aboutsummaryrefslogtreecommitdiff
path: root/src/backend/executor/execUtils.c
Commit message (Collapse)AuthorAge
...
* Avoid O(N^2) cost in ExecFindRowMark().Tom Lane2018-10-08
| | | | | | | | | | | | | | | | | | | | If there are many ExecRowMark structs, we spent O(N^2) time in ExecFindRowMark during executor startup. Once upon a time this was not of great concern, but the addition of native partitioning has squeezed out enough other costs that this can become the dominant overhead in some use-cases for tables with many partitions. To fix, simply replace that List data structure with an array. This adds a little bit of cost to execCurrentOf(), but not much, and anyway that code path is neither of large importance nor very efficient now. If we ever decide it is a bottleneck, constructing a hash table for lookup-by-tableoid would likely be the thing to do. Per complaint from Amit Langote, though this is different from his fix proposal. Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
* Restore sane locking behavior during parallel query.Tom Lane2018-10-06
| | | | | | | | | | | | | | Commit 9a3cebeaa changed things so that parallel workers didn't obtain any lock of their own on tables they access. That was clearly a bad idea, but I'd mistakenly supposed that it was the intended end result of the series of patches for simplifying the executor's lock management. Undo that change in relation_open(), and adjust ExecOpenScanRelation() so that it gets the correct lock if inside a parallel worker. In passing, clean up some more obsolete comments about when locks are acquired. Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
* Remove more redundant relation locking during executor startup.Tom Lane2018-10-06
| | | | | | | | | | | | | | | | | We already have appropriate locks on every relation listed in the query's rangetable before we reach the executor. Take the next step in exploiting that knowledge by removing code that worries about taking locks on non-leaf result relations in a partitioned table. In particular, get rid of ExecLockNonLeafAppendTables and a stanza in InitPlan that asserts we already have locks on certain such tables. In passing, clean up some now-obsolete comments in InitPlan. Amit Langote, reviewed by David Rowley and Jesper Pedersen, and whacked around a bit more by me Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
* In the executor, use an array of pointers to access the rangetable.Tom Lane2018-10-04
| | | | | | | | | | | | | | Instead of doing a lot of list_nth() accesses to es_range_table, create a flattened pointer array during executor startup and index into that to get at individual RangeTblEntrys. This eliminates one source of O(N^2) behavior with lots of partitions. (I'm not exactly convinced that it's the most important source, but it's an easy one to fix.) Amit Langote and David Rowley Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
* Centralize executor's opening/closing of Relations for rangetable entries.Tom Lane2018-10-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | Create an array estate->es_relations[] paralleling the es_range_table, and store references to Relations (relcache entries) there, so that any given RT entry is opened and closed just once per executor run. Scan nodes typically still call ExecOpenScanRelation, but ExecCloseScanRelation is no more; relation closing is now done centrally in ExecEndPlan. This is slightly more complex than one would expect because of the interactions with relcache references held in ResultRelInfo nodes. The general convention is now that ResultRelInfo->ri_RelationDesc does not represent a separate relcache reference and so does not need to be explicitly closed; but there is an exception for ResultRelInfos in the es_trig_target_relations list, which are manufactured by ExecGetTriggerResultRel and have to be cleaned up by ExecCleanUpTriggerState. (That much was true all along, but these ResultRelInfos are now more different from others than they used to be.) To allow the partition pruning logic to make use of es_relations[] rather than having its own relcache references, adjust PartitionedRelPruneInfo to store an RT index rather than a relation OID. Amit Langote, reviewed by David Rowley and Jesper Pedersen, some mods by me Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
* Change executor to just Assert that table locks were already obtained.Tom Lane2018-10-03
| | | | | | | | | | | | | | | | | | | | | | Instead of locking tables during executor startup, just Assert that suitable locks were obtained already during the parse/plan pipeline (or re-obtained by the plan cache). This must be so, else we have a hazard that concurrent DDL has invalidated the plan. This is pretty inefficient as well as undercommented, but it's all going to go away shortly, so I didn't try hard. This commit is just another attempt to use the buildfarm to see if we've missed anything in the plan to simplify the executor's table management. Note that the change needed here in relation_open() exposes that parallel workers now really are accessing tables without holding any lock of their own, whereas they were not doing that before this commit. This does not give me a warm fuzzy feeling about that aspect of parallel query; it does not seem like a good design, and we now know that it's had exactly no actual testing. I think that we should modify parallel query so that that change can be reverted. Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
* Change rewriter/planner/executor/plancache to depend on RTE rellockmode.Tom Lane2018-10-02
| | | | | | | | | | | | | | | | | | | | | | | | | Instead of recomputing the required lock levels in all these places, just use what commit fdba460a2 made the parser store in the RTE fields. This already simplifies the code measurably in these places, and follow-on changes will remove a bunch of no-longer-needed infrastructure. In a few cases, this change causes us to acquire a higher lock level than we did before. This is OK primarily because said higher lock level should've been acquired already at query parse time; thus, we're saving a useless extra trip through the shared lock manager to acquire a lesser lock alongside the original lock. The only known exception to this is that re-execution of a previously planned SELECT FOR UPDATE/SHARE query, for a table that uses ROW_MARK_REFERENCE or ROW_MARK_COPY methods, might have gotten only AccessShareLock before. Now it will get RowShareLock like the first execution did, which seems fine. While there's more to do, push it in this state anyway, to let the buildfarm help verify that nothing bad happened. Amit Langote, reviewed by David Rowley and Jesper Pedersen, and whacked around a bit more by me Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
* Create an RTE field to record the query's lock mode for each relation.Tom Lane2018-09-30
| | | | | | | | | | | | | | | | | | | | | | | | Add RangeTblEntry.rellockmode, which records the appropriate lock mode for each RTE_RELATION rangetable entry (either AccessShareLock, RowShareLock, or RowExclusiveLock depending on the RTE's role in the query). This patch creates the field and makes all creators of RTE nodes fill it in reasonably, but for the moment nothing much is done with it. The plan is to replace assorted post-parser logic that re-determines the right lockmode to use with simple uses of rte->rellockmode. For now, just add Asserts in each of those places that the rellockmode matches what they are computing today. (In some cases the match isn't perfect, so the Asserts are weaker than you might expect; but this seems OK, as per discussion.) This passes check-world for me, but it seems worth pushing in this state to see if the buildfarm finds any problems in cases I failed to test. catversion bump due to change of stored rules. Amit Langote, reviewed by David Rowley and Jesper Pedersen, and whacked around a bit more by me Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
* LLVMJIT: Release JIT context after running ExprContext shutdown callbacks.Andres Freund2018-07-25
| | | | | | | | | | | | Due to inlining it previously was possible that an ExprContext's shutdown callback pointed to a JITed function. As the JIT context previously was shut down before the shutdown callbacks were called, that could lead to segfaults. Fix the ordering. Reported-By: Dmitry Dolgov Author: Andres Freund Discussion: https://postgr.es/m/CA+q6zcWO7CeAJtHBxgcHn_hj+PenM=tvG0RJ93X1uEJ86+76Ug@mail.gmail.com Backpatch: 11-, where JIT compilation was added
* Fast ALTER TABLE ADD COLUMN with a non-NULL defaultAndrew Dunstan2018-03-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | Currently adding a column to a table with a non-NULL default results in a rewrite of the table. For large tables this can be both expensive and disruptive. This patch removes the need for the rewrite as long as the default value is not volatile. The default expression is evaluated at the time of the ALTER TABLE and the result stored in a new column (attmissingval) in pg_attribute, and a new column (atthasmissing) is set to true. Any existing row when fetched will be supplied with the attmissingval. New rows will have the supplied value or the default and so will never need the attmissingval. Any time the table is rewritten all the atthasmissing and attmissingval settings for the attributes are cleared, as they are no longer needed. The most visible code change from this is in heap_attisnull, which acquires a third TupleDesc argument, allowing it to detect a missing value if there is one. In many cases where it is known that there will not be any (e.g. catalog relations) NULL can be passed for this argument. Andrew Dunstan, heavily modified from an original patch from Serge Rielau. Reviewed by Tom Lane, Andres Freund, Tomas Vondra and David Rowley. Discussion: https://postgr.es/m/31e2e921-7002-4c27-59f5-51f08404c858@2ndQuadrant.com
* Basic planner and executor integration for JIT.Andres Freund2018-03-22
| | | | | | | | | | | | | | | | | | | | | This adds simple cost based plan time decision about whether JIT should be performed. jit_above_cost, jit_optimize_above_cost are compared with the total cost of a plan, and if the cost is above them JIT is performed / optimization is performed respectively. For that PlannedStmt and EState have a jitFlags (es_jit_flags) field that stores information about what JIT operations should be performed. EState now also has a new es_jit field, which can store a JitContext. When there are no errors the context is released in standard_ExecutorEnd(). It is likely that the default values for jit_[optimize_]above_cost will need to be adapted further, but in my test these values seem to work reasonably. Author: Andres Freund, with feedback by Peter Eisentraut Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
* Allow tupleslots to have a fixed tupledesc, use in executor nodes.Andres Freund2018-02-16
| | | | | | | | | | | | | | | | | | | | | The reason for doing so is that it will allow expression evaluation to optimize based on the underlying tupledesc. In particular it will allow to JIT tuple deforming together with the expression itself. For that expression initialization needs to be moved after the relevant slots are initialized - mostly unproblematic, except in the case of nodeWorktablescan.c. After doing so there's no need for ExecAssignResultType() and ExecAssignResultTypeFromTL() anymore, as all former callers have been converted to create a slot with a fixed descriptor. When creating a slot with a fixed descriptor, tts_values/isnull can be allocated together with the main slot, reducing allocation overhead and increasing cache density a bit. Author: Andres Freund Discussion: https://postgr.es/m/20171206093717.vqdxe5icqttpxs3p@alap3.anarazel.de
* Avoid listing the same ResultRelInfo in more than one EState list.Robert Haas2018-02-08
| | | | | | | | Doing so causes EXPLAIN ANALYZE to show trigger statistics multiple times. Commit 2f178441044be430f6b4d626e4dae68a9a6f6cec seems to be to blame for this. Amit Langote, revieed by Amit Khandekar, Etsuro Fujita, and me.
* Update copyright for 2018Bruce Momjian2018-01-02
| | | | Backpatch-through: certain files through 9.3
* Avoid projecting tuples unnecessarily in Gather and Gather Merge.Robert Haas2017-11-25
| | | | | | | | | | | | | It's most often the case that the target list for the Gather (Merge) node matches the target list supplied by the underlying plan node; when this is so, we can avoid the overhead of projecting. This depends on commit f455e1125e2588d4cd4fc663c6a10da4e003a3b5 for proper functioning. Idea by Andres Freund. Patch by me. Review by Amit Kapila. Discussion: http://postgr.es/m/CA+TgmoZ0ZL=cesZFq8c9NnfK6bqy-wwUd3_74iYGodYrSoQ7Fw@mail.gmail.com
* Fix mistaken failure to allow parallelism in corner case.Robert Haas2017-10-27
| | | | | | | | | | | | | | | If we try to run a parallel plan in serial mode because, for example, it's going to be scanned via a cursor, but for some reason we're already in parallel mode (for example because an outer query is running in parallel), we'd incorrectly try to launch workers. Fix by adding a flag to the EState, so that we can be certain that ExecutePlan() and ExecGather()/ExecGatherMerge() will have the same idea about whether we are executing serially or in parallel. Report and fix by Amit Kapila with help from Kuntal Ghosh. A few tweaks by me. Discussion: http://postgr.es/m/CAA4eK1+_BuZrmVCeua5Eqnm4Co9DAXdM5HPAOE2J19ePbR912Q@mail.gmail.com
* Reduce excessive dereferencing of function pointersPeter Eisentraut2017-09-07
| | | | | | | | | | | | It is equivalent in ANSI C to write (*funcptr) () and funcptr(). These two styles have been applied inconsistently. After discussion, we'll use the more verbose style for plain function pointer variables, to make it clear that it's a variable, and the shorter style when the function pointer is in a struct (s.func() or s->func()), because then it's clear that it's not a plain function name, and otherwise the excessive punctuation makes some of those invocations hard to read. Discussion: https://www.postgresql.org/message-id/f52c16db-14ed-757d-4b48-7ef360b1631d@2ndquadrant.com
* Change tupledesc->attrs[n] to TupleDescAttr(tupledesc, n).Andres Freund2017-08-20
| | | | | | | | | | | This is a mechanical change in preparation for a later commit that will change the layout of TupleDesc. Introducing a macro to abstract the details of where attributes are stored will allow us to change that in separate step and revise it in future. Author: Thomas Munro, editorialized by Andres Freund Reviewed-By: Andres Freund Discussion: https://postgr.es/m/CAEepm=0ZtQ-SpsgCyzzYpsXS6e=kZWqk3g5Ygn3MDV7A8dabUA@mail.gmail.com
* Fix interaction of triggers, partitioning, and EXPLAIN ANALYZE.Robert Haas2017-08-18
| | | | | | | | | | | Add a new EState member es_leaf_result_relations, so that the trigger code knows about ResultRelInfos created by tuple routing. Also make sure ExplainPrintTriggers knows about partition-related ResultRelInfos. Etsuro Fujita, reviewed by Amit Langote Discussion: http://postgr.es/m/57163e18-8e56-da83-337a-22f2c0008051@lab.ntt.co.jp
* Phase 2 of pgindent updates.Tom Lane2017-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
* Post-PG 10 beta1 pgindent runBruce Momjian2017-05-17
| | | | perltidy run not included.
* Provide an error cursor for "can't call an SRF here" errors.Tom Lane2017-04-18
| | | | | | | | | | | | | | | | | | | | | | | | | Since it appears that v10 is going to move the goalposts by some amount in terms of where you can and can't invoke set-returning functions, arrange for the executor's "set-valued function called in context that cannot accept a set" errors to include a syntax position if possible, pointing to the specific SRF that can't be called where it's located. The main bit of infrastructure needed for this is to make the query source text accessible in the executor; but it turns out that commit 4c728f382 already did that. We just need a new function executor_errposition() modeled on parser_errposition(), and we're ready to rock. While experimenting with this, I noted that the error position wasn't properly reported if it occurred in a plpgsql FOR-over-query loop, which turned out to be because SPI_cursor_open_internal wasn't providing an error context callback during PortalStart. Fix that. There's a whole lot more that could be done with this infrastructure now that it's there, but this is not the right time in the development cycle for that sort of work. Hence, resist the temptation to plaster executor_errposition() calls everywhere ... for the moment. Discussion: https://postgr.es/m/5263.1492471571@sss.pgh.pa.us
* Improve castNode notation by introducing list-extraction-specific variants.Tom Lane2017-04-10
| | | | | | | | | | | | | | | | | This extends the castNode() notation introduced by commit 5bcab1114 to provide, in one step, extraction of a list cell's pointer and coercion to a concrete node type. For example, "lfirst_node(Foo, lc)" is the same as "castNode(Foo, lfirst(lc))". Almost half of the uses of castNode that have appeared so far include a list extraction call, so this is pretty widely useful, and it saves a few more keystrokes compared to the old way. As with the previous patch, back-patch the addition of these macros to pg_list.h, so that the notation will be available when back-patching. Patch by me, after an idea of Andrew Gierth's. Discussion: https://postgr.es/m/14197.1491841216@sss.pgh.pa.us
* Add infrastructure to support EphemeralNamedRelation references.Kevin Grittner2017-03-31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A QueryEnvironment concept is added, which allows new types of objects to be passed into queries from parsing on through execution. At this point, the only thing implemented is a collection of EphemeralNamedRelation objects -- relations which can be referenced by name in queries, but do not exist in the catalogs. The only type of ENR implemented is NamedTuplestore, but provision is made to add more types fairly easily. An ENR can carry its own TupleDesc or reference a relation in the catalogs by relid. Although these features can be used without SPI, convenience functions are added to SPI so that ENRs can easily be used by code run through SPI. The initial use of all this is going to be transition tables in AFTER triggers, but that will be added to each PL as a separate commit. An incidental effect of this patch is to produce a more informative error message if an attempt is made to modify the contents of a CTE from a referencing DML statement. No tests previously covered that possibility, so one is added. Kevin Grittner and Thomas Munro Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro with valuable comments and suggestions from many others
* Faster expression evaluation and targetlist projection.Andres Freund2017-03-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
* Don't scan partitioned tables.Robert Haas2017-03-21
| | | | | | | | | | | | | | | | | | | Partitioned tables do not contain any data; only their unpartitioned descendents need to be scanned. However, the partitioned tables still need to be locked, even though they're not scanned. To make that work, Append and MergeAppend relations now need to carry a list of (unscanned) partitioned relations that must be locked, and InitPlan must lock all partitioned result relations. Aside from the obvious advantage of avoiding some work at execution time, this has two other advantages. First, it may improve the planner's decision-making in some cases since the empty relation might throw things off. Second, it paves the way to getting rid of the storage for partitioned tables altogether. Amit Langote, reviewed by me. Discussion: http://postgr.es/m/6837c359-45c4-8044-34d1-736756335a15@lab.ntt.co.jp
* Pass the source text for a parallel query to the workers.Robert Haas2017-02-22
| | | | | | | | | With this change, you can see the query that a parallel worker is executing in pg_stat_activity, and if the worker crashes you can see what query it was executing when it crashed. Rafia Sabih, reviewed by Kuntal Ghosh and Amit Kapila and slightly revised by me.
* Remove obsoleted code relating to targetlist SRF evaluation.Andres Freund2017-01-19
| | | | | | | | | | | | | Since 69f4b9c plain expression evaluation (and thus normal projection) can't return sets of tuples anymore. Thus remove code dealing with that possibility. This will require adjustments in external code using ExecEvalExpr()/ExecProject() - that should neither be hard nor very common. Author: Andres Freund and Tom Lane Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
* Update copyright via script for 2017Bruce Momjian2017-01-03
|
* Add macros to make AllocSetContextCreate() calls simpler and safer.Tom Lane2016-08-27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls had typos in the context-sizing parameters. While none of these led to especially significant problems, they did create minor inefficiencies, and it's now clear that expecting people to copy-and-paste those calls accurately is not a great idea. Let's reduce the risk of future errors by introducing single macros that encapsulate the common use-cases. Three such macros are enough to cover all but two special-purpose contexts; those two calls can be left as-is, I think. While this patch doesn't in itself improve matters for third-party extensions, it doesn't break anything for them either, and they can gradually adopt the simplified notation over time. In passing, change TopMemoryContext to use the default allocation parameters. Formerly it could only be extended 8K at a time. That was probably reasonable when this code was written; but nowadays we create many more contexts than we did then, so that it's not unusual to have a couple hundred K in TopMemoryContext, even without considering various dubious code that sticks other things there. There seems no good reason not to let it use growing blocks like most other contexts. Back-patch to 9.6, mostly because that's still close enough to HEAD that it's easy to do so, and keeping the branches in sync can be expected to avoid some future back-patching pain. The bugs fixed by these changes don't seem to be significant enough to justify fixing them further back. Discussion: <21072.1472321324@sss.pgh.pa.us>
* Update copyright for 2016Bruce Momjian2016-01-02
| | | | Backpatch certain files through 9.1
* Remove ExecGetScanType functionAlvaro Herrera2015-08-21
| | | | This became unused in a191a169d6d0b9558da4519e66510c4540204a51.
* Manual cleanup of pgindent results.Tom Lane2015-05-24
| | | | | | Fix some places where pgindent did silly stuff, often because project style wasn't followed to begin with. (I've not touched the atomics headers, though.)
* pgindent run for 9.5Bruce Momjian2015-05-23
|
* Support GROUPING SETS, CUBE and ROLLUP.Andres Freund2015-05-16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This SQL standard functionality allows to aggregate data by different GROUP BY clauses at once. Each grouping set returns rows with columns grouped by in other sets set to NULL. This could previously be achieved by doing each grouping as a separate query, conjoined by UNION ALLs. Besides being considerably more concise, grouping sets will in many cases be faster, requiring only one scan over the underlying data. The current implementation of grouping sets only supports using sorting for input. Individual sets that share a sort order are computed in one pass. If there are sets that don't share a sort order, additional sort & aggregation steps are performed. These additional passes are sourced by the previous sort step; thus avoiding repeated scans of the source data. The code is structured in a way that adding support for purely using hash aggregation or a mix of hashing and sorting is possible. Sorting was chosen to be supported first, as it is the most generic method of implementation. Instead of, as in an earlier versions of the patch, representing the chain of sort and aggregation steps as full blown planner and executor nodes, all but the first sort are performed inside the aggregation node itself. This avoids the need to do some unusual gymnastics to handle having to return aggregated and non-aggregated tuples from underlying nodes, as well as having to shut down underlying nodes early to limit memory usage. The optimizer still builds Sort/Agg node to describe each phase, but they're not part of the plan tree, but instead additional data for the aggregation node. They're a convenient and preexisting way to describe aggregation and sorting. The first (and possibly only) sort step is still performed as a separate execution step. That retains similarity with existing group by plans, makes rescans fairly simple, avoids very deep plans (leading to slow explains) and easily allows to avoid the sorting step if the underlying data is sorted by other means. A somewhat ugly side of this patch is having to deal with a grammar ambiguity between the new CUBE keyword and the cube extension/functions named cube (and rollup). To avoid breaking existing deployments of the cube extension it has not been renamed, neither has cube been made a reserved keyword. Instead precedence hacking is used to make GROUP BY cube(..) refer to the CUBE grouping sets feature, and not the function cube(). To actually group by a function cube(), unlikely as that might be, the function name has to be quoted. Needs a catversion bump because stored rules may change. Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
* Add support for doing late row locking in FDWs.Tom Lane2015-05-12
| | | | | | | | | | | | | | | | | | | | | Previously, FDWs could only do "early row locking", that is lock a row as soon as it's fetched, even though local restriction/join conditions might discard the row later. This patch adds callbacks that allow FDWs to do late locking in the same way that it's done for regular tables. To make use of this feature, an FDW must support the "ctid" column as a unique row identifier. Currently, since ctid has to be of type TID, the feature is of limited use, though in principle it could be used by postgres_fdw. We may eventually allow FDWs to specify another data type for ctid, which would make it possible for more FDWs to use this feature. This commit does not modify postgres_fdw to use late locking. We've tested some prototype code for that, but it's not in committable shape, and besides it's quite unclear whether it actually makes sense to do late locking against a remote server. The extra round trips required are likely to outweigh any benefit from improved concurrency. Etsuro Fujita, reviewed by Ashutosh Bapat, and hacked up a lot by me
* Move functions related to index maintenance to separate source file.Heikki Linnakangas2015-04-24
| | | | | There is enough code here to deserve a file of their own, not be buried in the middle of execUtils.c.
* Fix ExecOpenScanRelation to take a lock on a ROW_MARK_COPY relation.Tom Lane2015-03-24
| | | | | | | | | | | | | | | | | | ExecOpenScanRelation assumed that any relation listed in the ExecRowMark list has been locked by InitPlan; but this is not true if the rel's markType is ROW_MARK_COPY, which is possible if it's a foreign table. In most (possibly all) cases, failure to acquire a lock here isn't really problematic because the parser, planner, or plancache would have taken the appropriate lock already. In principle though it might leave us vulnerable to working with a relation that we hold no lock on, and in any case if the executor isn't depending on previously-taken locks otherwise then it should not do so for ROW_MARK_COPY relations. Noted by Etsuro Fujita. Back-patch to all active versions, since the inconsistency has been there a long time. (It's almost certainly irrelevant in 9.0, since that predates foreign tables, but the code's still wrong on its own terms.)
* Fix reference-after-free when waiting for another xact due to constraint.Heikki Linnakangas2015-02-04
| | | | | | | | | | | | | | | | | | | If an insertion or update had to wait for another transaction to finish, because there was another insertion with conflicting key in progress, we would pass a just-free'd item pointer to XactLockTableWait(). All calls to XactLockTableWait() and MultiXactIdWait() had similar issues. Some passed a pointer to a buffer in the buffer cache, after already releasing the lock. The call in EvalPlanQualFetch had already released the pin too. All but the call in execUtils.c would merely lead to reporting a bogus ctid, however (or an assertion failure, if enabled). All the callers that passed HeapTuple->t_data->t_ctid were slightly bogus anyway: if the tuple was updated (again) in the same transaction, its ctid field would point to the next tuple in the chain, not the tuple itself. Backpatch to 9.4, where the 'ctid' argument to XactLockTableWait was added (in commit f88d4cfc)
* Fix column-privilege leak in error-message pathsStephen Frost2015-01-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | While building error messages to return to the user, BuildIndexValueDescription, ExecBuildSlotValueDescription and ri_ReportViolation would happily include the entire key or entire row in the result returned to the user, even if the user didn't have access to view all of the columns being included. Instead, include only those columns which the user is providing or which the user has select rights on. If the user does not have any rights to view the table or any of the columns involved then no detail is provided and a NULL value is returned from BuildIndexValueDescription and ExecBuildSlotValueDescription. Note that, for key cases, the user must have access to all of the columns for the key to be shown; a partial key will not be returned. Further, in master only, do not return any data for cases where row security is enabled on the relation and row security should be applied for the user. This required a bit of refactoring and moving of things around related to RLS- note the addition of utils/misc/rls.c. Back-patch all the way, as column-level privileges are now in all supported versions. This has been assigned CVE-2014-8161, but since the issue and the patch have already been publicized on pgsql-hackers, there's no point in trying to hide this commit.
* Update copyright for 2015Bruce Momjian2015-01-06
| | | | Backpatch certain files through 9.0
* pgindent run for 9.4Bruce Momjian2014-05-06
| | | | | This includes removing tabs after periods in C comments, which was applied to back branches, so this change should not effect backpatching.
* Setup error context callback for transaction lock waitsAlvaro Herrera2014-03-19
| | | | | | | | | | | | | | | | | | With this in place, a session blocking behind another one because of tuple locks will get a context line mentioning the relation name, tuple TID, and operation being done on tuple. For example: LOG: process 11367 still waiting for ShareLock on transaction 717 after 1000.108 ms DETAIL: Process holding the lock: 11366. Wait queue: 11367. CONTEXT: while updating tuple (0,2) in relation "foo" STATEMENT: UPDATE foo SET value = 3; Most usefully, the new line is displayed by log entries due to log_lock_waits, although of course it will be printed by any other log message as well. Author: Christian Kruse, some tweaks by Álvaro Herrera Reviewed-by: Amit Kapila, Andres Freund, Tom Lane, Robert Haas
* Update copyright for 2014Bruce Momjian2014-01-07
| | | | | Update all files in head, and files COPYRIGHT and legal.sgml in all back branches.
* Use InvalidSnapshot, now SnapshotNow, as the default snapshot.Robert Haas2013-07-23
| | | | | | | | | | | | As far as I can determine, there's no code in the core distribution that fails to explicitly set the snapshot of a scan or executor state. If there is any such code, this will probably cause it to seg fault; friendlier suggestions were discussed on pgsql-hackers, but there was no consensus that anything more than this was needed. This is another step towards the hoped-for complete removal of SnapshotNow.
* Implement the FILTER clause for aggregate function calls.Noah Misch2013-07-16
| | | | | | | | | This is SQL-standard with a few extensions, namely support for subqueries and outer references in clause expressions. catversion bump due to change in Aggref and WindowFunc. David Fetter, reviewed by Dean Rasheed.
* Incidental cleanup of matviews code.Tom Lane2013-04-27
| | | | | | | | | | | | | | | | | Move checking for unscannable matviews into ExecOpenScanRelation, which is a better place for it first because the open relation is already available (saving a relcache lookup cycle), and second because this eliminates the problem of telling the difference between rangetable entries that will or will not be scanned by the query. In particular we can get rid of the not-terribly-well-thought-out-or-implemented isResultRel field that the initial matviews patch added to RangeTblEntry. Also get rid of entirely unnecessary scannability check in the rewriter, and a bogus decision about whether RefreshMatViewStmt requires a parse-time snapshot. catversion bump due to removal of a RangeTblEntry field, which changes stored rules.
* Provide database object names as separate fields in error messages.Tom Lane2013-01-29
| | | | | | | | | | | | | | | | | | This patch addresses the problem that applications currently have to extract object names from possibly-localized textual error messages, if they want to know for example which index caused a UNIQUE_VIOLATION failure. It adds new error message fields to the wire protocol, which can carry the name of a table, table column, data type, or constraint associated with the error. (Since the protocol spec has always instructed clients to ignore unrecognized field types, this should not create any compatibility problem.) Support for providing these new fields has been added to just a limited set of error reports (mainly, those in the "integrity constraint violation" SQLSTATE class), but we will doubtless add them to more calls in future. Pavel Stehule, reviewed and extensively revised by Peter Geoghegan, with additional hacking by Tom Lane.
* Update copyrights for 2013Bruce Momjian2013-01-01
| | | | | Fully update git head, and update back branches in ./COPYRIGHT and legal.sgml files.
* Fix assorted bugs in CREATE/DROP INDEX CONCURRENTLY.Tom Lane2012-11-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 8cb53654dbdb4c386369eb988062d0bbb6de725e, which introduced DROP INDEX CONCURRENTLY, managed to break CREATE INDEX CONCURRENTLY via a poor choice of catalog state representation. The pg_index state for an index that's reached the final pre-drop stage was the same as the state for an index just created by CREATE INDEX CONCURRENTLY. This meant that the (necessary) change to make RelationGetIndexList ignore about-to-die indexes also made it ignore freshly-created indexes; which is catastrophic because the latter do need to be considered in HOT-safety decisions. Failure to do so leads to incorrect index entries and subsequently wrong results from queries depending on the concurrently-created index. To fix, add an additional boolean column "indislive" to pg_index, so that the freshly-created and about-to-die states can be distinguished. (This change obviously is only possible in HEAD. This patch will need to be back-patched, but in 9.2 we'll use a kluge consisting of overloading the formerly-impossible state of indisvalid = true and indisready = false.) In addition, change CREATE/DROP INDEX CONCURRENTLY so that the pg_index flag changes they make without exclusive lock on the index are made via heap_inplace_update() rather than a normal transactional update. The latter is not very safe because moving the pg_index tuple could result in concurrent SnapshotNow scans finding it twice or not at all, thus possibly resulting in index corruption. This is a pre-existing bug in CREATE INDEX CONCURRENTLY, which was copied into the DROP code. In addition, fix various places in the code that ought to check to make sure that the indexes they are manipulating are valid and/or ready as appropriate. These represent bugs that have existed since 8.2, since a failed CREATE INDEX CONCURRENTLY could leave a corrupt or invalid index behind, and we ought not try to do anything that might fail with such an index. Also fix RelationReloadIndexInfo to ensure it copies all the pg_index columns that are allowed to change after initial creation. Previously we could have been left with stale values of some fields in an index relcache entry. It's not clear whether this actually had any user-visible consequences, but it's at least a bug waiting to happen. In addition, do some code and docs review for DROP INDEX CONCURRENTLY; some cosmetic code cleanup but mostly addition and revision of comments. This will need to be back-patched, but in a noticeably different form, so I'm committing it to HEAD before working on the back-patch. Problem reported by Amit Kapila, diagnosis by Pavan Deolassee, fix by Tom Lane and Andres Freund.