aboutsummaryrefslogtreecommitdiff
path: root/src/backend/parser/analyze.c
Commit message (Collapse)AuthorAge
...
* Rename field "relkind" to "objtype" for CTAS and ALTER TABLE nodesMichael Paquier2020-07-11
| | | | | | | | | | | | | | | | | | | "relkind" normally refers to the char field from pg_class. However, in the parse nodes AlterTableStmt and CreateTableAsStmt, "relkind" was used for a field of type enum ObjectType, that could refer to other object types than those possible for a relkind. Such fields being usually named "objtype", switch the name in both structures to make things more consistent. Note that this led to some confusion in functions that also operate on a RangeTableEntry object, which also has a field named "relkind". This naming goes back to commit 09d4e96, where only OBJECT_TABLE and OBJECT_INDEX were used. This got extended later to use as well OBJECT_TYPE with e440e12, not really a relation kind. Author: Mark Dilger Reviewed-by: Daniel Gustafsson, Álvaro Herrera, Michael Paquier Discussion: https://postgr.es/m/609181AE-E399-47C7-9221-856E0F96BF93@enterprisedb.com
* Run pgindent with new pg_bsd_indent version 2.1.1.Tom Lane2020-05-16
| | | | | | | | | | | Thomas Munro fixed a longstanding annoyance in pg_bsd_indent, that it would misformat lines containing IsA() macros on the assumption that the IsA() call should be treated like a cast. This improves some other cases involving field/variable names that match typedefs, too. The only places that get worse are a couple of uses of the OpenSSL macro STACK_OF(); we'll gladly take that trade-off. Discussion: https://postgr.es/m/20200114221814.GA19630@alvherre.pgsql
* Support FETCH FIRST WITH TIESAlvaro Herrera2020-04-07
| | | | | | | | | | | | | | | | | | WITH TIES is an option to the FETCH FIRST N ROWS clause (the SQL standard's spelling of LIMIT), where you additionally get rows that compare equal to the last of those N rows by the columns in the mandatory ORDER BY clause. There was a proposal by Andrew Gierth to implement this functionality in a more powerful way that would yield more features, but the other patch had not been finished at this time, so we decided to use this one for now in the spirit of incremental development. Author: Surafel Temesgen <surafel3000@gmail.com> Reviewed-by: Álvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Tomas Vondra <tomas.vondra@2ndquadrant.com> Discussion: https://postgr.es/m/CALAY4q9ky7rD_A4vf=FVQvCGngm3LOes-ky0J6euMrg=_Se+ag@mail.gmail.com Discussion: https://postgr.es/m/87o8wvz253.fsf@news-spur.riddles.org.uk
* Fill in extraUpdatedCols in logical replicationPeter Eisentraut2020-02-17
| | | | | | | | | | | | | | The extraUpdatedCols field of the target RTE records which generated columns are affected by an update. This is used in a variety of places, including per-column triggers and foreign data wrappers. When an update was initiated by a logical replication subscription, this field was not filled in, so such an update would not affect generated columns in a way that is consistent with normal updates. To fix, factor out some code from analyze.c to fill in extraUpdatedCols in the logical replication worker as well. Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com> Discussion: https://www.postgresql.org/message-id/flat/b05e781a-fa16-6b52-6738-761181204567@2ndquadrant.com
* Reconsider the representation of join alias Vars.Tom Lane2020-01-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The core idea of this patch is to make the parser generate join alias Vars (that is, ones with varno pointing to a JOIN RTE) only when the alias Var is actually different from any raw join input, that is a type coercion and/or COALESCE is necessary to generate the join output value. Otherwise just generate varno/varattno pointing to the relevant join input column. In effect, this means that the planner's flatten_join_alias_vars() transformation is already done in the parser, for all cases except (a) columns that are merged by JOIN USING and are transformed in the process, and (b) whole-row join Vars. In principle that would allow us to skip doing flatten_join_alias_vars() in many more queries than we do now, but we don't have quite enough infrastructure to know that we can do so --- in particular there's no cheap way to know whether there are any whole-row join Vars. I'm not sure if it's worth the trouble to add a Query-level flag for that, and in any case it seems like fit material for a separate patch. But even without skipping the work entirely, this should make flatten_join_alias_vars() faster, particularly where there are nested joins that it previously had to flatten recursively. An essential part of this change is to replace Var nodes' varnoold/varoattno fields with varnosyn/varattnosyn, which have considerably more tightly-defined meanings than the old fields: when they differ from varno/varattno, they identify the Var's position in an aliased JOIN RTE, and the join alias is what ruleutils.c should print for the Var. This is necessary because the varno change destroyed ruleutils.c's ability to find the JOIN RTE from the Var's varno. Another way in which this change broke ruleutils.c is that it's no longer feasible to determine, from a JOIN RTE's joinaliasvars list, which join columns correspond to which columns of the join's immediate input relations. (If those are sub-joins, the joinaliasvars entries may point to columns of their base relations, not the sub-joins.) But that was a horrid mess requiring a lot of fragile assumptions already, so let's just bite the bullet and add some more JOIN RTE fields to make it more straightforward to figure that out. I added two integer-List fields containing the relevant column numbers from the left and right input rels, plus a count of how many merged columns there are. This patch depends on the ParseNamespaceColumn infrastructure that I added in commit 5815696bc. The biggest bit of code change is restructuring transformFromClauseItem's handling of JOINs so that the ParseNamespaceColumn data is propagated upward correctly. Other than that and the ruleutils fixes, everything pretty much just works, though some processing is now inessential. I grabbed two pieces of low-hanging fruit in that line: 1. In find_expr_references, we don't need to recurse into join alias Vars anymore. There aren't any except for references to merged USING columns, which are more properly handled when we scan the join's RTE. This change actually fixes an edge-case issue: we will now record a dependency on any type-coercion function present in a USING column's joinaliasvar, even if that join column has no references in the query text. The odds of the missing dependency causing a problem seem quite small: you'd have to posit somebody dropping an implicit cast between two data types, without removing the types themselves, and then having a stored rule containing a whole-row Var for a join whose USING merge depends on that cast. So I don't feel a great need to change this in the back branches. But in theory this way is more correct. 2. markRTEForSelectPriv and markTargetListOrigin don't need to recurse into join alias Vars either, because the cases they care about don't apply to alias Vars for USING columns that are semantically distinct from the underlying columns. This removes the only case in which markVarForSelectPriv could be called with NULL for the RTE, so adjust the comments to describe that hack as being strictly internal to markRTEForSelectPriv. catversion bump required due to changes in stored rules. Discussion: https://postgr.es/m/7115.1577986646@sss.pgh.pa.us
* Make parser rely more heavily on the ParseNamespaceItem data structure.Tom Lane2020-01-02
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When I added the ParseNamespaceItem data structure (in commit 5ebaaa494), it wasn't very tightly integrated into the parser's APIs. In the wake of adding p_rtindex to that struct (commit b541e9acc), there is a good reason to make more use of it: by passing around ParseNamespaceItem pointers instead of bare RTE pointers, we can get rid of various messy methods for passing back or deducing the rangetable index of an RTE during parsing. Hence, refactor the addRangeTableEntryXXX functions to build and return a ParseNamespaceItem struct, not just the RTE proper; and replace addRTEtoQuery with addNSItemToQuery, which is passed a ParseNamespaceItem rather than building one internally. Also, add per-column data (a ParseNamespaceColumn array) to each ParseNamespaceItem. These arrays are built during addRangeTableEntryXXX, where we have column type data at hand so that it's nearly free to fill the data structure. Later, when we need to build Vars referencing RTEs, we can use the ParseNamespaceColumn info to avoid the rather expensive operations done in get_rte_attribute_type() or expandRTE(). get_rte_attribute_type() is indeed dead code now, so I've removed it. This makes for a useful improvement in parse analysis speed, around 20% in one moderately-complex test query. The ParseNamespaceColumn structs also include Var identity information (varno/varattno). That info isn't actually being used in this patch, except that p_varno == 0 is a handy test for a dropped column. A follow-on patch will make more use of it. Discussion: https://postgr.es/m/2461.1577764221@sss.pgh.pa.us
* Update copyrights for 2020Bruce Momjian2020-01-01
| | | | Backpatch-through: update all files in master, backpatch legal files through 9.4
* Refactor parser's generation of Var nodes.Tom Lane2019-12-26
| | | | | | | | | | | | | | | | | | | | | Instead of passing around a pointer to the RangeTblEntry that provides the desired column, pass a pointer to the associated ParseNamespaceItem. The RTE is trivially reachable from the nsitem, and having the ParseNamespaceItem allows access to additional information. As proof of concept for that, add the rangetable index to ParseNamespaceItem, and use that to get rid of RTERangeTablePosn searches. (I have in mind to teach the parser to generate some different representation for Vars that are nullable by outer joins, and keeping the necessary information in ParseNamespaceItems seems like a reasonable approach to that. But whether that ever happens or not, this seems like good cleanup.) Also refactor the code around scanRTEForColumn so that the "fuzzy match" stuff does not leak out of parse_relation.c. Discussion: https://postgr.es/m/26144.1576858373@sss.pgh.pa.us
* Represent Lists as expansible arrays, not chains of cons-cells.Tom Lane2019-07-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Originally, Postgres Lists were a more or less exact reimplementation of Lisp lists, which consist of chains of separately-allocated cons cells, each having a value and a next-cell link. We'd hacked that once before (commit d0b4399d8) to add a separate List header, but the data was still in cons cells. That makes some operations -- notably list_nth() -- O(N), and it's bulky because of the next-cell pointers and per-cell palloc overhead, and it's very cache-unfriendly if the cons cells end up scattered around rather than being adjacent. In this rewrite, we still have List headers, but the data is in a resizable array of values, with no next-cell links. Now we need at most two palloc's per List, and often only one, since we can allocate some values in the same palloc call as the List header. (Of course, extending an existing List may require repalloc's to enlarge the array. But this involves just O(log N) allocations not O(N).) Of course this is not without downsides. The key difficulty is that addition or deletion of a list entry may now cause other entries to move, which it did not before. For example, that breaks foreach() and sister macros, which historically used a pointer to the current cons-cell as loop state. We can repair those macros transparently by making their actual loop state be an integer list index; the exposed "ListCell *" pointer is no longer state carried across loop iterations, but is just a derived value. (In practice, modern compilers can optimize things back to having just one loop state value, at least for simple cases with inline loop bodies.) In principle, this is a semantics change for cases where the loop body inserts or deletes list entries ahead of the current loop index; but I found no such cases in the Postgres code. The change is not at all transparent for code that doesn't use foreach() but chases lists "by hand" using lnext(). The largest share of such code in the backend is in loops that were maintaining "prev" and "next" variables in addition to the current-cell pointer, in order to delete list cells efficiently using list_delete_cell(). However, we no longer need a previous-cell pointer to delete a list cell efficiently. Keeping a next-cell pointer doesn't work, as explained above, but we can improve matters by changing such code to use a regular foreach() loop and then using the new macro foreach_delete_current() to delete the current cell. (This macro knows how to update the associated foreach loop's state so that no cells will be missed in the traversal.) There remains a nontrivial risk of code assuming that a ListCell * pointer will remain good over an operation that could now move the list contents. To help catch such errors, list.c can be compiled with a new define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents whenever that could possibly happen. This makes list operations significantly more expensive so it's not normally turned on (though it is on by default if USE_VALGRIND is on). There are two notable API differences from the previous code: * lnext() now requires the List's header pointer in addition to the current cell's address. * list_delete_cell() no longer requires a previous-cell argument. These changes are somewhat unfortunate, but on the other hand code using either function needs inspection to see if it is assuming anything it shouldn't, so it's not all bad. Programmers should be aware of these significant performance changes: * list_nth() and related functions are now O(1); so there's no major access-speed difference between a list and an array. * Inserting or deleting a list element now takes time proportional to the distance to the end of the list, due to moving the array elements. (However, it typically *doesn't* require palloc or pfree, so except in long lists it's probably still faster than before.) Notably, lcons() used to be about the same cost as lappend(), but that's no longer true if the list is long. Code that uses lcons() and list_delete_first() to maintain a stack might usefully be rewritten to push and pop at the end of the list rather than the beginning. * There are now list_insert_nth...() and list_delete_nth...() functions that add or remove a list cell identified by index. These have the data-movement penalty explained above, but there's no search penalty. * list_concat() and variants now copy the second list's data into storage belonging to the first list, so there is no longer any sharing of cells between the input lists. The second argument is now declared "const List *" to reflect that it isn't changed. This patch just does the minimum needed to get the new implementation in place and fix bugs exposed by the regression tests. As suggested by the foregoing, there's a fair amount of followup work remaining to do. Also, the ENABLE_LIST_COMPAT macros are finally removed in this commit. Code using those should have been gone a dozen years ago. Patch by me; thanks to David Rowley, Jesper Pedersen, and others for review. Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
* Fix many typos and inconsistenciesMichael Paquier2019-07-01
| | | | | Author: Alexander Lakhin Discussion: https://postgr.es/m/af27d1b3-a128-9d62-46e0-88f424397f44@gmail.com
* Phase 2 pgindent run for v12.Tom Lane2019-05-22
| | | | | | | | | Switch to 2.1 version of pg_bsd_indent. This formats multiline function declarations "correctly", that is with additional lines of parameter declarations indented to match where the first line's left parenthesis is. Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
* More message style fixesAlvaro Herrera2019-05-16
| | | | Discussion: https://postgr.es/m/20190515183005.GA26486@alvherre.pgsql
* Generated columnsPeter Eisentraut2019-03-30
| | | | | | | | | | | | | | This is an SQL-standard feature that allows creating columns that are computed from expressions rather than assigned, similar to a view or materialized view but on a column basis. This implements one kind of generated column: stored (computed on write). Another kind, virtual (computed on read), is planned for the future, and some room is left for it. Reviewed-by: Michael Paquier <michael@paquier.xyz> Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com> Discussion: https://www.postgresql.org/message-id/flat/b151f851-4019-bdb1-699e-ebab07d2f40a@2ndquadrant.com
* Standardize some more loops that chase down parallel lists.Tom Lane2019-02-28
| | | | | | | | | | | | | | | | | | | | | | | | | We have forboth() and forthree() macros that simplify iterating through several parallel lists, but not everyplace that could reasonably use those was doing so. Also invent forfour() and forfive() macros to do the same for four or five parallel lists, and use those where applicable. The immediate motivation for doing this is to reduce the number of ad-hoc lnext() calls, to reduce the footprint of a WIP patch. However, it seems like good cleanup and error-proofing anyway; the places that were combining forthree() with a manually iterated loop seem particularly illegible and bug-prone. There was some speculation about restructuring related parsetree representations to reduce the need for parallel list chasing of this sort. Perhaps that's a win, or perhaps not, but in any case it would be considerably more invasive than this patch; and it's not particularly related to my immediate goal of improving the List infrastructure. So I'll leave that question for another day. Patch by me; thanks to David Rowley for review. Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
* Add collation assignment to CALL statementPeter Eisentraut2019-02-07
| | | | | | | | | Otherwise functions that require collation information will not have it if they are called in arguments to a CALL statement. Reported-by: Jean-Marc Voillequin <Jean-Marc.Voillequin@moodys.com> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/1EC8157EB499BF459A516ADCF135ADCE39FFAC54%40LON-WGMSX712.ad.moodys.net
* Renaming for new subscripting mechanismAlvaro Herrera2019-02-01
| | | | | | | | | | | | Over at patch https://commitfest.postgresql.org/21/1062/ Dmitry wants to introduce a more generic subscription mechanism, which allows subscripting not only arrays but also other object types such as JSONB. That functionality is introduced in a largish invasive patch, out of which this internal renaming patch was extracted. Author: Dmitry Dolgov Reviewed-by: Tom Lane, Arthur Zakirov Discussion: https://postgr.es/m/CA+q6zcUK4EqPAu7XRRO5CCjMwhz5zvg+rfWuLzVoxp_5sKS6=w@mail.gmail.com
* Refactor planner's header files.Tom Lane2019-01-29
| | | | | | | | | | | | | | | | | | | | | | | | Create a new header optimizer/optimizer.h, which exposes just the planner functions that can be used "at arm's length", without need to access Paths or the other planner-internal data structures defined in nodes/relation.h. This is intended to provide the whole planner API seen by most of the rest of the system; although FDWs still need to use additional stuff, and more thought is also needed about just what selfuncs.c should rely on. The main point of doing this now is to limit the amount of new #include baggage that will be needed by "planner support functions", which I expect to introduce later, and which will be in relevant datatype modules rather than anywhere near the planner. This commit just moves relevant declarations into optimizer.h from other header files (a couple of which go away because everything got moved), and adjusts #include lists to match. There's further cleanup that could be done if we want to decide that some stuff being exposed by optimizer.h doesn't belong in the planner at all, but I'll leave that for another day. Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
* In the planner, replace an empty FROM clause with a dummy RTE.Tom Lane2019-01-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
* Postpone aggregate checks until after collation is assigned.Andrew Gierth2019-01-17
| | | | | | | | | | | | | | | | | | | | | | | Previously, parseCheckAggregates was run before assign_query_collations, but this causes problems if any expression has already had a collation assigned by some transform function (e.g. transformCaseExpr) before parseCheckAggregates runs. The differing collations would cause expressions not to be recognized as equal to the ones in the GROUP BY clause, leading to spurious errors about unaggregated column references. The result was that CASE expr WHEN val ... would fail when "expr" contained a GROUPING() expression or matched one of the group by expressions, and where collatable types were involved; whereas the supposedly identical CASE WHEN expr = val ... would succeed. Backpatch all the way; this appears to have been wrong ever since collations were introduced. Per report from Guillaume Lelarge, analysis and patch by me. Discussion: https://postgr.es/m/CAECtzeVSO_US8C2Khgfv54ZMUOBR4sWq+6_bLrETnWExHT=rFg@mail.gmail.com Discussion: https://postgr.es/m/87muo0k0c7.fsf@news-spur.riddles.org.uk
* Update copyright for 2019Bruce Momjian2019-01-02
| | | | Backpatch-through: certain files through 9.4
* Create an RTE field to record the query's lock mode for each relation.Tom Lane2018-09-30
| | | | | | | | | | | | | | | | | | | | | | | | Add RangeTblEntry.rellockmode, which records the appropriate lock mode for each RTE_RELATION rangetable entry (either AccessShareLock, RowShareLock, or RowExclusiveLock depending on the RTE's role in the query). This patch creates the field and makes all creators of RTE nodes fill it in reasonably, but for the moment nothing much is done with it. The plan is to replace assorted post-parser logic that re-determines the right lockmode to use with simple uses of rte->rellockmode. For now, just add Asserts in each of those places that the rellockmode matches what they are computing today. (In some cases the match isn't perfect, so the Asserts are weaker than you might expect; but this seems OK, as per discussion.) This passes check-world for me, but it seems worth pushing in this state to see if the buildfarm finds any problems in cases I failed to test. catversion bump due to change of stored rules. Amit Langote, reviewed by David Rowley and Jesper Pedersen, and whacked around a bit more by me Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
* Fix some minor issues exposed by outfuncs/readfuncs testing.Tom Lane2018-09-18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A test patch to pass parse and plan trees through outfuncs + readfuncs exposed several issues that need to be fixed to get clean matches: Query.withCheckOptions failed to get copied; it's intentionally ignored by outfuncs/readfuncs on the grounds that it'd always be NIL anyway in stored rules. This seems less than future-proof, and it's not even saving very much, so just undo the decision and treat the field like all others. Several places that convert a view RTE into a subquery RTE, or similar manipulations, failed to clear out fields that were specific to the original RTE type and should be zero in a subquery RTE. Since readfuncs.c will leave such fields as zero, equalfuncs.c thinks the nodes are different leading to a reported mismatch. It seems like a good idea to clear out the no-longer-needed fields, even though in principle nothing should look at them; the node ought to be indistinguishable from how it would look if we'd built a new node instead of scribbling on the old one. BuildOnConflictExcludedTargetlist randomly set the resname of some TargetEntries to "" not NULL. outfuncs/readfuncs don't distinguish those cases, and so the string will read back in as NULL ... but equalfuncs.c does distinguish. Perhaps we ought to try to make things more consistent in this area --- but it's just useless extra code space for BuildOnConflictExcludedTargetlist to not use NULL here, so I fixed it for now by making it do that. catversion bumped because the change in handling of Query.withCheckOptions affects stored rules. Discussion: https://postgr.es/m/17114.1537138992@sss.pgh.pa.us
* Fix INSERT ON CONFLICT UPDATE through a view that isn't just SELECT *.Tom Lane2018-08-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When expanding an updatable view that is an INSERT's target, the rewriter failed to rewrite Vars in the ON CONFLICT UPDATE clause. This accidentally worked if the view was just "SELECT * FROM ...", as the transformation would be a no-op in that case. With more complicated view targetlists, this omission would often lead to "attribute ... has the wrong type" errors or even crashes, as reported by Mario De Frutos Dieguez. Fix by adding code to rewriteTargetView to fix up the data structure correctly. The easiest way to update the exclRelTlist list is to rebuild it from scratch looking at the new target relation, so factor the code for that out of transformOnConflictClause to make it sharable. In passing, avoid duplicate permissions checks against the EXCLUDED pseudo-relation, and prevent useless view expansion of that relation's dummy RTE. The latter is only known to happen (after this patch) in cases where the query would fail later due to not having any INSTEAD OF triggers for the view. But by exactly that token, it would create an unintended and very poorly tested state of the query data structure, so it seems like a good idea to prevent it from happening at all. This has been broken since ON CONFLICT was introduced, so back-patch to 9.5. Dean Rasheed, based on an earlier patch by Amit Langote; comment-kibitzing and back-patching by me Discussion: https://postgr.es/m/CAFYwGJ0xfzy8jaK80hVN2eUWr6huce0RU8AgU04MGD00igqkTg@mail.gmail.com
* Post-feature-freeze pgindent run.Tom Lane2018-04-26
| | | | Discussion: https://postgr.es/m/15719.1523984266@sss.pgh.pa.us
* Revert MERGE patchSimon Riggs2018-04-12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This reverts commits d204ef63776b8a00ca220adec23979091564e465, 83454e3c2b28141c0db01c7d2027e01040df5249 and a few more commits thereafter (complete list at the end) related to MERGE feature. While the feature was fully functional, with sufficient test coverage and necessary documentation, it was felt that some parts of the executor and parse-analyzer can use a different design and it wasn't possible to do that in the available time. So it was decided to revert the patch for PG11 and retry again in the future. Thanks again to all reviewers and bug reporters. List of commits reverted, in reverse chronological order: f1464c5380 Improve parse representation for MERGE ddb4158579 MERGE syntax diagram correction 530e69e59b Allow cpluspluscheck to pass by renaming variable 01b88b4df5 MERGE minor errata 3af7b2b0d4 MERGE fix variable warning in non-assert builds a5d86181ec MERGE INSERT allows only one VALUES clause 4b2d44031f MERGE post-commit review 4923550c20 Tab completion for MERGE aa3faa3c7a WITH support in MERGE 83454e3c2b New files for MERGE d204ef6377 MERGE SQL Command following SQL:2016 Author: Pavan Deolasee Reviewed-by: Michael Paquier
* Indexes with INCLUDE columns and their support in B-treeTeodor Sigaev2018-04-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch introduces INCLUDE clause to index definition. This clause specifies a list of columns which will be included as a non-key part in the index. The INCLUDE columns exist solely to allow more queries to benefit from index-only scans. Also, such columns don't need to have appropriate operator classes. Expressions are not supported as INCLUDE columns since they cannot be used in index-only scans. Index access methods supporting INCLUDE are indicated by amcaninclude flag in IndexAmRoutine. For now, only B-tree indexes support INCLUDE clause. In B-tree indexes INCLUDE columns are truncated from pivot index tuples (tuples located in non-leaf pages and high keys). Therefore, B-tree indexes now might have variable number of attributes. This patch also provides generic facility to support that: pivot tuples contain number of their attributes in t_tid.ip_posid. Free 13th bit of t_info is used for indicating that. This facility will simplify further support of index suffix truncation. The changes of above are backward-compatible, pg_upgrade doesn't need special handling of B-tree indexes for that. Bump catalog version Author: Anastasia Lubennikova with contribition by Alexander Korotkov and me Reviewed by: Peter Geoghegan, Tomas Vondra, Antonin Houska, Jeff Janes, David Rowley, Alexander Korotkov Discussion: https://www.postgresql.org/message-id/flat/56168952.4010101@postgrespro.ru
* MERGE SQL Command following SQL:2016Simon Riggs2018-04-03
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | MERGE performs actions that modify rows in the target table using a source table or query. MERGE provides a single SQL statement that can conditionally INSERT/UPDATE/DELETE rows a task that would other require multiple PL statements. e.g. MERGE INTO target AS t USING source AS s ON t.tid = s.sid WHEN MATCHED AND t.balance > s.delta THEN UPDATE SET balance = t.balance - s.delta WHEN MATCHED THEN DELETE WHEN NOT MATCHED AND s.delta > 0 THEN INSERT VALUES (s.sid, s.delta) WHEN NOT MATCHED THEN DO NOTHING; MERGE works with regular and partitioned tables, including column and row security enforcement, as well as support for row, statement and transition triggers. MERGE is optimized for OLTP and is parameterizable, though also useful for large scale ETL/ELT. MERGE is not intended to be used in preference to existing single SQL commands for INSERT, UPDATE or DELETE since there is some overhead. MERGE can be used statically from PL/pgSQL. MERGE does not yet support inheritance, write rules, RETURNING clauses, updatable views or foreign tables. MERGE follows SQL Standard per the most recent SQL:2016. Includes full tests and documentation, including full isolation tests to demonstrate the concurrent behavior. This version written from scratch in 2017 by Simon Riggs, using docs and tests originally written in 2009. Later work from Pavan Deolasee has been both complex and deep, leaving the lead author credit now in his hands. Extensive discussion of concurrency from Peter Geoghegan, with thanks for the time and effort contributed. Various issues reported via sqlsmith by Andreas Seltenreich Authors: Pavan Deolasee, Simon Riggs Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs Discussion: https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
* Revert "Modified files for MERGE"Simon Riggs2018-04-02
| | | | This reverts commit 354f13855e6381d288dfaa52bcd4f2cb0fd4a5eb.
* Modified files for MERGESimon Riggs2018-04-02
|
* Handle INSERT .. ON CONFLICT with partitioned tablesAlvaro Herrera2018-03-26
| | | | | | | | | | | | Commit eb7ed3f30634 enabled unique constraints on partitioned tables, but one thing that was not working properly is INSERT/ON CONFLICT. This commit introduces a new node keeps state related to the ON CONFLICT clause per partition, and fills it when that partition is about to be used for tuple routing. Author: Amit Langote, Álvaro Herrera Reviewed-by: Etsuro Fujita, Pavan Deolasee Discussion: https://postgr.es/m/20180228004602.cwdyralmg5ejdqkq@alvherre.pgsql
* Add missing breakPeter Eisentraut2018-03-19
|
* Support parameters in CALLPeter Eisentraut2018-02-22
| | | | | | | To support parameters in CALL, move the parse analysis of the procedure and arguments into the global transformation phase, so that the parser hooks can be applied. And then at execution time pass the parameters from ProcessUtility on to ExecuteCallStmt.
* Allow UNIQUE indexes on partitioned tablesAlvaro Herrera2018-02-19
| | | | | | | | | | | | | | | If we restrict unique constraints on partitioned tables so that they must always include the partition key, then our standard approach to unique indexes already works --- each unique key is forced to exist within a single partition, so enforcing the unique restriction in each index individually is enough to have it enforced globally. Therefore we can implement unique indexes on partitions by simply removing a few restrictions (and adding others.) Discussion: https://postgr.es/m/20171222212921.hi6hg6pem2w2t36z@alvherre.pgsql Discussion: https://postgr.es/m/20171229230607.3iib6b62fn3uaf47@alvherre.pgsql Reviewed-by: Simon Riggs, Jesper Pedersen, Peter Eisentraut, Jaime Casanova, Amit Langote
* Update copyright for 2018Bruce Momjian2018-01-02
| | | | Backpatch-through: certain files through 9.3
* Re-allow INSERT .. ON CONFLICT DO NOTHING on partitioned tables.Robert Haas2017-12-01
| | | | | | | | | | | | Commit 8355a011a0124bdf7ccbada206a967d427039553 was reverted in f05230752d53c4aa74cffa9b699983bbb6bcb118, but this attempt is hopefully better-considered: we now pass the correct value to ExecOpenIndices, which should avoid the crash that we hit before. Amit Langote, reviewed by Simon Riggs and by me. Some final editing by me. Discussion: http://postgr.es/m/7ff1e8ec-dc39-96b1-7f47-ff5965dceeac@lab.ntt.co.jp
* Change tupledesc->attrs[n] to TupleDescAttr(tupledesc, n).Andres Freund2017-08-20
| | | | | | | | | | | This is a mechanical change in preparation for a later commit that will change the layout of TupleDesc. Introducing a macro to abstract the details of where attributes are stored will allow us to change that in separate step and revise it in future. Author: Thomas Munro, editorialized by Andres Freund Reviewed-By: Andres Freund Discussion: https://postgr.es/m/CAEepm=0ZtQ-SpsgCyzzYpsXS6e=kZWqk3g5Ygn3MDV7A8dabUA@mail.gmail.com
* Phase 3 of pgindent updates.Tom Lane2017-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | Don't move parenthesized lines to the left, even if that means they flow past the right margin. By default, BSD indent lines up statement continuation lines that are within parentheses so that they start just to the right of the preceding left parenthesis. However, traditionally, if that resulted in the continuation line extending to the right of the desired right margin, then indent would push it left just far enough to not overrun the margin, if it could do so without making the continuation line start to the left of the current statement indent. That makes for a weird mix of indentations unless one has been completely rigid about never violating the 80-column limit. This behavior has been pretty universally panned by Postgres developers. Hence, disable it with indent's new -lpl switch, so that parenthesized lines are always lined up with the preceding left paren. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
* Phase 2 of pgindent updates.Tom Lane2017-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
* Post-PG 10 beta1 pgindent runBruce Momjian2017-05-17
| | | | perltidy run not included.
* Improve castNode notation by introducing list-extraction-specific variants.Tom Lane2017-04-10
| | | | | | | | | | | | | | | | | This extends the castNode() notation introduced by commit 5bcab1114 to provide, in one step, extraction of a list cell's pointer and coercion to a concrete node type. For example, "lfirst_node(Foo, lc)" is the same as "castNode(Foo, lfirst(lc))". Almost half of the uses of castNode that have appeared so far include a list extraction call, so this is pretty widely useful, and it saves a few more keystrokes compared to the old way. As with the previous patch, back-patch the addition of these macros to pg_list.h, so that the notation will be available when back-patching. Patch by me, after an idea of Andrew Gierth's. Discussion: https://postgr.es/m/14197.1491841216@sss.pgh.pa.us
* Identity columnsPeter Eisentraut2017-04-06
| | | | | | | | | | | | | This is the SQL standard-conforming variant of PostgreSQL's serial columns. It fixes a few usability issues that serial columns have: - CREATE TABLE / LIKE copies default but refers to same sequence - cannot add/drop serialness with ALTER TABLE - dropping default does not drop sequence - need to grant separate privileges to sequence - other slight weirdnesses because serial is some kind of special macro Reviewed-by: Vitaly Burovoy <vitaly.burovoy@gmail.com>
* Add infrastructure to support EphemeralNamedRelation references.Kevin Grittner2017-03-31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A QueryEnvironment concept is added, which allows new types of objects to be passed into queries from parsing on through execution. At this point, the only thing implemented is a collection of EphemeralNamedRelation objects -- relations which can be referenced by name in queries, but do not exist in the catalogs. The only type of ENR implemented is NamedTuplestore, but provision is made to add more types fairly easily. An ENR can carry its own TupleDesc or reference a relation in the catalogs by relid. Although these features can be used without SPI, convenience functions are added to SPI so that ENRs can easily be used by code run through SPI. The initial use of all this is going to be transition tables in AFTER triggers, but that will be added to each PL as a separate commit. An incidental effect of this patch is to produce a more informative error message if an attempt is made to modify the contents of a CTE from a referencing DML statement. No tests previously covered that possibility, so one is added. Kevin Grittner and Thomas Munro Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro with valuable comments and suggestions from many others
* Revert "Allow ON CONFLICT .. DO NOTHING on a partitioned table."Robert Haas2017-03-31
| | | | | | | | | | | | | | | | | | | This reverts commit 8355a011a0124bdf7ccbada206a967d427039553, which turns out to have been a misguided effort. We can't really support this in a partitioning hierarchy after all for exactly the reasons stated in the documentation removed by that commit. It's still possible to use ON CONFLICT .. DO NOTHING (or for that matter ON CONFLICT .. DO UPDATE) on individual partitions if desired, but but to allow this on a partitioned table implies that we have some way of evaluating uniqueness across the whole partitioning hierarchy, which is false. Shinoda Noriyoshi noticed that the old code was crashing (which we could fix, though not in a nice way) and Amit Langote realized that this was indicative of a fundamental problem with the commit being reverted here. Discussion: http://postgr.es/m/ff3dc21d-7204-c09c-50ac-cf11a8c45c81@lab.ntt.co.jp
* Cast result of copyObject() to correct typePeter Eisentraut2017-03-28
| | | | | | | | | | | | | | copyObject() is declared to return void *, which allows easily assigning the result independent of the input, but it loses all type checking. If the compiler supports typeof or something similar, cast the result to the input type. This creates a greater amount of type safety. In some cases, where the result is assigned to a generic type such as Node * or Expr *, new casts are now necessary, but in general casts are now unnecessary in the normal case and indicate that something unusual is happening. Reviewed-by: Mark Dilger <hornschnorter@gmail.com>
* Allow ON CONFLICT .. DO NOTHING on a partitioned table.Robert Haas2017-03-27
| | | | | | | | | | | ON CONFLICT .. DO UPDATE still doesn't work, for lack of a way of enforcing uniqueness across partitions, but we can still allow this case. Amit Langote, per discussion with Peter Geoghegan. Additional wordsmithing by me. Discussion: http://postgr.es/m/CAA-aLv7Z4uygtq-Q5CvDi9Y=VZxUyEnuWjL=EwCfOof=L04hgg@mail.gmail.com
* Support XMLTABLE query expressionAlvaro Herrera2017-03-08
| | | | | | | | | | | | | | | | | | | | | | | | | | | | XMLTABLE is defined by the SQL/XML standard as a feature that allows turning XML-formatted data into relational form, so that it can be used as a <table primary> in the FROM clause of a query. This new construct provides significant simplicity and performance benefit for XML data processing; what in a client-side custom implementation was reported to take 20 minutes can be executed in 400ms using XMLTABLE. (The same functionality was said to take 10 seconds using nested PostgreSQL XPath function calls, and 5 seconds using XMLReader under PL/Python). The implemented syntax deviates slightly from what the standard requires. First, the standard indicates that the PASSING clause is optional and that multiple XML input documents may be given to it; we make it mandatory and accept a single document only. Second, we don't currently support a default namespace to be specified. This implementation relies on a new executor node based on a hardcoded method table. (Because the grammar is fixed, there is no extensibility in the current approach; further constructs can be implemented on top of this such as JSON_TABLE, but they require changes to core code.) Author: Pavel Stehule, Álvaro Herrera Extensively reviewed by: Craig Ringer Discussion: https://postgr.es/m/CAFj8pRAgfzMD-LoSmnMGybD0WsEznLHWap8DO79+-GTRAPR4qA@mail.gmail.com
* Make more use of castNode()Peter Eisentraut2017-02-21
|
* Remove vestigial resolveUnknown arguments from transformSortClause etc.Tom Lane2017-01-25
| | | | | | | | | There's really no situation where we don't want these unknown-to-text conversions to happen. The alternative is failure anyway, and the one caller that was passing "false" did so only because it expected the case could not arise. Might as well simplify the code. Discussion: https://postgr.es/m/CAH2L28uwwbL9HUM-WR=hromW1Cvamkn7O-g8fPY2m=_7muJ0oA@mail.gmail.com
* Change unknown-type literals to type text in SELECT and RETURNING lists.Tom Lane2017-01-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously, we left such literals alone if the query or subquery had no properties forcing a type decision to be made (such as an ORDER BY or DISTINCT clause using that output column). This meant that "unknown" could be an exposed output column type, which has never been a great idea because it could result in strange failures later on. For example, an outer query that tried to do any operations on an unknown-type subquery output would generally fail with some weird error like "failed to find conversion function from unknown to text" or "could not determine which collation to use for string comparison". Also, if the case occurred in a CREATE VIEW's query then the view would have an unknown-type column, causing similar failures in queries trying to use the view. To fix, at the tail end of parse analysis of a query, forcibly convert any remaining "unknown" literals in its SELECT or RETURNING list to type text. However, provide a switch to suppress that, and use it in the cases of SELECT inside a set operation or INSERT command. In those cases we already had type resolution rules that make use of context information from outside the subquery proper, and we don't want to change that behavior. Also, change creation of an unknown-type column in a relation from a warning to a hard error. The error should be unreachable now in CREATE VIEW or CREATE MATVIEW, but it's still possible to explicitly say "unknown" in CREATE TABLE or CREATE (composite) TYPE. We want to forbid that because it's nothing but a foot-gun. This change creates a pg_upgrade failure case: a matview that contains an unknown-type column can't be pg_upgraded, because reparsing the matview's defining query will now decide that the column is of type text, which doesn't match the cstring-like storage that the old materialized column would actually have. Add a checking pass to detect that. While at it, we can detect tables or composite types that would fail, essentially for free. Those would fail safely anyway later on, but we might as well fail earlier. This patch is by me, but it owes something to previous investigations by Rahila Syed. Also thanks to Ashutosh Bapat and Michael Paquier for review. Discussion: https://postgr.es/m/CAH2L28uwwbL9HUM-WR=hromW1Cvamkn7O-g8fPY2m=_7muJ0oA@mail.gmail.com
* Fix check_srf_call_placement() to handle VALUES cases correctly.Tom Lane2017-01-16
| | | | | | | | | | | | | | | | | | | | | INSERT ... VALUES with a single VALUES row is implemented quite differently from the general VALUES case. A user-visible implication of that is that we accept SRFs in the single-row case, but not in the multi-row case. That's a historical artifact no doubt, but in view of the lack of field complaints, I'm not excited about fixing it right now. However, check_srf_call_placement() needs to know about this, first because it should throw an error in the unsupported case, and second because it should set p_hasTargetSRFs in the single-row case (because we treat that like a SELECT tlist). That's an oversight in commit a4c35ea1c. To fix, split EXPR_KIND_VALUES into two values. So far as I can see, this is the only place where we need to distinguish the two cases at present; but there might be more later. Patch by me, per report from Andres Freund. Discussion: https://postgr.es/m/20170116081548.zg63zltblwimpfgp@alap3.anarazel.de