aboutsummaryrefslogtreecommitdiff
path: root/src/backend/executor/execUtils.c
Commit message (Collapse)AuthorAge
* Remove unnecessary word in a commentAmit Langote2024-10-23
| | | | | | | | | Relations opened by the executor are only closed once in ExecCloseRangeTableRelations(), so the word "again" in the comment for ExecGetRangeTableRelation() is misleading and unnecessary. Discussion: https://postgr.es/m/CA+HiwqHnw-zR+u060i3jp4ky5UR0CjByRFQz50oZ05de7wUg=Q@mail.gmail.com Backpatch-through: 12
* Introduce two fields in EState to track parallel worker activityMichael Paquier2024-10-09
| | | | | | | | | | | | | | | These fields can be set by executor nodes to record how many parallel workers were planned to be launched and how many of them have been actually launched within the number initially planned. This data is able to give an approximation of the parallel worker draught a system is facing, making easier the tuning of related configuration parameters. These fields will be used by some follow-up patches to populate other parts of the system with their data. Author: Guillaume Lelarge, Benoit Lobréau Discussion: https://postgr.es/m/783bc7f7-659a-42fa-99dd-ee0565644e25@dalibo.com Discussion: https://postgr.es/m/CAECtzeWtTGOK0UgKXdDGpfTVSa5bd_VbUt6K6xn8P7X+_dZqKw@mail.gmail.com
* Remove unused #include's from backend .c filesPeter Eisentraut2024-03-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | | as determined by include-what-you-use (IWYU) While IWYU also suggests to *add* a bunch of #include's (which is its main purpose), this patch does not do that. In some cases, a more specific #include replaces another less specific one. Some manual adjustments of the automatic result: - IWYU currently doesn't know about includes that provide global variable declarations (like -Wmissing-variable-declarations), so those includes are being kept manually. - All includes for port(ability) headers are being kept for now, to play it safe. - No changes of catalog/pg_foo.h to catalog/pg_foo_d.h, to keep the patch from exploding in size. Note that this patch touches just *.c files, so nothing declared in header files changes in hidden ways. As a small example, in src/backend/access/transam/rmgr.c, some IWYU pragma annotations are added to handle a special case there. Discussion: https://www.postgresql.org/message-id/flat/af837490-6b2f-46df-ba05-37ea6a6653fc%40eisentraut.org
* Update copyright for 2024Bruce Momjian2024-01-03
| | | | | | | | Reported-by: Michael Paquier Discussion: https://postgr.es/m/ZZKTDPxBBMt3C0J9@paquier.xyz Backpatch-through: 12
* Remove obsolete executor cleanup codeAmit Langote2023-09-28
| | | | | | | | | | | | | | | | | | | This commit removes unnecessary ExecExprFreeContext() calls in ExecEnd* routines because the actual cleanup is managed by FreeExecutorState(). With no callers remaining for ExecExprFreeContext(), this commit also removes the function. This commit also drops redundant ExecClearTuple() calls, because ExecResetTupleTable() in ExecEndPlan() already takes care of resetting and dropping all TupleTableSlots initialized with ExecInitScanTupleSlot() and ExecInitExtraTupleSlot(). After these modifications, the ExecEnd*() routines for ValuesScan, NamedTuplestoreScan, and WorkTableScan became redundant. So, this commit removes them. Reviewed-by: Robert Haas Discussion: https://postgr.es/m/CA+HiwqFGkMSge6TgC9KQzde0ohpAycLQuV7ooitEEpbKB0O_mg@mail.gmail.com
* Pre-beta2 mechanical code beautification.Tom Lane2023-06-20
| | | | | | | | | Run pgindent and pgperltidy. It seems we're still some ways away from all committers doing this automatically. Now that we have a buildfarm animal that will whine about poorly-indented code, we'll try to keep the tree more tidy. Discussion: https://postgr.es/m/3156045.1687208823@sss.pgh.pa.us
* Use per-tuple context in ExecGetAllUpdatedColsTomas Vondra2023-06-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | Commit fc22b6623b (generated columns) replaced ExecGetUpdatedCols() with ExecGetAllUpdatedCols() in a couple places handling UPDATE (triggers and lock mode). However, ExecGetUpdatedCols() did exec_rt_fetch() while ExecGetAllUpdatedCols() also allocates memory through bms_union() without paying attention to the memory context and happened to use the long-lived ExecutorState, leaking the memory until the end of the query. The amount of leaked memory is proportional to the number of (updated) attributes, types of UPDATE triggers, and the number of processed rows (which for UPDATE ... FROM ... may be much higher than updated rows). Fixed by switching to the per-tuple context in GetAllUpdatedColumns(). This is fine for all in-core callers, but external callers may need to copy the result. But we're not aware of any such callers. Note the issue was introduced by fc22b6623b, but the macros were later renamed by f50e888990. Backpatch to 12, where the issue was introduced. Reported-by: Tomas Vondra Reviewed-by: Andres Freund, Tom Lane, Jakub Wartak Backpatch-through: 12 Discussion: https://postgr.es/m/222a3442-7f7d-246c-ed9b-a76209d19239@enterprisedb.com
* Revert "Move PartitionPruneInfo out of plan nodes into PlannedStmt"Alvaro Herrera2023-05-04
| | | | | | | | | | | | | This reverts commit ec386948948c and its fixup 589bb816499e. This change was intended to support query planning avoiding acquisition of locks on partitions that were going to be pruned; however, the overall project took a different direction at [1] and this bit is no longer needed. Put things back the way they were as agreed in [2], to avoid unnecessary complexity. Discussion: [1] https://postgr.es/m/4191508.1674157166@sss.pgh.pa.us Discussion: [2] https://postgr.es/m/20230502175409.kcoirxczpdha26wt@alvherre.pgsql
* Fix various typosDavid Rowley2023-04-18
| | | | | | | | | | | | This fixes many spelling mistakes in comments, but a few references to invalid parameter names, function names and option names too in comments and also some in string constants Also, fix an #undef that was undefining the incorrect definition Author: Alexander Lakhin Reviewed-by: Justin Pryzby Discussion: https://postgr.es/m/d5f68d19-c0fc-91a9-118d-7c6a5a3f5fad@gmail.com
* Fix row tracking in pg_stat_statements with extended query protocolMichael Paquier2023-04-06
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | pg_stat_statements relies on EState->es_processed to count the number of rows processed by ExecutorRun(). This proves to be a problem under the extended query protocol when the result of a query is fetched through more than one call of ExecutorRun(), as es_processed is reset each time ExecutorRun() is called. This causes pg_stat_statements to report the number of rows calculated in the last execute fetch, rather than the global sum of all the rows processed. As pquery.c tells, this is a problem when a portal does not use holdStore. For example, DMLs with RETURNING would report a correct tuple count as these do one execution cycle when the query is first executed to fill in the portal's store with one ExecutorRun(), feeding on the portal's store for each follow-up execute fetch depending on the fetch size requested by the client. The fix proposed for this issue is simple with the addition of an extra counter in EState that's preserved across multiple ExecutorRun() calls, incremented with the value calculated in es_processed. This approach is not back-patchable, unfortunately. Note that libpq does not currently give any way to control the fetch size when using the extended v3 protocol, meaning that in-core testing is not possible yet. This issue can be easily verified with the JDBC driver, though, with *autocommit disabled*. Hence, having in-core tests requires more features, left for future discussion: - At least two new libpq routines splitting PQsendQueryGuts(), one for the bind/describe and a second for a series of execute fetches with a custom fetch size, likely in a fashion similar to what JDBC does. - A psql meta-command for the execute phase. This part is not strictly mandatory, still it could be handy. Reported-by: Andrew Dunstan (original discovery by Simon Siggs) Author: Sami Imseih Reviewed-by: Tom Lane, Michael Paquier Discussion: https://postgr.es/m/EBE6C507-9EB6-4142-9E4D-38B1673363A7@amazon.com Discussion: https://postgr.es/m/c90890e7-9c89-c34f-d3c5-d5c763a34bd8@dunslane.net
* Fix some more cases of missed GENERATED-column updates.Tom Lane2023-03-06
| | | | | | | | | | | | | | | | | | | | | | | | | | | | If UPDATE is forced to retry after an EvalPlanQual check, it neglected to repeat GENERATED-column computations, even though those might well have changed since we're dealing with a different tuple than before. Fixing this is mostly a matter of looping back a bit further when we retry. In v15 and HEAD that's most easily done by altering the API of ExecUpdateAct so that it includes computing GENERATED expressions. Also, if an UPDATE in a partitioned table turns into a cross-partition INSERT operation, we failed to recompute GENERATED columns. That's a bug since 8bf6ec3ba allowed partitions to have different generation expressions; although it seems to have no ill effects before that. Fixing this is messier because we can now have situations where the same query needs both the UPDATE-aligned set of GENERATED columns and the INSERT-aligned set, and it's unclear which set will be generated first (else we could hack things by forcing the INSERT-aligned set to be generated, which is indeed how fe9e658f4 made it work for MERGE). The best fix seems to be to build and store separate sets of expressions for the INSERT and UPDATE cases. That would create ABI issues in the back branches, but so far it seems we can leave this alone in the back branches. Per bug #17823 from Hisahiro Kauchi. The first part of this affects all branches back to v12 where GENERATED columns were added. Discussion: https://postgr.es/m/17823-b64909cf7d63de84@postgresql.org
* Fill EState.es_rteperminfos more systematically.Tom Lane2023-03-06
| | | | | | | | | | | | | | | | | | While testing a fix for bug #17823, I discovered that EvalPlanQualStart failed to copy es_rteperminfos from the parent EState, resulting in failure if anything in EPQ execution wanted to consult that information. This led me to conclude that commit a61b1f748 had been too haphazard about where to fill es_rteperminfos, and that we need to be sure that that happens exactly where es_range_table gets filled. So I changed the signature of ExecInitRangeTable to help ensure that this new requirement doesn't get missed. (Indeed, pgoutput.c was also failing to fill it. Maybe we don't ever need it there, but I wouldn't bet on that.) No test case yet; one will arrive with the fix for #17823. But that needs to be back-patched, while this fix is HEAD-only. Discussion: https://postgr.es/m/17823-b64909cf7d63de84@postgresql.org
* Remove local optimizations of empty Bitmapsets into null pointers.Tom Lane2023-03-02
| | | | | | | | These are all dead code now that it's done centrally. Patch by me; thanks to Nathan Bossart and Richard Guo for review. Discussion: https://postgr.es/m/1159933.1677621588@sss.pgh.pa.us
* Make new GENERATED-expressions code more bulletproof.Tom Lane2023-01-15
| | | | | | | | | | | | | | | | | In commit 8bf6ec3ba I assumed that no code path could reach ExecGetExtraUpdatedCols without having gone through ExecInitStoredGenerated. That turns out not to be the case in logical replication: if there's an ON UPDATE trigger on the target table, trigger.c will call this code before anybody has set up its generated columns. Having seen that, I don't have a lot of faith in there not being other such paths. ExecGetExtraUpdatedCols can call ExecInitStoredGenerated for itself, as long as we are willing to assume that it is only called in CMD_UPDATE operations, which on the whole seems like a safer leap of faith. Per report from Vitaly Davydov. Discussion: https://postgr.es/m/d259d69652b8c2ff50e14cda3c236c7f@postgrespro.ru
* Fix calculation of which GENERATED columns need to be updated.Tom Lane2023-01-05
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We were identifying the updatable generated columns of inheritance children by transposing the calculation made for their parent. However, there's nothing that says a traditional-inheritance child can't have generated columns that aren't there in its parent, or that have different dependencies than are in the parent's expression. (At present it seems that we don't enforce that for partitioning either, which is likely wrong to some degree or other; but the case clearly needs to be handled with traditional inheritance.) Hence, drop the very-klugy-anyway "extraUpdatedCols" RTE field in favor of identifying which generated columns depend on updated columns during executor startup. In HEAD we can remove extraUpdatedCols altogether; in back branches, it's still there but always empty. Another difference between the HEAD and back-branch versions of this patch is that in HEAD we can add the new bitmap field to ResultRelInfo, but that would cause an ABI break in back branches. Like 4b3e37993, add a List field at the end of struct EState instead. Back-patch to v13. The bogus calculation is also being made in v12, but it doesn't have the same visible effect because we don't use it to decide which generated columns to recalculate; as a consequence of which the patch doesn't apply easily. I think that there might still be a demonstrable bug associated with trigger firing conditions, but that's such a weird corner-case usage that I'm content to leave it unfixed in v12. Amit Langote and Tom Lane Discussion: https://postgr.es/m/CA+HiwqFshLKNvQUd1DgwJ-7tsTp=dwv7KZqXC4j2wYBV1aCDUA@mail.gmail.com Discussion: https://postgr.es/m/2793383.1672944799@sss.pgh.pa.us
* Update copyright for 2023Bruce Momjian2023-01-02
| | | | Backpatch-through: 11
* Remove new structure member from ResultRelInfo.Etsuro Fujita2022-12-08
| | | | | | | | | | | | | | | In commit ffbb7e65a, I added a ModifyTableState member to ResultRelInfo to save the owning ModifyTableState for use by nodeModifyTable.c when performing batch inserts, but as pointed out by Tom Lane, that changed the array stride of es_result_relations, and that would break any previously-compiled extension code that accesses that array. Fix by removing that member from ResultRelInfo and instead adding a List member at the end of EState to save such ModifyTableStates. Per report from Tom Lane. Back-patch to v14, like the previous commit; I chose to apply the patch to HEAD as well, to make back-patching easy. Discussion: http://postgr.es/m/4065383.1669395453%40sss.pgh.pa.us
* Rework query relation permission checkingAlvaro Herrera2022-12-06
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, information about the permissions to be checked on relations mentioned in a query is stored in their range table entries. So the executor must scan the entire range table looking for relations that need to have permissions checked. This can make the permission checking part of the executor initialization needlessly expensive when many inheritance children are present in the range range. While the permissions need not be checked on the individual child relations, the executor still must visit every range table entry to filter them out. This commit moves the permission checking information out of the range table entries into a new plan node called RTEPermissionInfo. Every top-level (inheritance "root") RTE_RELATION entry in the range table gets one and a list of those is maintained alongside the range table. This new list is initialized by the parser when initializing the range table. The rewriter can add more entries to it as rules/views are expanded. Finally, the planner combines the lists of the individual subqueries into one flat list that is passed to the executor for checking. To make it quick to find the RTEPermissionInfo entry belonging to a given relation, RangeTblEntry gets a new Index field 'perminfoindex' that stores the corresponding RTEPermissionInfo's index in the query's list of the latter. ExecutorCheckPerms_hook has gained another List * argument; the signature is now: typedef bool (*ExecutorCheckPerms_hook_type) (List *rangeTable, List *rtePermInfos, bool ereport_on_violation); The first argument is no longer used by any in-core uses of the hook, but we leave it in place because there may be other implementations that do. Implementations should likely scan the rtePermInfos list to determine which operations to allow or deny. Author: Amit Langote <amitlangote09@gmail.com> Discussion: https://postgr.es/m/CA+HiwqGjJDmUhDSfv-U2qhKJjt9ST7Xh9JXC_irsAQ1TAUsJYg@mail.gmail.com
* Generalize ri_RootToPartitionMap to use for non-partition childrenAlvaro Herrera2022-12-02
| | | | | | | | | | | | | | | | | | | | | | | ri_RootToPartitionMap is currently only initialized for tuple routing target partitions, though a future commit will need the ability to use it even for the non-partition child tables, so make adjustments to the decouple it from the partitioning code. Also, make it lazily initialized via ExecGetRootToChildMap(), making that function its preferred access path. Existing third-party code accessing it directly should no longer do so; consequently, it's been renamed to ri_RootToChildMap, which also makes it consistent with ri_ChildToRootMap. ExecGetRootToChildMap() houses the logic of setting the map appropriately depending on whether a given child relation is partition or not. To support this, also add a separate entry point for TupleConversionMap creation that receives an AttrMap. No new code here, just split an existing function in two. Author: Amit Langote <amitlangote09@gmail.com> Discussion: https://postgr.es/m/CA+HiwqEYUhDXSK5BTvG_xk=eaAEJCD4GS3C6uH7ybBvv+Z_Tmg@mail.gmail.com
* Move PartitioPruneInfo out of plan nodes into PlannedStmtAlvaro Herrera2022-12-01
| | | | | | | | | | | | | | | | | | | | The planner will now add a given PartitioPruneInfo to PlannedStmt.partPruneInfos instead of directly to the Append/MergeAppend plan node. What gets set instead in the latter is an index field which points to the list element of PlannedStmt.partPruneInfos containing the PartitioPruneInfo belonging to the plan node. A later commit will make AcquireExecutorLocks() do the initial partition pruning to determine a minimal set of partitions to be locked when validating a plan tree and it will need to consult the PartitioPruneInfos referenced therein to do so. It would be better for the PartitioPruneInfos to be accessible directly than requiring a walk of the plan tree to find them, which is easier when it can be done by simply iterating over PlannedStmt.partPruneInfos. Author: Amit Langote <amitlangote09@gmail.com> Discussion: https://postgr.es/m/CA+HiwqFGkMSge6TgC9KQzde0ohpAycLQuV7ooitEEpbKB0O_mg@mail.gmail.com
* Fix handling of pending inserts in nodeModifyTable.c.Etsuro Fujita2022-11-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | Commit b663a4136, which allowed FDWs to INSERT rows in bulk, added to nodeModifyTable.c code to flush pending inserts to the foreign-table result relation(s) before completing processing of the ModifyTable node, but the code failed to take into account the case where the INSERT query has modifying CTEs, leading to incorrect results. Also, that commit failed to flush pending inserts before firing BEFORE ROW triggers so that rows are visible to such triggers. In that commit we scanned through EState's es_tuple_routing_result_relations or es_opened_result_relations list to find the foreign-table result relations to which pending inserts are flushed, but that would be inefficient in some cases. So to fix, 1) add a List member to EState to record the insert-pending result relations, and 2) modify nodeModifyTable.c so that it adds the foreign-table result relation to the list in ExecInsert() if appropriate, and flushes pending inserts properly using the list where needed. While here, fix a copy-and-pasteo in a comment in ExecBatchInsert(), which was added by that commit. Back-patch to v14 where that commit appeared. Discussion: https://postgr.es/m/CAPmGK16qutyCmyJJzgQOhfBq%3DNoGDqTB6O0QBZTihrbqre%2BoxA%40mail.gmail.com
* Update copyright for 2022Bruce Momjian2022-01-07
| | | | Backpatch-through: 10
* Remove arbitrary 64K-or-so limit on rangetable size.Tom Lane2021-09-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Up to now the size of a query's rangetable has been limited by the constants INNER_VAR et al, which mustn't be equal to any real rangetable index. 65000 doubtless seemed like enough for anybody, and it still is orders of magnitude larger than the number of joins we can realistically handle. However, we need a rangetable entry for each child partition that is (or might be) processed by a query. Queries with a few thousand partitions are getting more realistic, so that the day when that limit becomes a problem is in sight, even if it's not here yet. Hence, let's raise the limit. Rather than just increase the values of INNER_VAR et al, this patch adopts the approach of making them small negative values, so that rangetables could theoretically become as long as INT_MAX. The bulk of the patch is concerned with changing Var.varno and some related variables from "Index" (unsigned int) to plain "int". This is basically cosmetic, with little actual effect other than to help debuggers print their values nicely. As such, I've only bothered with changing places that could actually see INNER_VAR et al, which the parser and most of the planner don't. We do have to be careful in places that are performing less/greater comparisons on varnos, but there are very few such places, other than the IS_SPECIAL_VARNO macro itself. A notable side effect of this patch is that while it used to be possible to add INNER_VAR et al to a Bitmapset, that will now draw an error. I don't see any likelihood that it wouldn't be a bug to include these fake varnos in a bitmapset of real varnos, so I think this is all to the good. Although this touches outfuncs/readfuncs, I don't think a catversion bump is required, since stored rules would never contain Vars with these fake varnos. Andrey Lepikhov and Tom Lane, after a suggestion by Peter Eisentraut Discussion: https://postgr.es/m/43c7f2f5-1e27-27aa-8c65-c91859d15190@postgrespro.ru
* Postpone some stuff out of ExecInitModifyTable.Tom Lane2021-04-06
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Arrange to do some things on-demand, rather than immediately during executor startup, because there's a fair chance of never having to do them at all: * Don't open result relations' indexes until needed. * Don't initialize partition tuple routing, nor the child-to-root tuple conversion map, until needed. This wins in UPDATEs on partitioned tables when only some of the partitions will actually receive updates; with larger partition counts the savings is quite noticeable. Also, we can remove some sketchy heuristics in ExecInitModifyTable about whether to set up tuple routing. Also, remove execPartition.c's private hash table tracking which partitions were already opened by the ModifyTable node. Instead use the hash added to ModifyTable itself by commit 86dc90056. To allow lazy computation of the conversion maps, we now set ri_RootResultRelInfo in all child ResultRelInfos. We formerly set it only in some, not terribly well-defined, cases. This has user-visible side effects in that now more error messages refer to the root relation instead of some partition (and provide error data in the root's column order, too). It looks to me like this is a strict improvement in consistency, so I don't have a problem with the output changes visible in this commit. Extracted from a larger patch, which seemed to me to be too messy to push in one commit. Amit Langote, reviewed at different times by Heikki Linnakangas and myself Discussion: https://postgr.es/m/CA+HiwqG7ZruBmmih3wPsBZ4s0H2EhywrnXEduckY5Hr3fWzPWA@mail.gmail.com
* Make ExecGetInsertedCols() and friends more robust and improve comments.Heikki Linnakangas2021-02-15
| | | | | | | | | | | | | | | | | | If ExecGetInsertedCols(), ExecGetUpdatedCols() or ExecGetExtraUpdatedCols() were called with a ResultRelInfo that's not in the range table and isn't a partition routing target, the functions would dereference a NULL pointer, relinfo->ri_RootResultRelInfo. Such ResultRelInfos are created when firing RI triggers in tables that are not modified directly. None of the current callers of these functions pass such relations, so this isn't a live bug, but let's make them more robust. Also update comment in ResultRelInfo; after commit 6214e2b228, ri_RangeTableIndex is zero for ResultRelInfos created for partition tuple routing. Noted by Coverity. Backpatch down to v11, like commit 6214e2b228. Reviewed-by: Tom Lane, Amit Langote
* Fix permission checks on constraint violation errors on partitions.Heikki Linnakangas2021-02-08
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If a cross-partition UPDATE violates a constraint on the target partition, and the columns in the new partition are in different physical order than in the parent, the error message can reveal columns that the user does not have SELECT permission on. A similar bug was fixed earlier in commit 804b6b6db4. The cause of the bug is that the callers of the ExecBuildSlotValueDescription() function got confused when constructing the list of modified columns. If the tuple was routed from a parent, we converted the tuple to the parent's format, but the list of modified columns was grabbed directly from the child's RTE entry. ExecUpdateLockMode() had a similar issue. That lead to confusion on which columns are key columns, leading to wrong tuple lock being taken on tables referenced by foreign keys, when a row is updated with INSERT ON CONFLICT UPDATE. A new isolation test is added for that corner case. With this patch, the ri_RangeTableIndex field is no longer set for partitions that don't have an entry in the range table. Previously, it was set to the RTE entry of the parent relation, but that was confusing. NOTE: This modifies the ResultRelInfo struct, replacing the ri_PartitionRoot field with ri_RootResultRelInfo. That's a bit risky to backpatch, because it breaks any extensions accessing the field. The change that ri_RangeTableIndex is not set for partitions could potentially break extensions, too. The ResultRelInfos are visible to FDWs at least, and this patch required small changes to postgres_fdw. Nevertheless, this seem like the least bad option. I don't think these fields widely used in extensions; I don't think there are FDWs out there that uses the FDW "direct update" API, other than postgres_fdw. If there is, you will get a compilation error, so hopefully it is caught quickly. Backpatch to 11, where support for both cross-partition UPDATEs, and unique indexes on partitioned tables, were added. Reviewed-by: Amit Langote Security: CVE-2021-3393
* Update copyright for 2021Bruce Momjian2021-01-02
| | | | Backpatch-through: 9.5
* Remove es_result_relation_info from EState.Heikki Linnakangas2020-10-14
| | | | | | | | | | | | | | Maintaining 'es_result_relation_info' correctly at all times has become cumbersome, especially with partitioning where each partition gets its own result relation info. Having to set and reset it across arbitrary operations has caused bugs in the past. This changes all the places that used 'es_result_relation_info', to receive the currently active ResultRelInfo via function parameters instead. Author: Amit Langote Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
* Create ResultRelInfos later in InitPlan, index them by RT index.Heikki Linnakangas2020-10-13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Instead of allocating all the ResultRelInfos upfront in one big array, allocate them in ExecInitModifyTable(). es_result_relations is now an array of ResultRelInfo pointers, rather than an array of structs, and it is indexed by the RT index. This simplifies things: we get rid of the separate concept of a "result rel index", and don't need to set it in setrefs.c anymore. This also allows follow-up optimizations (not included in this commit yet) to skip initializing ResultRelInfos for target relations that were not needed at runtime, and removal of the es_result_relation_info pointer. The EState arrays of regular result rels and root result rels are merged into one array. Similarly, the resultRelations and rootResultRelations lists in PlannedStmt are merged into one. It's not actually clear to me why they were kept separate in the first place, but now that the es_result_relations array is indexed by RT index, it certainly seems pointless. The PlannedStmt->resultRelations list is now only needed for ExecRelationIsTargetRelation(). One visible effect of this change is that ExecRelationIsTargetRelation() will now return 'true' also for the partition root, if a partitioned table is updated. That seems like a good thing, although the function isn't used in core code, and I don't see any reason for an FDW to call it on a partition root. Author: Amit Langote Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
* Initial pgindent and pgperltidy run for v13.Tom Lane2020-05-14
| | | | | | | | | | | Includes some manual cleanup of places that pgindent messed up, most of which weren't per project style anyway. Notably, it seems some people didn't absorb the style rules of commit c9d297751, because there were a bunch of new occurrences of function calls with a newline just after the left paren, all with faulty expectations about how the rest of the call would get indented.
* Create memory context for HashAgg with a reasonable maxBlockSize.Jeff Davis2020-04-07
| | | | | | | | | | | | | | | | If the memory context's maxBlockSize is too big, a single block allocation can suddenly exceed work_mem. For Hash Aggregation, this can mean spilling to disk too early or reporting a confusing memory usage number for EXPLAN ANALYZE. Introduce CreateWorkExprContext(), which is like CreateExprContext(), except that it creates the AllocSet with a maxBlockSize that is reasonable in proportion to work_mem. Right now, CreateWorkExprContext() is only used by Hash Aggregation, but it may be generally useful in the future. Discussion: https://postgr.es/m/412a3fbf306f84d8d78c4009e11791867e62b87c.camel@j-davis.com
* Go back to returning int from ereport auxiliary functions.Tom Lane2020-03-25
| | | | | | | | | | | | | | | | | | | This reverts the parts of commit 17a28b03645e27d73bf69a95d7569b61e58f06eb that changed ereport's auxiliary functions from returning dummy integer values to returning void. It turns out that a minority of compilers complain (not entirely unreasonably) about constructs such as (condition) ? errdetail(...) : 0 if errdetail() returns void rather than int. We could update those call sites to say "(void) 0" perhaps, but the expectation for this patch set was that ereport callers would not have to change anything. And this aspect of the patch set was already the most invasive and least compelling part of it, so let's just drop it. Per buildfarm. Discussion: https://postgr.es/m/CA+fd4k6N8EjNvZpM8nme+y+05mz-SM8Z_BgkixzkA34R+ej0Kw@mail.gmail.com
* Improve the internal implementation of ereport().Tom Lane2020-03-24
| | | | | | | | | | | | | | | | | | | | | | Change all the auxiliary error-reporting routines to return void, now that we no longer need to pretend they are passing something useful to errfinish(). While this probably doesn't save anything significant at the machine-code level, it allows detection of some additional types of mistakes. Pass the error location details (__FILE__, __LINE__, PG_FUNCNAME_MACRO) to errfinish not errstart. This shaves a few cycles off the case where errstart decides we're not going to emit anything. Re-implement elog() as a trivial wrapper around ereport(), removing the separate support infrastructure it used to have. Aside from getting rid of some now-surplus code, this means that elog() now really does have exactly the same semantics as ereport(), in particular that it can skip evaluation work if the message is not to be emitted. Andres Freund and Tom Lane Discussion: https://postgr.es/m/CA+fd4k6N8EjNvZpM8nme+y+05mz-SM8Z_BgkixzkA34R+ej0Kw@mail.gmail.com
* Update copyrights for 2020Bruce Momjian2020-01-01
| | | | Backpatch-through: update all files in master, backpatch legal files through 9.4
* Reorder EPQ work, to fix rowmark related bugs and improve efficiency.Andres Freund2019-09-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In ad0bda5d24ea I changed the EvalPlanQual machinery to store substitution tuples in slot, instead of using plain HeapTuples. The main motivation for that was that using HeapTuples will be inefficient for future tableams. But it turns out that that conversion was buggy for non-locking rowmarks - the wrong tuple descriptor was used to create the slot. As a secondary issue 5db6df0c0 changed ExecLockRows() to begin EPQ earlier, to allow to fetch the locked rows directly into the EPQ slots, instead of having to copy tuples around. Unfortunately, as Tom complained, that forces some expensive initialization to happen earlier. As a third issue, the test coverage for EPQ was clearly insufficient. Fixing the first issue is unfortunately not trivial: Non-locked row marks were fetched at the start of EPQ, and we don't have the type information for the rowmarks available at that point. While we could change that, it's not easy. It might be worthwhile to change that at some point, but to fix this bug, it seems better to delay fetching non-locking rowmarks when they're actually needed, rather than eagerly. They're referenced at most once, and in cases where EPQ fails, might never be referenced. Fetching them when needed also increases locality a bit. To be able to fetch rowmarks during execution, rather than initialization, we need to be able to access the active EPQState, as that contains necessary data. To do so move EPQ related data from EState to EPQState, and, only for EStates creates as part of EPQ, reference the associated EPQState from EState. To fix the second issue, change EPQ initialization to allow use of EvalPlanQualSlot() to be used before EvalPlanQualBegin() (but obviously still requiring EvalPlanQualInit() to have been done). As these changes made struct EState harder to understand, e.g. by adding multiple EStates, significantly reorder the members, and add a lot more comments. Also add a few more EPQ tests, including one that fails for the first issue above. More is needed. Reported-By: yi huang Author: Andres Freund Reviewed-By: Tom Lane Discussion: https://postgr.es/m/CAHU7rYZo_C4ULsAx_LAj8az9zqgrD8WDd4hTegDTMM1LMqrBsg@mail.gmail.com https://postgr.es/m/24530.1562686693@sss.pgh.pa.us Backpatch: 12-, where the EPQ changes were introduced
* Remove EState.es_range_table_array.Tom Lane2019-08-12
| | | | | | | | | | Now that list_nth is O(1), there's no good reason to maintain a separate array of RTE pointers rather than indexing into estate->es_range_table. Deleting the array doesn't save all that much either; but just on cleanliness grounds, it's better not to have duplicate representations of the identical information. Discussion: https://postgr.es/m/14960.1565384592@sss.pgh.pa.us
* Represent Lists as expansible arrays, not chains of cons-cells.Tom Lane2019-07-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Originally, Postgres Lists were a more or less exact reimplementation of Lisp lists, which consist of chains of separately-allocated cons cells, each having a value and a next-cell link. We'd hacked that once before (commit d0b4399d8) to add a separate List header, but the data was still in cons cells. That makes some operations -- notably list_nth() -- O(N), and it's bulky because of the next-cell pointers and per-cell palloc overhead, and it's very cache-unfriendly if the cons cells end up scattered around rather than being adjacent. In this rewrite, we still have List headers, but the data is in a resizable array of values, with no next-cell links. Now we need at most two palloc's per List, and often only one, since we can allocate some values in the same palloc call as the List header. (Of course, extending an existing List may require repalloc's to enlarge the array. But this involves just O(log N) allocations not O(N).) Of course this is not without downsides. The key difficulty is that addition or deletion of a list entry may now cause other entries to move, which it did not before. For example, that breaks foreach() and sister macros, which historically used a pointer to the current cons-cell as loop state. We can repair those macros transparently by making their actual loop state be an integer list index; the exposed "ListCell *" pointer is no longer state carried across loop iterations, but is just a derived value. (In practice, modern compilers can optimize things back to having just one loop state value, at least for simple cases with inline loop bodies.) In principle, this is a semantics change for cases where the loop body inserts or deletes list entries ahead of the current loop index; but I found no such cases in the Postgres code. The change is not at all transparent for code that doesn't use foreach() but chases lists "by hand" using lnext(). The largest share of such code in the backend is in loops that were maintaining "prev" and "next" variables in addition to the current-cell pointer, in order to delete list cells efficiently using list_delete_cell(). However, we no longer need a previous-cell pointer to delete a list cell efficiently. Keeping a next-cell pointer doesn't work, as explained above, but we can improve matters by changing such code to use a regular foreach() loop and then using the new macro foreach_delete_current() to delete the current cell. (This macro knows how to update the associated foreach loop's state so that no cells will be missed in the traversal.) There remains a nontrivial risk of code assuming that a ListCell * pointer will remain good over an operation that could now move the list contents. To help catch such errors, list.c can be compiled with a new define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents whenever that could possibly happen. This makes list operations significantly more expensive so it's not normally turned on (though it is on by default if USE_VALGRIND is on). There are two notable API differences from the previous code: * lnext() now requires the List's header pointer in addition to the current cell's address. * list_delete_cell() no longer requires a previous-cell argument. These changes are somewhat unfortunate, but on the other hand code using either function needs inspection to see if it is assuming anything it shouldn't, so it's not all bad. Programmers should be aware of these significant performance changes: * list_nth() and related functions are now O(1); so there's no major access-speed difference between a list and an array. * Inserting or deleting a list element now takes time proportional to the distance to the end of the list, due to moving the array elements. (However, it typically *doesn't* require palloc or pfree, so except in long lists it's probably still faster than before.) Notably, lcons() used to be about the same cost as lappend(), but that's no longer true if the list is long. Code that uses lcons() and list_delete_first() to maintain a stack might usefully be rewritten to push and pop at the end of the list rather than the beginning. * There are now list_insert_nth...() and list_delete_nth...() functions that add or remove a list cell identified by index. These have the data-movement penalty explained above, but there's no search penalty. * list_concat() and variants now copy the second list's data into storage belonging to the first list, so there is no longer any sharing of cells between the input lists. The second argument is now declared "const List *" to reflect that it isn't changed. This patch just does the minimum needed to get the new implementation in place and fix bugs exposed by the regression tests. As suggested by the foregoing, there's a fair amount of followup work remaining to do. Also, the ENABLE_LIST_COMPAT macros are finally removed in this commit. Code using those should have been gone a dozen years ago. Patch by me; thanks to David Rowley, Jesper Pedersen, and others for review. Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
* Fix more typos and inconsistencies in the treeMichael Paquier2019-06-17
| | | | | Author: Alexander Lakhin Discussion: https://postgr.es/m/0a5419ea-1452-a4e6-72ff-545b1a5a8076@gmail.com
* Make queries' locking of indexes more consistent.Tom Lane2019-04-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The assertions added by commit b04aeb0a0 exposed that there are some code paths wherein the executor will try to open an index without holding any lock on it. We do have some lock on the index's table, so it seems likely that there's no fatal problem with this (for instance, the index couldn't get dropped from under us). Still, it's bad practice and we should fix it. To do so, remove the optimizations in ExecInitIndexScan and friends that tried to avoid taking a lock on an index belonging to a target relation, and just take the lock always. In non-bug cases, this will result in no additional shared-memory access, since we'll find in the local lock table that we already have a lock of the desired type; hence, no significant performance degradation should occur. Also, adjust the planner and executor so that the type of lock taken on an index is always identical to the type of lock taken for its table, by relying on the recently added RangeTblEntry.rellockmode field. This avoids some corner cases where that might not have been true before (possibly resulting in extra locking overhead), and prevents future maintenance issues from having multiple bits of logic that all needed to be in sync. In addition, this change removes all core calls to ExecRelationIsTargetRelation, which avoids a possible O(N^2) startup penalty for queries with large numbers of target relations. (We'd probably remove that function altogether, were it not that we advertise it as something that FDWs might want to use.) Also adjust some places in selfuncs.c to not take any lock on indexes they are transiently opening, since we can assume that plancat.c did that already. In passing, change gin_clean_pending_list() to take RowExclusiveLock not AccessShareLock on its target index. Although it's not clear that that's actually a bug, it seemed very strange for a function that's explicitly going to modify the index to use only AccessShareLock. David Rowley, reviewed by Julien Rouhaud and Amit Langote, a bit of further tweaking by me Discussion: https://postgr.es/m/19465.1541636036@sss.pgh.pa.us
* tableam: Add and use scan APIs.Andres Freund2019-03-11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Too allow table accesses to be not directly dependent on heap, several new abstractions are needed. Specifically: 1) Heap scans need to be generalized into table scans. Do this by introducing TableScanDesc, which will be the "base class" for individual AMs. This contains the AM independent fields from HeapScanDesc. The previous heap_{beginscan,rescan,endscan} et al. have been replaced with a table_ version. There's no direct replacement for heap_getnext(), as that returned a HeapTuple, which is undesirable for a other AMs. Instead there's table_scan_getnextslot(). But note that heap_getnext() lives on, it's still used widely to access catalog tables. This is achieved by new scan_begin, scan_end, scan_rescan, scan_getnextslot callbacks. 2) The portion of parallel scans that's shared between backends need to be able to do so without the user doing per-AM work. To achieve that new parallelscan_{estimate, initialize, reinitialize} callbacks are introduced, which operate on a new ParallelTableScanDesc, which again can be subclassed by AMs. As it is likely that several AMs are going to be block oriented, block oriented callbacks that can be shared between such AMs are provided and used by heap. table_block_parallelscan_{estimate, intiialize, reinitialize} as callbacks, and table_block_parallelscan_{nextpage, init} for use in AMs. These operate on a ParallelBlockTableScanDesc. 3) Index scans need to be able to access tables to return a tuple, and there needs to be state across individual accesses to the heap to store state like buffers. That's now handled by introducing a sort-of-scan IndexFetchTable, which again is intended to be subclassed by individual AMs (for heap IndexFetchHeap). The relevant callbacks for an AM are index_fetch_{end, begin, reset} to create the necessary state, and index_fetch_tuple to retrieve an indexed tuple. Note that index_fetch_tuple implementations need to be smarter than just blindly fetching the tuples for AMs that have optimizations similar to heap's HOT - the currently alive tuple in the update chain needs to be fetched if appropriate. Similar to table_scan_getnextslot(), it's undesirable to continue to return HeapTuples. Thus index_fetch_heap (might want to rename that later) now accepts a slot as an argument. Core code doesn't have a lot of call sites performing index scans without going through the systable_* API (in contrast to loads of heap_getnext calls and working directly with HeapTuples). Index scans now store the result of a search in IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the target is not generally a HeapTuple anymore that seems cleaner. To be able to sensible adapt code to use the above, two further callbacks have been introduced: a) slot_callbacks returns a TupleTableSlotOps* suitable for creating slots capable of holding a tuple of the AMs type. table_slot_callbacks() and table_slot_create() are based upon that, but have additional logic to deal with views, foreign tables, etc. While this change could have been done separately, nearly all the call sites that needed to be adapted for the rest of this commit also would have been needed to be adapted for table_slot_callbacks(), making separation not worthwhile. b) tuple_satisfies_snapshot checks whether the tuple in a slot is currently visible according to a snapshot. That's required as a few places now don't have a buffer + HeapTuple around, but a slot (which in heap's case internally has that information). Additionally a few infrastructure changes were needed: I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now internally uses a slot to keep track of tuples. While systable_getnext() still returns HeapTuples, and will so for the foreseeable future, the index API (see 1) above) now only deals with slots. The remainder, and largest part, of this commit is then adjusting all scans in postgres to use the new APIs. Author: Andres Freund, Haribabu Kommi, Alvaro Herrera Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
* Allow ATTACH PARTITION with only ShareUpdateExclusiveLock.Robert Haas2019-03-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We still require AccessExclusiveLock on the partition itself, because otherwise an insert that violates the newly-imposed partition constraint could be in progress at the same time that we're changing that constraint; only the lock level on the parent relation is weakened. To make this safe, we have to cope with (at least) three separate problems. First, relevant DDL might commit while we're in the process of building a PartitionDesc. If so, find_inheritance_children() might see a new partition while the RELOID system cache still has the old partition bound cached, and even before invalidation messages have been queued. To fix that, if we see that the pg_class tuple seems to be missing or to have a null relpartbound, refetch the value directly from the table. We can't get the wrong value, because DETACH PARTITION still requires AccessExclusiveLock throughout; if we ever want to change that, this will need more thought. In testing, I found it quite difficult to hit even the null-relpartbound case; the race condition is extremely tight, but the theoretical risk is there. Second, successive calls to RelationGetPartitionDesc might not return the same answer. The query planner will get confused if lookup up the PartitionDesc for a particular relation does not return a consistent answer for the entire duration of query planning. Likewise, query execution will get confused if the same relation seems to have a different PartitionDesc at different times. Invent a new PartitionDirectory concept and use it to ensure consistency. This ensures that a single invocation of either the planner or the executor sees the same view of the PartitionDesc from beginning to end, but it does not guarantee that the planner and the executor see the same view. Since this allows pointers to old PartitionDesc entries to survive even after a relcache rebuild, also postpone removing the old PartitionDesc entry until we're certain no one is using it. For the most part, it seems to be OK for the planner and executor to have different views of the PartitionDesc, because the executor will just ignore any concurrently added partitions which were unknown at plan time; those partitions won't be part of the inheritance expansion, but invalidation messages will trigger replanning at some point. Normally, this happens by the time the very next command is executed, but if the next command acquires no locks and executes a prepared query, it can manage not to notice until a new transaction is started. We might want to tighten that up, but it's material for a separate patch. There would still be a small window where a query that started just after an ATTACH PARTITION command committed might fail to notice its results -- but only if the command starts before the commit has been acknowledged to the user. All in all, the warts here around serializability seem small enough to be worth accepting for the considerable advantage of being able to add partitions without a full table lock. Although in general the consequences of new partitions showing up between planning and execution are limited to the query not noticing the new partitions, run-time partition pruning will get confused in that case, so that's the third problem that this patch fixes. Run-time partition pruning assumes that indexes into the PartitionDesc are stable between planning and execution. So, add code so that if new partitions are added between plan time and execution time, the indexes stored in the subplan_map[] and subpart_map[] arrays within the plan's PartitionedRelPruneInfo get adjusted accordingly. There does not seem to be a simple way to generalize this scheme to cope with partitions that are removed, mostly because they could then get added back again with different bounds, but it works OK for added partitions. This code does not try to ensure that every backend participating in a parallel query sees the same view of the PartitionDesc. That currently doesn't matter, because we never pass PartitionDesc indexes between backends. Each backend will ignore the concurrently added partitions which it notices, and it doesn't matter if different backends are ignoring different sets of concurrently added partitions. If in the future that matters, for example because we allow writes in parallel query and want all participants to do tuple routing to the same set of partitions, the PartitionDirectory concept could be improved to share PartitionDescs across backends. There is a draft patch to serialize and restore PartitionDescs on the thread where this patch was discussed, which may be a useful place to start. Patch by me. Thanks to Alvaro Herrera, David Rowley, Simon Riggs, Amit Langote, and Michael Paquier for discussion, and to Alvaro Herrera for some review. Discussion: http://postgr.es/m/CA+Tgmobt2upbSocvvDej3yzokd7AkiT+PvgFH+a9-5VV1oJNSQ@mail.gmail.com Discussion: http://postgr.es/m/CA+TgmoZE0r9-cyA-aY6f8WFEROaDLLL7Vf81kZ8MtFCkxpeQSw@mail.gmail.com Discussion: http://postgr.es/m/CA+TgmoY13KQZF-=HNTrt9UYWYx3_oYOQpu9ioNT49jGgiDpUEA@mail.gmail.com
* Store tuples for EvalPlanQual in slots, rather than as HeapTuples.Andres Freund2019-03-01
| | | | | | | | | | | | | | | | | | | | | | | | | | For the upcoming pluggable table access methods it's quite inconvenient to store tuples as HeapTuples, as that'd require converting tuples from a their native format into HeapTuples. Instead use slots to manage epq tuples. To fit into that scheme, change the foreign data wrapper callback RefetchForeignRow, to store the tuple in a slot. Insist on using the caller provided slot, so it conveniently can be stored in the corresponding EPQ slot. As there is no in core user of RefetchForeignRow, that change was done blindly, but we plan to test that soon. To avoid duplicating that work for row locks, move row locks to just directly use the EPQ slots - it previously temporarily stored tuples in LockRowsState.lr_curtuples, but that doesn't seem beneficial, given we'd possibly end up with a significant number of additional slots. The behaviour of es_epqTupleSet[rti -1] is now checked by es_epqTupleSlot[rti -1] != NULL, as that is distinguishable from a slot containing an empty tuple. Author: Andres Freund, Haribabu Kommi, Ashutosh Bapat Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
* Use slots in trigger infrastructure, except for the actual invocation.Andres Freund2019-02-26
| | | | | | | | | | | | | | | | | | | | | In preparation for abstracting table storage, convert trigger.c to track tuples in slots. Which also happens to make code calling triggers simpler. As the calling interface for triggers themselves is not changed in this patch, HeapTuples still are extracted from the slot at that time. But that's handled solely inside trigger.c, not visible to callers. It's quite likely that we'll want to revise the external trigger interface, but that's a separate large project. As part of this work the slots used for old/new/return tuples are moved from EState into ResultRelInfo, as different updated tables might need different slots. The slots are now also now created on-demand, which is good both from an efficiency POV, but also makes the modifying code simpler. Author: Andres Freund, Amit Khandekar and Ashutosh Bapat Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
* Replace uses of heap_open et al with the corresponding table_* function.Andres Freund2019-01-21
| | | | | Author: Andres Freund Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
* Replace heapam.h includes with {table, relation}.h where applicable.Andres Freund2019-01-21
| | | | | | | | | A lot of files only included heapam.h for relation_open, heap_open etc - replace the heapam.h include in those files with the narrower header. Author: Andres Freund Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
* Don't include heapam.h from others headers.Andres Freund2019-01-14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | heapam.h previously was included in a number of widely used headers (e.g. execnodes.h, indirectly in executor.h, ...). That's problematic on its own, as heapam.h contains a lot of low-level details that don't need to be exposed that widely, but becomes more problematic with the upcoming introduction of pluggable table storage - it seems inappropriate for heapam.h to be included that widely afterwards. heapam.h was largely only included in other headers to get the HeapScanDesc typedef (which was defined in heapam.h, even though HeapScanDescData is defined in relscan.h). The better solution here seems to be to just use the underlying struct (forward declared where necessary). Similar for BulkInsertState. Another problem was that LockTupleMode was used in executor.h - parts of the file tried to cope without heapam.h, but due to the fact that it indirectly included it, several subsequent violations of that goal were not not noticed. We could just reuse the approach of declaring parameters as int, but it seems nicer to move LockTupleMode to lockoptions.h - that's not a perfect location, but also doesn't seem bad. As a number of files relied on implicitly included heapam.h, a significant number of files grew an explicit include. It's quite probably that a few external projects will need to do the same. Author: Andres Freund Reviewed-By: Alvaro Herrera Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
* Update copyright for 2019Bruce Momjian2019-01-02
| | | | Backpatch-through: certain files through 9.4
* Remove WITH OIDS support, change oid catalog column visibility.Andres Freund2018-11-20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
* Introduce notion of different types of slots (without implementing them).Andres Freund2018-11-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Upcoming work intends to allow pluggable ways to introduce new ways of storing table data. Accessing those table access methods from the executor requires TupleTableSlots to be carry tuples in the native format of such storage methods; otherwise there'll be a significant conversion overhead. Different access methods will require different data to store tuples efficiently (just like virtual, minimal, heap already require fields in TupleTableSlot). To allow that without requiring additional pointer indirections, we want to have different structs (embedding TupleTableSlot) for different types of slots. Thus different types of slots are needed, which requires adapting creators of slots. The slot that most efficiently can represent a type of tuple in an executor node will often depend on the type of slot a child node uses. Therefore we need to track the type of slot is returned by nodes, so parent slots can create slots based on that. Relatedly, JIT compilation of tuple deforming needs to know which type of slot a certain expression refers to, so it can create an appropriate deforming function for the type of tuple in the slot. But not all nodes will only return one type of slot, e.g. an append node will potentially return different types of slots for each of its subplans. Therefore add function that allows to query the type of a node's result slot, and whether it'll always be the same type (whether it's fixed). This can be queried using ExecGetResultSlotOps(). The scan, result, inner, outer type of slots are automatically inferred from ExecInitScanTupleSlot(), ExecInitResultSlot(), left/right subtrees respectively. If that's not correct for a node, that can be overwritten using new fields in PlanState. This commit does not introduce the actually abstracted implementation of different kind of TupleTableSlots, that will be left for a followup commit. The different types of slots introduced will, for now, still use the same backing implementation. While this already partially invalidates the big comment in tuptable.h, it seems to make more sense to update it later, when the different TupleTableSlot implementations actually exist. Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
* Don't require return slots for nodes without projection.Andres Freund2018-11-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In a lot of nodes the return slot is not required. That can either be because the node doesn't do any projection (say an Append node), or because the node does perform projections but the projection is optimized away because the projection would yield an identical row. Slots aren't that small, especially for wide rows, so it's worthwhile to avoid creating them. It's not possible to just skip creating the slot - it's currently used to determine the tuple descriptor returned by ExecGetResultType(). So separate the determination of the result type from the slot creation. The work previously done internally ExecInitResultTupleSlotTL() can now also be done separately with ExecInitResultTypeTL() and ExecInitResultSlot(). That way nodes that aren't guaranteed to need a result slot, can use ExecInitResultTypeTL() to determine the result type of the node, and ExecAssignScanProjectionInfo() (via ExecConditionalAssignProjectionInfo()) determines that a result slot is needed, it is created with ExecInitResultSlot(). Besides the advantage of avoiding to create slots that then are unused, this is necessary preparation for later patches around tuple table slot abstraction. In particular separating the return descriptor and slot is a prerequisite to allow JITing of tuple deforming with knowledge of the underlying tuple format, and to avoid unnecessarily creating JITed tuple deforming for virtual slots. This commit removes a redundant argument from ExecInitResultTupleSlotTL(). While this commit touches a lot of the relevant lines anyway, it'd normally still not worthwhile to cause breakage, except that aforementioned later commits will touch *all* ExecInitResultTupleSlotTL() callers anyway (but fits worse thematically). Author: Andres Freund Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de