aboutsummaryrefslogtreecommitdiff
path: root/src/backend/executor/nodeProjectSet.c
Commit message (Collapse)AuthorAge
* Update copyright for 2025Bruce Momjian2025-01-01
| | | | Backpatch-through: 13
* Remove unused #include's from backend .c filesPeter Eisentraut2024-03-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | | as determined by include-what-you-use (IWYU) While IWYU also suggests to *add* a bunch of #include's (which is its main purpose), this patch does not do that. In some cases, a more specific #include replaces another less specific one. Some manual adjustments of the automatic result: - IWYU currently doesn't know about includes that provide global variable declarations (like -Wmissing-variable-declarations), so those includes are being kept manually. - All includes for port(ability) headers are being kept for now, to play it safe. - No changes of catalog/pg_foo.h to catalog/pg_foo_d.h, to keep the patch from exploding in size. Note that this patch touches just *.c files, so nothing declared in header files changes in hidden ways. As a small example, in src/backend/access/transam/rmgr.c, some IWYU pragma annotations are added to handle a special case there. Discussion: https://www.postgresql.org/message-id/flat/af837490-6b2f-46df-ba05-37ea6a6653fc%40eisentraut.org
* Update copyright for 2024Bruce Momjian2024-01-03
| | | | | | | | Reported-by: Michael Paquier Discussion: https://postgr.es/m/ZZKTDPxBBMt3C0J9@paquier.xyz Backpatch-through: 12
* Fix intra-query memory leak when a SRF returns zero rows.Tom Lane2023-10-28
| | | | | | | | | | | | | | | | | | When looping around after finding that the set-returning function returned zero rows for the current input tuple, ExecProjectSet neglected to reset either of the two memory contexts it's responsible for cleaning out. Typically this wouldn't cause much problem, because once the SRF does return at least one row, the contexts would get reset on the next call. However, if the SRF returns no rows for many input tuples in succession, quite a lot of memory could be transiently consumed. To fix, make sure we reset both contexts while looping around. Per bug #18172 from Sergei Kornilov. Back-patch to all supported branches. Discussion: https://postgr.es/m/18172-9b8c5fc1d676ded3@postgresql.org
* Remove obsolete executor cleanup codeAmit Langote2023-09-28
| | | | | | | | | | | | | | | | | | | This commit removes unnecessary ExecExprFreeContext() calls in ExecEnd* routines because the actual cleanup is managed by FreeExecutorState(). With no callers remaining for ExecExprFreeContext(), this commit also removes the function. This commit also drops redundant ExecClearTuple() calls, because ExecResetTupleTable() in ExecEndPlan() already takes care of resetting and dropping all TupleTableSlots initialized with ExecInitScanTupleSlot() and ExecInitExtraTupleSlot(). After these modifications, the ExecEnd*() routines for ValuesScan, NamedTuplestoreScan, and WorkTableScan became redundant. So, this commit removes them. Reviewed-by: Robert Haas Discussion: https://postgr.es/m/CA+HiwqFGkMSge6TgC9KQzde0ohpAycLQuV7ooitEEpbKB0O_mg@mail.gmail.com
* Update copyright for 2023Bruce Momjian2023-01-02
| | | | Backpatch-through: 11
* Remove stray references to lefttree/righttree in the executor.Tom Lane2022-07-07
| | | | | | | | | | | | | The general convention in the executor is to refer to child plans and planstates via the outerPlan[State] and innerPlan[State] macros, but a few places didn't do it like that. For consistency and readability, convert all the stragglers to use the macros. (See also commit 40f42d2a3, which did some similar cleanup a few years ago, but missed these cases.) Richard Guo Discussion: https://postgr.es/m/CAMbWs4-vYhh1xsa_veah4PUed2Xq=Ed_YH3=Mqt5A3Y=EgfCEg@mail.gmail.com
* Update copyright for 2022Bruce Momjian2022-01-07
| | | | Backpatch-through: 10
* Update copyright for 2021Bruce Momjian2021-01-02
| | | | Backpatch-through: 9.5
* Run pgindent with new pg_bsd_indent version 2.1.1.Tom Lane2020-05-16
| | | | | | | | | | | Thomas Munro fixed a longstanding annoyance in pg_bsd_indent, that it would misformat lines containing IsA() macros on the assumption that the IsA() call should be treated like a cast. This improves some other cases involving field/variable names that match typedefs, too. The only places that get worse are a couple of uses of the OpenSSL macro STACK_OF(); we'll gladly take that trade-off. Discussion: https://postgr.es/m/20200114221814.GA19630@alvherre.pgsql
* Update copyrights for 2020Bruce Momjian2020-01-01
| | | | Backpatch-through: update all files in master, backpatch legal files through 9.4
* Fix inconsistencies in the codeMichael Paquier2019-07-08
| | | | | | | | | | | This addresses a couple of issues in the code: - Typos and inconsistencies in comments and function declarations. - Removal of unreferenced function declarations. - Removal of unnecessary compile flags. - A cleanup error in regressplans.sh. Author: Alexander Lakhin Discussion: https://postgr.es/m/0c991fdf-2670-1997-c027-772a420c4604@gmail.com
* Fix more typos and inconsistencies in the treeMichael Paquier2019-06-17
| | | | | Author: Alexander Lakhin Discussion: https://postgr.es/m/0a5419ea-1452-a4e6-72ff-545b1a5a8076@gmail.com
* Update copyright for 2019Bruce Momjian2019-01-02
| | | | Backpatch-through: certain files through 9.4
* Introduce notion of different types of slots (without implementing them).Andres Freund2018-11-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Upcoming work intends to allow pluggable ways to introduce new ways of storing table data. Accessing those table access methods from the executor requires TupleTableSlots to be carry tuples in the native format of such storage methods; otherwise there'll be a significant conversion overhead. Different access methods will require different data to store tuples efficiently (just like virtual, minimal, heap already require fields in TupleTableSlot). To allow that without requiring additional pointer indirections, we want to have different structs (embedding TupleTableSlot) for different types of slots. Thus different types of slots are needed, which requires adapting creators of slots. The slot that most efficiently can represent a type of tuple in an executor node will often depend on the type of slot a child node uses. Therefore we need to track the type of slot is returned by nodes, so parent slots can create slots based on that. Relatedly, JIT compilation of tuple deforming needs to know which type of slot a certain expression refers to, so it can create an appropriate deforming function for the type of tuple in the slot. But not all nodes will only return one type of slot, e.g. an append node will potentially return different types of slots for each of its subplans. Therefore add function that allows to query the type of a node's result slot, and whether it'll always be the same type (whether it's fixed). This can be queried using ExecGetResultSlotOps(). The scan, result, inner, outer type of slots are automatically inferred from ExecInitScanTupleSlot(), ExecInitResultSlot(), left/right subtrees respectively. If that's not correct for a node, that can be overwritten using new fields in PlanState. This commit does not introduce the actually abstracted implementation of different kind of TupleTableSlots, that will be left for a followup commit. The different types of slots introduced will, for now, still use the same backing implementation. While this already partially invalidates the big comment in tuptable.h, it seems to make more sense to update it later, when the different TupleTableSlot implementations actually exist. Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
* Don't require return slots for nodes without projection.Andres Freund2018-11-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In a lot of nodes the return slot is not required. That can either be because the node doesn't do any projection (say an Append node), or because the node does perform projections but the projection is optimized away because the projection would yield an identical row. Slots aren't that small, especially for wide rows, so it's worthwhile to avoid creating them. It's not possible to just skip creating the slot - it's currently used to determine the tuple descriptor returned by ExecGetResultType(). So separate the determination of the result type from the slot creation. The work previously done internally ExecInitResultTupleSlotTL() can now also be done separately with ExecInitResultTypeTL() and ExecInitResultSlot(). That way nodes that aren't guaranteed to need a result slot, can use ExecInitResultTypeTL() to determine the result type of the node, and ExecAssignScanProjectionInfo() (via ExecConditionalAssignProjectionInfo()) determines that a result slot is needed, it is created with ExecInitResultSlot(). Besides the advantage of avoiding to create slots that then are unused, this is necessary preparation for later patches around tuple table slot abstraction. In particular separating the return descriptor and slot is a prerequisite to allow JITing of tuple deforming with knowledge of the underlying tuple format, and to avoid unnecessarily creating JITed tuple deforming for virtual slots. This commit removes a redundant argument from ExecInitResultTupleSlotTL(). While this commit touches a lot of the relevant lines anyway, it'd normally still not worthwhile to cause breakage, except that aforementioned later commits will touch *all* ExecInitResultTupleSlotTL() callers anyway (but fits worse thematically). Author: Andres Freund Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
* Allow tupleslots to have a fixed tupledesc, use in executor nodes.Andres Freund2018-02-16
| | | | | | | | | | | | | | | | | | | | | The reason for doing so is that it will allow expression evaluation to optimize based on the underlying tupledesc. In particular it will allow to JIT tuple deforming together with the expression itself. For that expression initialization needs to be moved after the relevant slots are initialized - mostly unproblematic, except in the case of nodeWorktablescan.c. After doing so there's no need for ExecAssignResultType() and ExecAssignResultTypeFromTL() anymore, as all former callers have been converted to create a slot with a fixed descriptor. When creating a slot with a fixed descriptor, tts_values/isnull can be allocated together with the main slot, reducing allocation overhead and increasing cache density a bit. Author: Andres Freund Discussion: https://postgr.es/m/20171206093717.vqdxe5icqttpxs3p@alap3.anarazel.de
* Update copyright for 2018Bruce Momjian2018-01-02
| | | | Backpatch-through: certain files through 9.3
* Reduce memory usage of targetlist SRFs.Andres Freund2017-10-08
| | | | | | | | | | | | | | | | | | | | Previously nodeProjectSet only released memory once per input tuple, rather than once per returned tuple. If the computation of an individual returned tuple requires a lot of memory, that can lead to problems. Instead change things so that the expression context can be reset once per output tuple, which requires a new memory context to store SRF arguments in. This is a longstanding issue, but was hard to fix before 9.6, due to the way tSRFs where evaluated. But it's fairly easy to fix now. We could backpatch this into 10, but given there've been fewc omplaints that doesn't seem worth the risk so far. Reported-By: Lucas Fairchild Author: Andres Freund, per discussion with Tom Lane Discussion: https://postgr.es/m/4514.1507318623@sss.pgh.pa.us
* Fix intra-query memory leakage in nodeProjectSet.c.Tom Lane2017-10-06
| | | | | | | | | | | | Both ExecMakeFunctionResultSet() and evaluation of simple expressions need to be done in the per-tuple memory context, not per-query, else we leak data until end of query. This is a consideration that was missed while refactoring code in the ProjectSet patch (note that in pre-v10, ExecMakeFunctionResult is called in the per-tuple context). Per bug #14843 from Ben M. Diagnosed independently by Andres and myself. Discussion: https://postgr.es/m/20171005230321.28561.15927@wrigleys.postgresql.org
* Move ExecProcNode from dispatch to function pointer based model.Andres Freund2017-07-30
| | | | | | | | | | | | | | | | | | | | | | This allows us to add stack-depth checks the first time an executor node is called, and skip that overhead on following calls. Additionally it yields a nice speedup. While it'd probably have been a good idea to have that check all along, it has become more important after the new expression evaluation framework in b8d7f053c5c2bf2a7e - there's no stack depth check in common paths anymore now. We previously relied on ExecEvalExpr() being executed somewhere. We should move towards that model for further routines, but as this is required for v10, it seems better to only do the necessary (which already is quite large). Author: Andres Freund, Tom Lane Reported-By: Julien Rouhaud Discussion: https://postgr.es/m/22833.1490390175@sss.pgh.pa.us https://postgr.es/m/b0af9eaa-130c-60d0-9e4e-7a135b1e0c76@dalibo.com
* Move interrupt checking from ExecProcNode() to executor nodes.Andres Freund2017-07-30
| | | | | | | | | | | | | | | | | In a followup commit ExecProcNode(), and especially the large switch it contains, will largely be replaced by a function pointer directly to the correct node. The node functions will then get invoked by a thin inline function wrapper. To avoid having to include miscadmin.h in headers - CHECK_FOR_INTERRUPTS() - move the interrupt checks into the individual executor routines. While looking through all executor nodes, I noticed a number of arguably missing interrupt checks, add these too. Author: Andres Freund, Tom Lane Reviewed-By: Tom Lane Discussion: https://postgr.es/m/22833.1490390175@sss.pgh.pa.us
* Initial pgindent run with pg_bsd_indent version 2.0.Tom Lane2017-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The new indent version includes numerous fixes thanks to Piotr Stefaniak. The main changes visible in this commit are: * Nicer formatting of function-pointer declarations. * No longer unexpectedly removes spaces in expressions using casts, sizeof, or offsetof. * No longer wants to add a space in "struct structname *varname", as well as some similar cases for const- or volatile-qualified pointers. * Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely. * Fixes bug where comments following declarations were sometimes placed with no space separating them from the code. * Fixes some odd decisions for comments following case labels. * Fixes some cases where comments following code were indented to less than the expected column 33. On the less good side, it now tends to put more whitespace around typedef names that are not listed in typedefs.list. This might encourage us to put more effort into typedef name collection; it's not really a bug in indent itself. There are more changes coming after this round, having to do with comment indentation and alignment of lines appearing within parentheses. I wanted to limit the size of the diffs to something that could be reviewed without one's eyes completely glazing over, so it seemed better to split up the changes as much as practical. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
* Post-PG 10 beta1 pgindent runBruce Momjian2017-05-17
| | | | perltidy run not included.
* Faster expression evaluation and targetlist projection.Andres Freund2017-03-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
* Remove obsoleted code relating to targetlist SRF evaluation.Andres Freund2017-01-19
| | | | | | | | | | | | | Since 69f4b9c plain expression evaluation (and thus normal projection) can't return sets of tuples anymore. Thus remove code dealing with that possibility. This will require adjustments in external code using ExecEvalExpr()/ExecProject() - that should neither be hard nor very common. Author: Andres Freund and Tom Lane Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
* Move targetlist SRF handling from expression evaluation to new executor node.Andres Freund2017-01-18
Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT generate_series(1,5)) so far was done in the expression evaluation (i.e. ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code. This meant that most executor nodes performing projection, and most expression evaluation functions, had to deal with the possibility that an evaluated expression could return a set of return values. That's bad because it leads to repeated code in a lot of places. It also, and that's my (Andres's) motivation, made it a lot harder to implement a more efficient way of doing expression evaluation. To fix this, introduce a new executor node (ProjectSet) that can evaluate targetlists containing one or more SRFs. To avoid the complexity of the old way of handling nested expressions returning sets (e.g. having to pass up ExprDoneCond, and dealing with arguments to functions returning sets etc.), those SRFs can only be at the top level of the node's targetlist. The planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is only necessary in ProjectSet nodes and that SRFs are only present at the top level of the node's targetlist. If there are nested SRFs the planner creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get input from an underlying node. We also discussed and prototyped evaluating targetlist SRFs using ROWS FROM(), but that turned out to be more complicated than we'd hoped. While moving SRF evaluation to ProjectSet would allow to retain the old "least common multiple" behavior when multiple SRFs are present in one targetlist (i.e. continue returning rows until all SRFs are at the end of their input at the same time), we decided to instead only return rows till all SRFs are exhausted, returning NULL for already exhausted ones. We deemed the previous behavior to be too confusing, unexpected and actually not particularly useful. As a side effect, the previously prohibited case of multiple set returning arguments to a function, is now allowed. Not because it's particularly desirable, but because it ends up working and there seems to be no argument for adding code to prohibit it. Currently the behavior for COALESCE and CASE containing SRFs has changed, returning multiple rows from the expression, even when the SRF containing "arm" of the expression is not evaluated. That's because the SRFs are evaluated in a separate ProjectSet node. As that's quite confusing, we're likely to instead prohibit SRFs in those places. But that's still being discussed, and the code would reside in places not touched here, so that's a task for later. There's a lot of, now superfluous, code dealing with set return expressions around. But as the changes to get rid of those are verbose largely boring, it seems better for readability to keep the cleanup as a separate commit. Author: Tom Lane and Andres Freund Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de