclass */ if (pred_form->amopsubtype != InvalidOid) continue; /* Get the predicate operator's btree strategy number */ pred_strategy = (StrategyNumber) pred_form->amopstrategy; Assert(pred_strategy >= 1 && pred_strategy <= 5); if (pred_op_negated) { /* Only consider negators that are = */ if (pred_strategy != BTEqualStrategyNumber) continue; pred_strategy = BTNE; } /* * From the same opclass, find a strategy number for the clause_op, if * possible */ clause_tuple = SearchSysCache(AMOPOPID, ObjectIdGetDatum(clause_op), ObjectIdGetDatum(opclass_id), 0, 0); if (HeapTupleIsValid(clause_tuple)) { Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple); /* Get the restriction clause operator's strategy/subtype */ clause_strategy = (StrategyNumber) clause_form->amopstrategy; Assert(clause_strategy >= 1 && clause_strategy <= 5); clause_subtype = clause_form->amopsubtype; ReleaseSysCache(clause_tuple); } else if (OidIsValid(clause_op_negator)) { clause_tuple = SearchSysCache(AMOPOPID, ObjectIdGetDatum(clause_op_negator), ObjectIdGetDatum(opclass_id), 0, 0); if (HeapTupleIsValid(clause_tuple)) { Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple); /* Get the restriction clause operator's strategy/subtype */ clause_strategy = (StrategyNumber) clause_form->amopstrategy; Assert(clause_strategy >= 1 && clause_strategy <= 5); clause_subtype = clause_form->amopsubtype; ReleaseSysCache(clause_tuple); /* Only consider negators that are = */ if (clause_strategy != BTEqualStrategyNumber) continue; clause_strategy = BTNE; } else continue; } else continue; /* * Look up the "test" strategy number in the implication table */ if (refute_it) test_strategy = BT_refute_table[clause_strategy - 1][pred_strategy - 1]; else test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1]; if (test_strategy == 0) { /* Can't determine implication using this interpretation */ continue; } /* * See if opclass has an operator for the test strategy and the clause * datatype. */ if (test_strategy == BTNE) { test_op = get_opclass_member(opclass_id, clause_subtype, BTEqualStrategyNumber); if (OidIsValid(test_op)) test_op = get_negator(test_op); } else { test_op = get_opclass_member(opclass_id, clause_subtype, test_strategy); } if (OidIsValid(test_op)) { /* * Last check: test_op must be immutable. * * Note that we require only the test_op to be immutable, not the * original clause_op. (pred_op is assumed to have been checked * immutable by the caller.) Essentially we are assuming that the * opclass is consistent even if it contains operators that are * merely stable. */ if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE) { found = true; break; } } } ReleaseSysCacheList(catlist); if (!found) { /* couldn't find a btree opclass to interpret the operators */ return false; } /* * Evaluate the test. For this we need an EState. */ estate = CreateExecutorState(); /* We can use the estate's working context to avoid memory leaks. */ oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); /* Build expression tree */ test_expr = make_opclause(test_op, BOOLOID, false, (Expr *) pred_const, (Expr *) clause_const); /* Prepare it for execution */ test_exprstate = ExecPrepareExpr(test_expr, estate); /* And execute it. */ test_result = ExecEvalExprSwitchContext(test_exprstate, GetPerTupleExprContext(estate), &isNull, NULL); /* Get back to outer memory context */ MemoryContextSwitchTo(oldcontext); /* Release all the junk we just created */ FreeExecutorState(estate); if (isNull) { /* Treat a null result as non-proof ... but it's a tad fishy ... */ elog(DEBUG2, "null predicate test result"); return false; } return DatumGetBool(test_result); }