diff options
Diffstat (limited to 'src/backend/statistics/mcv.c')
-rw-r--r-- | src/backend/statistics/mcv.c | 1695 |
1 files changed, 1695 insertions, 0 deletions
diff --git a/src/backend/statistics/mcv.c b/src/backend/statistics/mcv.c new file mode 100644 index 00000000000..1f3f32474ec --- /dev/null +++ b/src/backend/statistics/mcv.c @@ -0,0 +1,1695 @@ +/*------------------------------------------------------------------------- + * + * mcv.c + * POSTGRES multivariate MCV lists + * + * + * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * IDENTIFICATION + * src/backend/statistics/mcv.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include <math.h> + +#include "access/htup_details.h" +#include "catalog/pg_collation.h" +#include "catalog/pg_statistic_ext.h" +#include "fmgr.h" +#include "funcapi.h" +#include "nodes/nodeFuncs.h" +#include "optimizer/clauses.h" +#include "statistics/extended_stats_internal.h" +#include "statistics/statistics.h" +#include "utils/builtins.h" +#include "utils/bytea.h" +#include "utils/fmgroids.h" +#include "utils/fmgrprotos.h" +#include "utils/lsyscache.h" +#include "utils/syscache.h" +#include "utils/typcache.h" + +/* + * Computes size of a serialized MCV item, depending on the number of + * dimensions (columns) the statistic is defined on. The datum values are + * stored in a separate array (deduplicated, to minimize the size), and + * so the serialized items only store uint16 indexes into that array. + * + * Each serialized item store (in this order): + * + * - indexes to values (ndim * sizeof(uint16)) + * - null flags (ndim * sizeof(bool)) + * - frequency (sizeof(double)) + * - base_frequency (sizeof(double)) + * + * So in total each MCV item requires this many bytes: + * + * ndim * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double) + */ +#define ITEM_SIZE(ndims) \ + ((ndims) * (sizeof(uint16) + sizeof(bool)) + 2 * sizeof(double)) + +/* + * Macros for convenient access to parts of a serialized MCV item. + */ +#define ITEM_INDEXES(item) ((uint16 *) (item)) +#define ITEM_NULLS(item,ndims) ((bool *) (ITEM_INDEXES(item) + (ndims))) +#define ITEM_FREQUENCY(item,ndims) ((double *) (ITEM_NULLS(item, ndims) + (ndims))) +#define ITEM_BASE_FREQUENCY(item,ndims) ((double *) (ITEM_FREQUENCY(item, ndims) + 1)) + + +static MultiSortSupport build_mss(VacAttrStats **stats, int numattrs); + +static SortItem *build_distinct_groups(int numrows, SortItem *items, + MultiSortSupport mss, int *ndistinct); + +static int count_distinct_groups(int numrows, SortItem *items, + MultiSortSupport mss); + +/* + * get_mincount_for_mcv_list + * Determine the minimum number of times a value needs to appear in + * the sample for it to be included in the MCV list. + * + * We want to keep only values that appear sufficiently often in the + * sample that it is reasonable to extrapolate their sample frequencies to + * the entire table. We do this by placing an upper bound on the relative + * standard error of the sample frequency, so that any estimates the + * planner generates from the MCV statistics can be expected to be + * reasonably accurate. + * + * Since we are sampling without replacement, the sample frequency of a + * particular value is described by a hypergeometric distribution. A + * common rule of thumb when estimating errors in this situation is to + * require at least 10 instances of the value in the sample, in which case + * the distribution can be approximated by a normal distribution, and + * standard error analysis techniques can be applied. Given a sample size + * of n, a population size of N, and a sample frequency of p=cnt/n, the + * standard error of the proportion p is given by + * SE = sqrt(p*(1-p)/n) * sqrt((N-n)/(N-1)) + * where the second term is the finite population correction. To get + * reasonably accurate planner estimates, we impose an upper bound on the + * relative standard error of 20% -- i.e., SE/p < 0.2. This 20% relative + * error bound is fairly arbitrary, but has been found empirically to work + * well. Rearranging this formula gives a lower bound on the number of + * instances of the value seen: + * cnt > n*(N-n) / (N-n+0.04*n*(N-1)) + * This bound is at most 25, and approaches 0 as n approaches 0 or N. The + * case where n approaches 0 cannot happen in practice, since the sample + * size is at least 300. The case where n approaches N corresponds to + * sampling the whole the table, in which case it is reasonable to keep + * the whole MCV list (have no lower bound), so it makes sense to apply + * this formula for all inputs, even though the above derivation is + * technically only valid when the right hand side is at least around 10. + * + * An alternative way to look at this formula is as follows -- assume that + * the number of instances of the value seen scales up to the entire + * table, so that the population count is K=N*cnt/n. Then the distribution + * in the sample is a hypergeometric distribution parameterised by N, n + * and K, and the bound above is mathematically equivalent to demanding + * that the standard deviation of that distribution is less than 20% of + * its mean. Thus the relative errors in any planner estimates produced + * from the MCV statistics are likely to be not too large. + */ +static double +get_mincount_for_mcv_list(int samplerows, double totalrows) +{ + double n = samplerows; + double N = totalrows; + double numer, + denom; + + numer = n * (N - n); + denom = N - n + 0.04 * n * (N - 1); + + /* Guard against division by zero (possible if n = N = 1) */ + if (denom == 0.0) + return 0.0; + + return numer / denom; +} + +/* + * Builds MCV list from the set of sampled rows. + * + * The algorithm is quite simple: + * + * (1) sort the data (default collation, '<' for the data type) + * + * (2) count distinct groups, decide how many to keep + * + * (3) build the MCV list using the threshold determined in (2) + * + * (4) remove rows represented by the MCV from the sample + * + */ +MCVList * +statext_mcv_build(int numrows, HeapTuple *rows, Bitmapset *attrs, + VacAttrStats **stats, double totalrows) +{ + int i, + numattrs, + ngroups, + nitems; + + AttrNumber *attnums = build_attnums_array(attrs, &numattrs); + + SortItem *items; + SortItem *groups; + MCVList *mcvlist = NULL; + + /* comparator for all the columns */ + MultiSortSupport mss = build_mss(stats, numattrs); + + /* sort the rows */ + items = build_sorted_items(numrows, &nitems, rows, stats[0]->tupDesc, + mss, numattrs, attnums); + + if (!items) + return NULL; + + /* transform the sorted rows into groups (sorted by frequency) */ + groups = build_distinct_groups(nitems, items, mss, &ngroups); + + /* + * Maximum number of MCV items to store, based on the attribute with the + * largest stats target (and the number of groups we have available). + */ + nitems = stats[0]->attr->attstattarget; + for (i = 1; i < numattrs; i++) + { + if (stats[i]->attr->attstattarget > nitems) + nitems = stats[i]->attr->attstattarget; + } + if (nitems > ngroups) + nitems = ngroups; + + /* + * Decide how many items to keep in the MCV list. We can't use the same + * algorithm as per-column MCV lists, because that only considers the + * actual group frequency - but we're primarily interested in how the + * actual frequency differs from the base frequency (product of simple + * per-column frequencies, as if the columns were independent). + * + * Using the same algorithm might exclude items that are close to the + * "average" frequency. But it does not say whether the frequency is + * close to base frequency or not. We also need to consider unexpectedly + * uncommon items (compared to base frequency), and the single-column + * algorithm ignores that entirely. + * + * If we can fit all the items onto the MCV list, do that. Otherwise + * use get_mincount_for_mcv_list to decide which items to keep in the + * MCV list, based on the number of occurrences in the sample. + */ + if (ngroups > nitems) + { + double mincount; + + mincount = get_mincount_for_mcv_list(numrows, totalrows); + + /* + * Walk the groups until we find the first group with a count below + * the mincount threshold (the index of that group is the number of + * groups we want to keep). + */ + for (i = 0; i < nitems; i++) + { + if (groups[i].count < mincount) + { + nitems = i; + break; + } + } + } + + /* + * At this point we know the number of items for the MCV list. There might + * be none (for uniform distribution with many groups), and in that case + * there will be no MCV list. Otherwise construct the MCV list. + */ + if (nitems > 0) + { + int j; + + /* + * Allocate the MCV list structure, set the global parameters. + */ + mcvlist = (MCVList *) palloc0(sizeof(MCVList)); + + mcvlist->magic = STATS_MCV_MAGIC; + mcvlist->type = STATS_MCV_TYPE_BASIC; + mcvlist->ndimensions = numattrs; + mcvlist->nitems = nitems; + + /* store info about data type OIDs */ + for (i = 0; i < numattrs; i++) + mcvlist->types[i] = stats[i]->attrtypid; + + /* + * Preallocate Datum/isnull arrays for all items. + * + * XXX Perhaps we might allocate this in a single chunk, to reduce + * the palloc overhead. We're the only ones dealing with the built + * MCV lists anyway. Not sure it's worth it, though, as we're not + * re-building stats very often. + */ + mcvlist->items = (MCVItem **) palloc(sizeof(MCVItem *) * nitems); + + for (i = 0; i < nitems; i++) + { + mcvlist->items[i] = (MCVItem *) palloc(sizeof(MCVItem)); + mcvlist->items[i]->values = (Datum *) palloc(sizeof(Datum) * numattrs); + mcvlist->items[i]->isnull = (bool *) palloc(sizeof(bool) * numattrs); + } + + /* Copy the first chunk of groups into the result. */ + for (i = 0; i < nitems; i++) + { + /* just pointer to the proper place in the list */ + MCVItem *item = mcvlist->items[i]; + + /* copy values for the group */ + memcpy(item->values, groups[i].values, sizeof(Datum) * numattrs); + memcpy(item->isnull, groups[i].isnull, sizeof(bool) * numattrs); + + /* groups should be sorted by frequency in descending order */ + Assert((i == 0) || (groups[i - 1].count >= groups[i].count)); + + /* group frequency */ + item->frequency = (double) groups[i].count / numrows; + + /* base frequency, if the attributes were independent */ + item->base_frequency = 1.0; + for (j = 0; j < numattrs; j++) + { + int count = 0; + int k; + + for (k = 0; k < ngroups; k++) + { + if (multi_sort_compare_dim(j, &groups[i], &groups[k], mss) == 0) + count += groups[k].count; + } + + item->base_frequency *= (double) count / numrows; + } + } + } + + pfree(items); + pfree(groups); + + return mcvlist; +} + +/* + * build_mss + * build MultiSortSupport for the attributes passed in attrs + */ +static MultiSortSupport +build_mss(VacAttrStats **stats, int numattrs) +{ + int i; + + /* Sort by multiple columns (using array of SortSupport) */ + MultiSortSupport mss = multi_sort_init(numattrs); + + /* prepare the sort functions for all the attributes */ + for (i = 0; i < numattrs; i++) + { + VacAttrStats *colstat = stats[i]; + TypeCacheEntry *type; + + type = lookup_type_cache(colstat->attrtypid, TYPECACHE_LT_OPR); + if (type->lt_opr == InvalidOid) /* shouldn't happen */ + elog(ERROR, "cache lookup failed for ordering operator for type %u", + colstat->attrtypid); + + multi_sort_add_dimension(mss, i, type->lt_opr, type->typcollation); + } + + return mss; +} + +/* + * count_distinct_groups + * count distinct combinations of SortItems in the array + * + * The array is assumed to be sorted according to the MultiSortSupport. + */ +static int +count_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss) +{ + int i; + int ndistinct; + + ndistinct = 1; + for (i = 1; i < numrows; i++) + { + /* make sure the array really is sorted */ + Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0); + + if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0) + ndistinct += 1; + } + + return ndistinct; +} + +/* + * compare_sort_item_count + * comparator for sorting items by count (frequencies) in descending order + */ +static int +compare_sort_item_count(const void *a, const void *b) +{ + SortItem *ia = (SortItem *) a; + SortItem *ib = (SortItem *) b; + + if (ia->count == ib->count) + return 0; + else if (ia->count > ib->count) + return -1; + + return 1; +} + +/* + * build_distinct_groups + * build an array of SortItems for distinct groups and counts matching items + * + * The input array is assumed to be sorted + */ +static SortItem * +build_distinct_groups(int numrows, SortItem *items, MultiSortSupport mss, + int *ndistinct) +{ + int i, + j; + int ngroups = count_distinct_groups(numrows, items, mss); + + SortItem *groups = (SortItem *) palloc(ngroups * sizeof(SortItem)); + + j = 0; + groups[0] = items[0]; + groups[0].count = 1; + + for (i = 1; i < numrows; i++) + { + /* Assume sorted in ascending order. */ + Assert(multi_sort_compare(&items[i], &items[i - 1], mss) >= 0); + + /* New distinct group detected. */ + if (multi_sort_compare(&items[i], &items[i - 1], mss) != 0) + { + groups[++j] = items[i]; + groups[j].count = 0; + } + + groups[j].count++; + } + + /* ensure we filled the expected number of distinct groups */ + Assert(j + 1 == ngroups); + + /* Sort the distinct groups by frequency (in descending order). */ + pg_qsort((void *) groups, ngroups, sizeof(SortItem), + compare_sort_item_count); + + *ndistinct = ngroups; + return groups; +} + + +/* + * statext_mcv_load + * Load the MCV list for the indicated pg_statistic_ext tuple + */ +MCVList * +statext_mcv_load(Oid mvoid) +{ + bool isnull; + Datum mcvlist; + HeapTuple htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(mvoid)); + + if (!HeapTupleIsValid(htup)) + elog(ERROR, "cache lookup failed for statistics object %u", mvoid); + + mcvlist = SysCacheGetAttr(STATEXTOID, htup, + Anum_pg_statistic_ext_stxmcv, &isnull); + + ReleaseSysCache(htup); + + if (isnull) + return NULL; + + return statext_mcv_deserialize(DatumGetByteaP(mcvlist)); +} + + +/* + * Serialize MCV list into a bytea value. + * + * The basic algorithm is simple: + * + * (1) perform deduplication (for each attribute separately) + * (a) collect all (non-NULL) attribute values from all MCV items + * (b) sort the data (using 'lt' from VacAttrStats) + * (c) remove duplicate values from the array + * + * (2) serialize the arrays into a bytea value + * + * (3) process all MCV list items + * (a) replace values with indexes into the arrays + * + * Each attribute has to be processed separately, as we may be mixing different + * datatypes, with different sort operators, etc. + * + * We use uint16 values for the indexes in step (3), as we currently don't allow + * more than 8k MCV items anyway, although that's mostly arbitrary limit. We might + * increase this to 65k and still fit into uint16. Furthermore, this limit is on + * the number of distinct values per column, and we usually have few of those + * (and various combinations of them for the those MCV list). So uint16 seems fine. + * + * We don't really expect the serialization to save as much space as for + * histograms, as we are not doing any bucket splits (which is the source + * of high redundancy in histograms). + * + * TODO: Consider packing boolean flags (NULL) for each item into a single char + * (or a longer type) instead of using an array of bool items. + */ +bytea * +statext_mcv_serialize(MCVList * mcvlist, VacAttrStats **stats) +{ + int i; + int dim; + int ndims = mcvlist->ndimensions; + int itemsize = ITEM_SIZE(ndims); + + SortSupport ssup; + DimensionInfo *info; + + Size total_length; + + /* allocate the item just once */ + char *item = palloc0(itemsize); + + /* serialized items (indexes into arrays, etc.) */ + bytea *output; + char *data = NULL; + + /* values per dimension (and number of non-NULL values) */ + Datum **values = (Datum **) palloc0(sizeof(Datum *) * ndims); + int *counts = (int *) palloc0(sizeof(int) * ndims); + + /* + * We'll include some rudimentary information about the attributes (type + * length, etc.), so that we don't have to look them up while + * deserializing the MCV list. + * + * XXX Maybe this is not a great idea? Or maybe we should actually copy + * more fields, e.g. typeid, which would allow us to display the MCV list + * using only the serialized representation (currently we have to fetch + * this info from the relation). + */ + info = (DimensionInfo *) palloc0(sizeof(DimensionInfo) * ndims); + + /* sort support data for all attributes included in the MCV list */ + ssup = (SortSupport) palloc0(sizeof(SortSupportData) * ndims); + + /* collect and deduplicate values for each dimension (attribute) */ + for (dim = 0; dim < ndims; dim++) + { + int ndistinct; + TypeCacheEntry *typentry; + + /* + * Lookup the LT operator (can't get it from stats extra_data, as we + * don't know how to interpret that - scalar vs. array etc.). + */ + typentry = lookup_type_cache(stats[dim]->attrtypid, TYPECACHE_LT_OPR); + + /* copy important info about the data type (length, by-value) */ + info[dim].typlen = stats[dim]->attrtype->typlen; + info[dim].typbyval = stats[dim]->attrtype->typbyval; + + /* allocate space for values in the attribute and collect them */ + values[dim] = (Datum *) palloc0(sizeof(Datum) * mcvlist->nitems); + + for (i = 0; i < mcvlist->nitems; i++) + { + /* skip NULL values - we don't need to deduplicate those */ + if (mcvlist->items[i]->isnull[dim]) + continue; + + /* append the value at the end */ + values[dim][counts[dim]] = mcvlist->items[i]->values[dim]; + counts[dim] += 1; + } + + /* if there are just NULL values in this dimension, we're done */ + if (counts[dim] == 0) + continue; + + /* sort and deduplicate the data */ + ssup[dim].ssup_cxt = CurrentMemoryContext; + ssup[dim].ssup_collation = DEFAULT_COLLATION_OID; + ssup[dim].ssup_nulls_first = false; + + PrepareSortSupportFromOrderingOp(typentry->lt_opr, &ssup[dim]); + + qsort_arg(values[dim], counts[dim], sizeof(Datum), + compare_scalars_simple, &ssup[dim]); + + /* + * Walk through the array and eliminate duplicate values, but keep the + * ordering (so that we can do bsearch later). We know there's at + * least one item as (counts[dim] != 0), so we can skip the first + * element. + */ + ndistinct = 1; /* number of distinct values */ + for (i = 1; i < counts[dim]; i++) + { + /* expect sorted array */ + Assert(compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim]) <= 0); + + /* if the value is the same as the previous one, we can skip it */ + if (!compare_datums_simple(values[dim][i - 1], values[dim][i], &ssup[dim])) + continue; + + values[dim][ndistinct] = values[dim][i]; + ndistinct += 1; + } + + /* we must not exceed PG_UINT16_MAX, as we use uint16 indexes */ + Assert(ndistinct <= PG_UINT16_MAX); + + /* + * Store additional info about the attribute - number of deduplicated + * values, and also size of the serialized data. For fixed-length data + * types this is trivial to compute, for varwidth types we need to + * actually walk the array and sum the sizes. + */ + info[dim].nvalues = ndistinct; + + if (info[dim].typlen > 0) /* fixed-length data types */ + info[dim].nbytes = info[dim].nvalues * info[dim].typlen; + else if (info[dim].typlen == -1) /* varlena */ + { + info[dim].nbytes = 0; + for (i = 0; i < info[dim].nvalues; i++) + { + values[dim][i] = PointerGetDatum(PG_DETOAST_DATUM(values[dim][i])); + info[dim].nbytes += VARSIZE_ANY(values[dim][i]); + } + } + else if (info[dim].typlen == -2) /* cstring */ + { + info[dim].nbytes = 0; + for (i = 0; i < info[dim].nvalues; i++) + { + /* c-strings include terminator, so +1 byte */ + values[dim][i] = PointerGetDatum(PG_DETOAST_DATUM(values[dim][i])); + info[dim].nbytes += strlen(DatumGetCString(values[dim][i])) + 1; + } + } + + /* we know (count>0) so there must be some data */ + Assert(info[dim].nbytes > 0); + } + + /* + * Now we can finally compute how much space we'll actually need for the + * whole serialized MCV list, as it contains these fields: + * + * - length (4B) for varlena - magic (4B) - type (4B) - ndimensions (4B) - + * nitems (4B) - info (ndim * sizeof(DimensionInfo) - arrays of values for + * each dimension - serialized items (nitems * itemsize) + * + * So the 'header' size is 20B + ndim * sizeof(DimensionInfo) and then we + * will place all the data (values + indexes). We'll however use offsetof + * and sizeof to compute sizes of the structs. + */ + total_length = (sizeof(int32) + offsetof(MCVList, items) + + (ndims * sizeof(DimensionInfo)) + + mcvlist->nitems * itemsize); + + /* add space for the arrays of deduplicated values */ + for (i = 0; i < ndims; i++) + total_length += info[i].nbytes; + + /* allocate space for the serialized MCV list, set header fields */ + output = (bytea *) palloc0(total_length); + SET_VARSIZE(output, total_length); + + /* 'data' points to the current position in the output buffer */ + data = VARDATA(output); + + /* MCV list header (number of items, ...) */ + memcpy(data, mcvlist, offsetof(MCVList, items)); + data += offsetof(MCVList, items); + + /* information about the attributes */ + memcpy(data, info, sizeof(DimensionInfo) * ndims); + data += sizeof(DimensionInfo) * ndims; + + /* Copy the deduplicated values for all attributes to the output. */ + for (dim = 0; dim < ndims; dim++) + { +#ifdef USE_ASSERT_CHECKING + /* remember the starting point for Asserts later */ + char *tmp = data; +#endif + for (i = 0; i < info[dim].nvalues; i++) + { + Datum v = values[dim][i]; + + if (info[dim].typbyval) /* passed by value */ + { + memcpy(data, &v, info[dim].typlen); + data += info[dim].typlen; + } + else if (info[dim].typlen > 0) /* pased by reference */ + { + memcpy(data, DatumGetPointer(v), info[dim].typlen); + data += info[dim].typlen; + } + else if (info[dim].typlen == -1) /* varlena */ + { + int len = VARSIZE_ANY(v); + + memcpy(data, DatumGetPointer(v), len); + data += len; + } + else if (info[dim].typlen == -2) /* cstring */ + { + Size len = strlen(DatumGetCString(v)) + 1; /* terminator */ + + memcpy(data, DatumGetCString(v), len ); + data += len; + } + + /* no underflows or overflows */ + Assert((data > tmp) && ((data - tmp) <= info[dim].nbytes)); + } + + /* + * check we got exactly the amount of data we expected for this + * dimension + */ + Assert((data - tmp) == info[dim].nbytes); + } + + /* Serialize the items, with uint16 indexes instead of the values. */ + for (i = 0; i < mcvlist->nitems; i++) + { + MCVItem *mcvitem = mcvlist->items[i]; + + /* don't write beyond the allocated space */ + Assert(data <= (char *) output + total_length - itemsize); + + /* reset the item (we only allocate it once and reuse it) */ + memset(item, 0, itemsize); + + for (dim = 0; dim < ndims; dim++) + { + Datum *value; + + /* do the lookup only for non-NULL values */ + if (mcvlist->items[i]->isnull[dim]) + continue; + + value = (Datum *) bsearch_arg(&mcvitem->values[dim], values[dim], + info[dim].nvalues, sizeof(Datum), + compare_scalars_simple, &ssup[dim]); + + Assert(value != NULL); /* serialization or deduplication error */ + + /* compute index within the array */ + ITEM_INDEXES(item)[dim] = (uint16) (value - values[dim]); + + /* check the index is within expected bounds */ + Assert(ITEM_INDEXES(item)[dim] >= 0); + Assert(ITEM_INDEXES(item)[dim] < info[dim].nvalues); + } + + /* copy NULL and frequency flags into the item */ + memcpy(ITEM_NULLS(item, ndims), mcvitem->isnull, sizeof(bool) * ndims); + memcpy(ITEM_FREQUENCY(item, ndims), &mcvitem->frequency, sizeof(double)); + memcpy(ITEM_BASE_FREQUENCY(item, ndims), &mcvitem->base_frequency, sizeof(double)); + + /* copy the serialized item into the array */ + memcpy(data, item, itemsize); + + data += itemsize; + } + + /* at this point we expect to match the total_length exactly */ + Assert((data - (char *) output) == total_length); + + pfree(item); + pfree(values); + pfree(counts); + + return output; +} + +/* + * Reads serialized MCV list into MCVList structure. + * + * Unlike with histograms, we deserialize the MCV list fully (i.e. we don't + * keep the deduplicated arrays and pointers into them), as we don't expect + * there to be a lot of duplicate values. But perhaps that's not true and we + * should keep the MCV in serialized form too. + * + * XXX See how much memory we could save by keeping the deduplicated version + * (both for typical and corner cases with few distinct values but many items). + */ +MCVList * +statext_mcv_deserialize(bytea *data) +{ + int dim, + i; + Size expected_size; + MCVList *mcvlist; + char *tmp; + + int ndims, + nitems, + itemsize; + DimensionInfo *info = NULL; + Datum **values = NULL; + + /* local allocation buffer (used only for deserialization) */ + int bufflen; + char *buff; + char *ptr; + + /* buffer used for the result */ + int rbufflen; + char *rbuff; + char *rptr; + + if (data == NULL) + return NULL; + + /* + * We can't possibly deserialize a MCV list if there's not even a complete + * header. + */ + if (VARSIZE_ANY_EXHDR(data) < offsetof(MCVList, items)) + elog(ERROR, "invalid MCV size %ld (expected at least %zu)", + VARSIZE_ANY_EXHDR(data), offsetof(MCVList, items)); + + /* read the MCV list header */ + mcvlist = (MCVList *) palloc0(sizeof(MCVList)); + + /* initialize pointer to the data part (skip the varlena header) */ + tmp = VARDATA_ANY(data); + + /* get the header and perform further sanity checks */ + memcpy(mcvlist, tmp, offsetof(MCVList, items)); + tmp += offsetof(MCVList, items); + + if (mcvlist->magic != STATS_MCV_MAGIC) + elog(ERROR, "invalid MCV magic %u (expected %u)", + mcvlist->magic, STATS_MCV_MAGIC); + + if (mcvlist->type != STATS_MCV_TYPE_BASIC) + elog(ERROR, "invalid MCV type %u (expected %u)", + mcvlist->type, STATS_MCV_TYPE_BASIC); + + if (mcvlist->ndimensions == 0) + elog(ERROR, "invalid zero-length dimension array in MCVList"); + else if ((mcvlist->ndimensions > STATS_MAX_DIMENSIONS) || + (mcvlist->ndimensions < 0)) + elog(ERROR, "invalid length (%d) dimension array in MCVList", + mcvlist->ndimensions); + + if (mcvlist->nitems == 0) + elog(ERROR, "invalid zero-length item array in MCVList"); + else if (mcvlist->nitems > STATS_MCVLIST_MAX_ITEMS) + elog(ERROR, "invalid length (%u) item array in MCVList", + mcvlist->nitems); + + nitems = mcvlist->nitems; + ndims = mcvlist->ndimensions; + itemsize = ITEM_SIZE(ndims); + + /* + * Check amount of data including DimensionInfo for all dimensions and + * also the serialized items (including uint16 indexes). Also, walk + * through the dimension information and add it to the sum. + */ + expected_size = offsetof(MCVList, items) + + ndims * sizeof(DimensionInfo) + + (nitems * itemsize); + + /* + * Check that we have at least the dimension and info records, along with + * the items. We don't know the size of the serialized values yet. We need + * to do this check first, before accessing the dimension info. + */ + if (VARSIZE_ANY_EXHDR(data) < expected_size) + elog(ERROR, "invalid MCV size %ld (expected %zu)", + VARSIZE_ANY_EXHDR(data), expected_size); + + /* Now it's safe to access the dimension info. */ + info = (DimensionInfo *) (tmp); + tmp += ndims * sizeof(DimensionInfo); + + /* account for the value arrays */ + for (dim = 0; dim < ndims; dim++) + { + /* + * XXX I wonder if we can/should rely on asserts here. Maybe those + * checks should be done every time? + */ + Assert(info[dim].nvalues >= 0); + Assert(info[dim].nbytes >= 0); + + expected_size += info[dim].nbytes; + } + + /* + * Now we know the total expected MCV size, including all the pieces + * (header, dimension info. items and deduplicated data). So do the final + * check on size. + */ + if (VARSIZE_ANY_EXHDR(data) != expected_size) + elog(ERROR, "invalid MCV size %ld (expected %zu)", + VARSIZE_ANY_EXHDR(data), expected_size); + + /* + * Allocate one large chunk of memory for the intermediate data, needed + * only for deserializing the MCV list (and allocate densely to minimize + * the palloc overhead). + * + * Let's see how much space we'll actually need, and also include space + * for the array with pointers. + * + * We need an array of Datum pointers values for each dimension, so that + * we can easily translate the uint16 indexes. We also need a top-level + * array of pointers to those per-dimension arrays. + * + * For byval types with size matching sizeof(Datum) we can reuse the + * serialized array directly. + */ + bufflen = sizeof(Datum **) * ndims; /* space for top-level pointers */ + + for (dim = 0; dim < ndims; dim++) + { + /* for full-size byval types, we reuse the serialized value */ + if (!(info[dim].typbyval && info[dim].typlen == sizeof(Datum))) + bufflen += (sizeof(Datum) * info[dim].nvalues); + } + + buff = palloc0(bufflen); + ptr = buff; + + values = (Datum **) buff; + ptr += (sizeof(Datum *) * ndims); + + /* + * XXX This uses pointers to the original data array (the types not passed + * by value), so when someone frees the memory, e.g. by doing something + * like this: + * + * bytea * data = ... fetch the data from catalog ... + * + * MCVList mcvlist = deserialize_mcv_list(data); + * + * pfree(data); + * + * then 'mcvlist' references the freed memory. Should copy the pieces. + */ + for (dim = 0; dim < ndims; dim++) + { +#ifdef USE_ASSERT_CHECKING + /* remember where data for this dimension starts */ + char *start = tmp; +#endif + if (info[dim].typbyval) + { + /* passed by value / size matches Datum - just reuse the array */ + if (info[dim].typlen == sizeof(Datum)) + { + values[dim] = (Datum *) tmp; + tmp += info[dim].nbytes; + + /* no overflow of input array */ + Assert(tmp <= start + info[dim].nbytes); + } + else + { + values[dim] = (Datum *) ptr; + ptr += (sizeof(Datum) * info[dim].nvalues); + + for (i = 0; i < info[dim].nvalues; i++) + { + /* just point into the array */ + memcpy(&values[dim][i], tmp, info[dim].typlen); + tmp += info[dim].typlen; + + /* no overflow of input array */ + Assert(tmp <= start + info[dim].nbytes); + } + } + } + else + { + /* all the other types need a chunk of the buffer */ + values[dim] = (Datum *) ptr; + ptr += (sizeof(Datum) * info[dim].nvalues); + + /* passed by reference, but fixed length (name, tid, ...) */ + if (info[dim].typlen > 0) + { + for (i = 0; i < info[dim].nvalues; i++) + { + /* just point into the array */ + values[dim][i] = PointerGetDatum(tmp); + tmp += info[dim].typlen; + + /* no overflow of input array */ + Assert(tmp <= start + info[dim].nbytes); + } + } + else if (info[dim].typlen == -1) + { + /* varlena */ + for (i = 0; i < info[dim].nvalues; i++) + { + /* just point into the array */ + values[dim][i] = PointerGetDatum(tmp); + tmp += VARSIZE_ANY(tmp); + + /* no overflow of input array */ + Assert(tmp <= start + info[dim].nbytes); + } + } + else if (info[dim].typlen == -2) + { + /* cstring */ + for (i = 0; i < info[dim].nvalues; i++) + { + /* just point into the array */ + values[dim][i] = PointerGetDatum(tmp); + tmp += (strlen(tmp) + 1); /* don't forget the \0 */ + + /* no overflow of input array */ + Assert(tmp <= start + info[dim].nbytes); + } + } + } + + /* check we consumed the serialized data for this dimension exactly */ + Assert((tmp - start) == info[dim].nbytes); + } + + /* we should have exhausted the buffer exactly */ + Assert((ptr - buff) == bufflen); + + /* allocate space for all the MCV items in a single piece */ + rbufflen = (sizeof(MCVItem *) + sizeof(MCVItem) + + sizeof(Datum) * ndims + sizeof(bool) * ndims) * nitems; + + rbuff = palloc0(rbufflen); + rptr = rbuff; + + mcvlist->items = (MCVItem * *) rbuff; + rptr += (sizeof(MCVItem *) * nitems); + + /* deserialize the MCV items and translate the indexes to Datums */ + for (i = 0; i < nitems; i++) + { + uint16 *indexes = NULL; + MCVItem *item = (MCVItem *) rptr; + + rptr += (sizeof(MCVItem)); + + item->values = (Datum *) rptr; + rptr += (sizeof(Datum) * ndims); + + item->isnull = (bool *) rptr; + rptr += (sizeof(bool) * ndims); + + /* just point to the right place */ + indexes = ITEM_INDEXES(tmp); + + memcpy(item->isnull, ITEM_NULLS(tmp, ndims), sizeof(bool) * ndims); + memcpy(&item->frequency, ITEM_FREQUENCY(tmp, ndims), sizeof(double)); + memcpy(&item->base_frequency, ITEM_BASE_FREQUENCY(tmp, ndims), sizeof(double)); + + /* translate the values */ + for (dim = 0; dim < ndims; dim++) + if (!item->isnull[dim]) + item->values[dim] = values[dim][indexes[dim]]; + + mcvlist->items[i] = item; + + tmp += ITEM_SIZE(ndims); + + /* check we're not overflowing the input */ + Assert(tmp <= (char *) data + VARSIZE_ANY(data)); + } + + /* check that we processed all the data */ + Assert(tmp == (char *) data + VARSIZE_ANY(data)); + + /* release the temporary buffer */ + pfree(buff); + + return mcvlist; +} + +/* + * SRF with details about buckets of a histogram: + * + * - item ID (0...nitems) + * - values (string array) + * - nulls only (boolean array) + * - frequency (double precision) + * - base_frequency (double precision) + * + * The input is the OID of the statistics, and there are no rows returned if + * the statistics contains no histogram. + */ +Datum +pg_stats_ext_mcvlist_items(PG_FUNCTION_ARGS) +{ + FuncCallContext *funcctx; + int call_cntr; + int max_calls; + AttInMetadata *attinmeta; + + /* stuff done only on the first call of the function */ + if (SRF_IS_FIRSTCALL()) + { + MemoryContext oldcontext; + MCVList *mcvlist; + TupleDesc tupdesc; + + /* create a function context for cross-call persistence */ + funcctx = SRF_FIRSTCALL_INIT(); + + /* switch to memory context appropriate for multiple function calls */ + oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); + + mcvlist = statext_mcv_deserialize(PG_GETARG_BYTEA_P(0)); + + funcctx->user_fctx = mcvlist; + + /* total number of tuples to be returned */ + funcctx->max_calls = 0; + if (funcctx->user_fctx != NULL) + funcctx->max_calls = mcvlist->nitems; + + /* Build a tuple descriptor for our result type */ + if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE) + ereport(ERROR, + (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), + errmsg("function returning record called in context " + "that cannot accept type record"))); + + /* + * generate attribute metadata needed later to produce tuples from raw + * C strings + */ + attinmeta = TupleDescGetAttInMetadata(tupdesc); + funcctx->attinmeta = attinmeta; + + MemoryContextSwitchTo(oldcontext); + } + + /* stuff done on every call of the function */ + funcctx = SRF_PERCALL_SETUP(); + + call_cntr = funcctx->call_cntr; + max_calls = funcctx->max_calls; + attinmeta = funcctx->attinmeta; + + if (call_cntr < max_calls) /* do when there is more left to send */ + { + char **values; + HeapTuple tuple; + Datum result; + + StringInfoData itemValues; + StringInfoData itemNulls; + + int i; + + Oid *outfuncs; + FmgrInfo *fmgrinfo; + + MCVList *mcvlist; + MCVItem *item; + + mcvlist = (MCVList *) funcctx->user_fctx; + + Assert(call_cntr < mcvlist->nitems); + + item = mcvlist->items[call_cntr]; + + /* + * Prepare a values array for building the returned tuple. This should + * be an array of C strings which will be processed later by the type + * input functions. + */ + values = (char **) palloc0(5 * sizeof(char *)); + + values[0] = (char *) palloc(64 * sizeof(char)); /* item index */ + values[3] = (char *) palloc(64 * sizeof(char)); /* frequency */ + values[4] = (char *) palloc(64 * sizeof(char)); /* base frequency */ + + outfuncs = (Oid *) palloc0(sizeof(Oid) * mcvlist->ndimensions); + fmgrinfo = (FmgrInfo *) palloc0(sizeof(FmgrInfo) * mcvlist->ndimensions); + + for (i = 0; i < mcvlist->ndimensions; i++) + { + bool isvarlena; + + getTypeOutputInfo(mcvlist->types[i], &outfuncs[i], &isvarlena); + + fmgr_info(outfuncs[i], &fmgrinfo[i]); + } + + /* build the arrays of values / nulls */ + initStringInfo(&itemValues); + initStringInfo(&itemNulls); + + appendStringInfoChar(&itemValues, '{'); + appendStringInfoChar(&itemNulls, '{'); + + for (i = 0; i < mcvlist->ndimensions; i++) + { + Datum val, + valout; + + if (i > 0) + { + appendStringInfoString(&itemValues, ", "); + appendStringInfoString(&itemNulls, ", "); + } + + if (item->isnull[i]) + valout = CStringGetDatum("NULL"); + else + { + val = item->values[i]; + valout = FunctionCall1(&fmgrinfo[i], val); + } + + appendStringInfoString(&itemValues, DatumGetCString(valout)); + appendStringInfoString(&itemNulls, item->isnull[i] ? "t" : "f"); + } + + appendStringInfoChar(&itemValues, '}'); + appendStringInfoChar(&itemNulls, '}'); + + snprintf(values[0], 64, "%d", call_cntr); + snprintf(values[3], 64, "%f", item->frequency); + snprintf(values[4], 64, "%f", item->base_frequency); + + values[1] = itemValues.data; + values[2] = itemNulls.data; + + /* build a tuple */ + tuple = BuildTupleFromCStrings(attinmeta, values); + + /* make the tuple into a datum */ + result = HeapTupleGetDatum(tuple); + + /* clean up (this is not really necessary) */ + pfree(itemValues.data); + pfree(itemNulls.data); + + pfree(values[0]); + pfree(values[3]); + pfree(values[4]); + pfree(values); + + SRF_RETURN_NEXT(funcctx, result); + } + else /* do when there is no more left */ + { + SRF_RETURN_DONE(funcctx); + } +} + +/* + * pg_mcv_list_in - input routine for type pg_mcv_list. + * + * pg_mcv_list is real enough to be a table column, but it has no operations + * of its own, and disallows input too + */ +Datum +pg_mcv_list_in(PG_FUNCTION_ARGS) +{ + /* + * pg_mcv_list stores the data in binary form and parsing text input is + * not needed, so disallow this. + */ + ereport(ERROR, + (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), + errmsg("cannot accept a value of type %s", "pg_mcv_list"))); + + PG_RETURN_VOID(); /* keep compiler quiet */ +} + + +/* + * pg_mcv_list_out - output routine for type PG_MCV_LIST. + * + * MCV lists are serialized into a bytea value, so we simply call byteaout() + * to serialize the value into text. But it'd be nice to serialize that into + * a meaningful representation (e.g. for inspection by people). + * + * XXX This should probably return something meaningful, similar to what + * pg_dependencies_out does. Not sure how to deal with the deduplicated + * values, though - do we want to expand that or not? + */ +Datum +pg_mcv_list_out(PG_FUNCTION_ARGS) +{ + return byteaout(fcinfo); +} + +/* + * pg_mcv_list_recv - binary input routine for type pg_mcv_list. + */ +Datum +pg_mcv_list_recv(PG_FUNCTION_ARGS) +{ + ereport(ERROR, + (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), + errmsg("cannot accept a value of type %s", "pg_mcv_list"))); + + PG_RETURN_VOID(); /* keep compiler quiet */ +} + +/* + * pg_mcv_list_send - binary output routine for type pg_mcv_list. + * + * MCV lists are serialized in a bytea value (although the type is named + * differently), so let's just send that. + */ +Datum +pg_mcv_list_send(PG_FUNCTION_ARGS) +{ + return byteasend(fcinfo); +} + +/* + * mcv_get_match_bitmap + * Evaluate clauses using the MCV list, and update the match bitmap. + * + * A match bitmap keeps match/mismatch status for each MCV item, and we + * update it based on additional clauses. We also use it to skip items + * that can't possibly match (e.g. item marked as "mismatch" can't change + * to "match" when evaluating AND clause list). + * + * The function also returns a flag indicating whether there was an + * equality condition for all attributes, the minimum frequency in the MCV + * list, and a total MCV frequency (sum of frequencies for all items). + * + * XXX Currently the match bitmap uses a bool for each MCV item, which is + * somewhat wasteful as we could do with just a single bit, thus reducing + * the size to ~1/8. It would also allow us to combine bitmaps simply using + * & and |, which should be faster than min/max. The bitmaps are fairly + * small, though (as we cap the MCV list size to 8k items). + */ +static bool * +mcv_get_match_bitmap(PlannerInfo *root, List *clauses, + Bitmapset *keys, MCVList * mcvlist, bool is_or) +{ + int i; + ListCell *l; + bool *matches; + + /* The bitmap may be partially built. */ + Assert(clauses != NIL); + Assert(list_length(clauses) >= 1); + Assert(mcvlist != NULL); + Assert(mcvlist->nitems > 0); + Assert(mcvlist->nitems <= STATS_MCVLIST_MAX_ITEMS); + + matches = palloc(sizeof(bool) * mcvlist->nitems); + memset(matches, (is_or) ? false : true, + sizeof(bool) * mcvlist->nitems); + + /* + * Loop through the list of clauses, and for each of them evaluate all the + * MCV items not yet eliminated by the preceding clauses. + */ + foreach(l, clauses) + { + Node *clause = (Node *) lfirst(l); + + /* if it's a RestrictInfo, then extract the clause */ + if (IsA(clause, RestrictInfo)) + clause = (Node *) ((RestrictInfo *) clause)->clause; + + /* + * Handle the various types of clauses - OpClause, NullTest and + * AND/OR/NOT + */ + if (is_opclause(clause)) + { + OpExpr *expr = (OpExpr *) clause; + bool varonleft = true; + bool ok; + FmgrInfo opproc; + + /* get procedure computing operator selectivity */ + RegProcedure oprrest = get_oprrest(expr->opno); + + fmgr_info(get_opcode(expr->opno), &opproc); + + ok = (NumRelids(clause) == 1) && + (is_pseudo_constant_clause(lsecond(expr->args)) || + (varonleft = false, + is_pseudo_constant_clause(linitial(expr->args)))); + + if (ok) + { + TypeCacheEntry *typecache; + FmgrInfo gtproc; + Var *var; + Const *cst; + bool isgt; + int idx; + + /* extract the var and const from the expression */ + var = (varonleft) ? linitial(expr->args) : lsecond(expr->args); + cst = (varonleft) ? lsecond(expr->args) : linitial(expr->args); + isgt = (!varonleft); + + /* strip binary-compatible relabeling */ + if (IsA(var, RelabelType)) + var = (Var *) ((RelabelType *) var)->arg; + + /* match the attribute to a dimension of the statistic */ + idx = bms_member_index(keys, var->varattno); + + /* get information about the >= procedure */ + typecache = lookup_type_cache(var->vartype, TYPECACHE_GT_OPR); + fmgr_info(get_opcode(typecache->gt_opr), >proc); + + /* + * Walk through the MCV items and evaluate the current clause. + * We can skip items that were already ruled out, and + * terminate if there are no remaining MCV items that might + * possibly match. + */ + for (i = 0; i < mcvlist->nitems; i++) + { + bool mismatch = false; + MCVItem *item = mcvlist->items[i]; + + /* + * For AND-lists, we can also mark NULL items as 'no + * match' (and then skip them). For OR-lists this is not + * possible. + */ + if ((!is_or) && item->isnull[idx]) + matches[i] = false; + + /* skip MCV items that were already ruled out */ + if ((!is_or) && (matches[i] == false)) + continue; + else if (is_or && (matches[i] == true)) + continue; + + switch (oprrest) + { + case F_EQSEL: + case F_NEQSEL: + + /* + * We don't care about isgt in equality, because + * it does not matter whether it's (var op const) + * or (const op var). + */ + mismatch = !DatumGetBool(FunctionCall2Coll(&opproc, + DEFAULT_COLLATION_OID, + cst->constvalue, + item->values[idx])); + + break; + + case F_SCALARLTSEL: /* column < constant */ + case F_SCALARLESEL: /* column <= constant */ + case F_SCALARGTSEL: /* column > constant */ + case F_SCALARGESEL: /* column >= constant */ + + /* + * First check whether the constant is below the + * lower boundary (in that case we can skip the + * bucket, because there's no overlap). + */ + if (isgt) + mismatch = !DatumGetBool(FunctionCall2Coll(&opproc, + DEFAULT_COLLATION_OID, + cst->constvalue, + item->values[idx])); + else + mismatch = !DatumGetBool(FunctionCall2Coll(&opproc, + DEFAULT_COLLATION_OID, + item->values[idx], + cst->constvalue)); + + break; + } + + /* + * XXX The conditions on matches[i] are not needed, as we + * skip MCV items that can't become true/false, depending + * on the current flag. See beginning of the loop over MCV + * items. + */ + + if ((is_or) && (!mismatch)) + { + /* OR - was not a match before, matches now */ + matches[i] = true; + continue; + } + else if ((!is_or) && mismatch) + { + /* AND - was a match before, does not match anymore */ + matches[i] = false; + continue; + } + + } + } + } + else if (IsA(clause, NullTest)) + { + NullTest *expr = (NullTest *) clause; + Var *var = (Var *) (expr->arg); + + /* match the attribute to a dimension of the statistic */ + int idx = bms_member_index(keys, var->varattno); + + /* + * Walk through the MCV items and evaluate the current clause. We + * can skip items that were already ruled out, and terminate if + * there are no remaining MCV items that might possibly match. + */ + for (i = 0; i < mcvlist->nitems; i++) + { + bool match = false; /* assume mismatch */ + MCVItem *item = mcvlist->items[i]; + + /* if the clause mismatches the MCV item, update the bitmap */ + switch (expr->nulltesttype) + { + case IS_NULL: + match = (item->isnull[idx]) ? true : match; + break; + + case IS_NOT_NULL: + match = (!item->isnull[idx]) ? true : match; + break; + } + + /* now, update the match bitmap, depending on OR/AND type */ + if (is_or) + matches[i] = Max(matches[i], match); + else + matches[i] = Min(matches[i], match); + } + } + else if (is_orclause(clause) || is_andclause(clause)) + { + /* AND/OR clause, with all subclauses being compatible */ + + int i; + BoolExpr *bool_clause = ((BoolExpr *) clause); + List *bool_clauses = bool_clause->args; + + /* match/mismatch bitmap for each MCV item */ + bool *bool_matches = NULL; + + Assert(bool_clauses != NIL); + Assert(list_length(bool_clauses) >= 2); + + /* build the match bitmap for the OR-clauses */ + bool_matches = mcv_get_match_bitmap(root, bool_clauses, keys, + mcvlist, is_orclause(clause)); + + /* + * Merge the bitmap produced by mcv_get_match_bitmap into the + * current one. We need to consider if we're evaluating AND or OR + * condition when merging the results. + */ + for (i = 0; i < mcvlist->nitems; i++) + { + /* Is this OR or AND clause? */ + if (is_or) + matches[i] = Max(matches[i], bool_matches[i]); + else + matches[i] = Min(matches[i], bool_matches[i]); + } + + pfree(bool_matches); + } + else if (is_notclause(clause)) + { + /* NOT clause, with all subclauses compatible */ + + int i; + BoolExpr *not_clause = ((BoolExpr *) clause); + List *not_args = not_clause->args; + + /* match/mismatch bitmap for each MCV item */ + bool *not_matches = NULL; + + Assert(not_args != NIL); + Assert(list_length(not_args) == 1); + + /* build the match bitmap for the NOT-clause */ + not_matches = mcv_get_match_bitmap(root, not_args, keys, + mcvlist, false); + + /* + * Merge the bitmap produced by mcv_get_match_bitmap into the + * current one. + */ + for (i = 0; i < mcvlist->nitems; i++) + { + /* + * When handling a NOT clause, we need to invert the result + * before merging it into the global result. + */ + if (not_matches[i] == false) + not_matches[i] = true; + else + not_matches[i] = false; + + /* Is this OR or AND clause? */ + if (is_or) + matches[i] = Max(matches[i], not_matches[i]); + else + matches[i] = Min(matches[i], not_matches[i]); + } + + pfree(not_matches); + } + else if (IsA(clause, Var)) + { + /* Var (has to be a boolean Var, possibly from below NOT) */ + + Var *var = (Var *) (clause); + + /* match the attribute to a dimension of the statistic */ + int idx = bms_member_index(keys, var->varattno); + + Assert(var->vartype == BOOLOID); + + /* + * Walk through the MCV items and evaluate the current clause. We + * can skip items that were already ruled out, and terminate if + * there are no remaining MCV items that might possibly match. + */ + for (i = 0; i < mcvlist->nitems; i++) + { + MCVItem *item = mcvlist->items[i]; + bool match = false; + + /* if the item is NULL, it's a mismatch */ + if (!item->isnull[idx] && DatumGetBool(item->values[idx])) + match = true; + + /* now, update the match bitmap, depending on OR/AND type */ + if (is_or) + matches[i] = Max(matches[i], match); + else + matches[i] = Min(matches[i], match); + } + } + else + { + elog(ERROR, "unknown clause type: %d", clause->type); + } + } + + return matches; +} + + +/* + * mcv_clauselist_selectivity + * Return the selectivity estimate computed using an MCV list. + * + * First builds a bitmap of MCV items matching the clauses, and then sums + * the frequencies of matching items. + * + * It also produces two additional interesting selectivities - total + * selectivity of all the MCV items (not just the matching ones), and the + * base frequency computed on the assumption of independence. + */ +Selectivity +mcv_clauselist_selectivity(PlannerInfo *root, StatisticExtInfo *stat, + List *clauses, int varRelid, + JoinType jointype, SpecialJoinInfo *sjinfo, + RelOptInfo *rel, + Selectivity *basesel, Selectivity *totalsel) +{ + int i; + MCVList *mcv; + Selectivity s = 0.0; + + /* match/mismatch bitmap for each MCV item */ + bool *matches = NULL; + + /* load the MCV list stored in the statistics object */ + mcv = statext_mcv_load(stat->statOid); + + /* build a match bitmap for the clauses */ + matches = mcv_get_match_bitmap(root, clauses, stat->keys, mcv, false); + + /* sum frequencies for all the matching MCV items */ + *basesel = 0.0; + *totalsel = 0.0; + for (i = 0; i < mcv->nitems; i++) + { + *totalsel += mcv->items[i]->frequency; + + if (matches[i] != false) + { + /* XXX Shouldn't the basesel be outside the if condition? */ + *basesel += mcv->items[i]->base_frequency; + s += mcv->items[i]->frequency; + } + } + + return s; +} |