diff options
Diffstat (limited to 'contrib/seg/seg.c')
-rw-r--r-- | contrib/seg/seg.c | 1391 |
1 files changed, 737 insertions, 654 deletions
diff --git a/contrib/seg/seg.c b/contrib/seg/seg.c index 1609b42b1ea..3ed79263891 100644 --- a/contrib/seg/seg.c +++ b/contrib/seg/seg.c @@ -16,79 +16,80 @@ #include "segdata.h" -#define max(a,b) ((a) > (b) ? (a) : (b)) -#define min(a,b) ((a) <= (b) ? (a) : (b)) -#define abs(a) ((a) < (0) ? (-a) : (a)) +#define max(a,b) ((a) > (b) ? (a) : (b)) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define abs(a) ((a) < (0) ? (-a) : (a)) -/* +/* #define GIST_DEBUG -#define GIST_QUERY_DEBUG +#define GIST_QUERY_DEBUG */ -extern void set_parse_buffer(char *str); -extern int seg_yyparse(); +extern void set_parse_buffer(char *str); +extern int seg_yyparse(); + /* -extern int seg_yydebug; +extern int seg_yydebug; */ /* ** Input/Output routines */ -SEG * seg_in(char *str); -char * seg_out(SEG *seg); -float32 seg_lower(SEG *seg); -float32 seg_upper(SEG *seg); -float32 seg_center(SEG *seg); +SEG *seg_in(char *str); +char *seg_out(SEG * seg); +float32 seg_lower(SEG * seg); +float32 seg_upper(SEG * seg); +float32 seg_center(SEG * seg); -/* +/* ** GiST support methods */ -bool gseg_consistent(GISTENTRY *entry, SEG *query, StrategyNumber strategy); -GISTENTRY * gseg_compress(GISTENTRY *entry); -GISTENTRY * gseg_decompress(GISTENTRY *entry); -float * gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result); -GIST_SPLITVEC * gseg_picksplit(bytea *entryvec, GIST_SPLITVEC *v); -bool gseg_leaf_consistent(SEG *key, SEG *query, StrategyNumber strategy); -bool gseg_internal_consistent(SEG *key, SEG *query, StrategyNumber strategy); -SEG * gseg_union(bytea *entryvec, int *sizep); -SEG * gseg_binary_union(SEG *r1, SEG *r2, int *sizep); -bool * gseg_same(SEG *b1, SEG *b2, bool *result); +bool gseg_consistent(GISTENTRY *entry, SEG * query, StrategyNumber strategy); +GISTENTRY *gseg_compress(GISTENTRY *entry); +GISTENTRY *gseg_decompress(GISTENTRY *entry); +float *gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result); +GIST_SPLITVEC *gseg_picksplit(bytea *entryvec, GIST_SPLITVEC *v); +bool gseg_leaf_consistent(SEG * key, SEG * query, StrategyNumber strategy); +bool gseg_internal_consistent(SEG * key, SEG * query, StrategyNumber strategy); +SEG *gseg_union(bytea *entryvec, int *sizep); +SEG *gseg_binary_union(SEG * r1, SEG * r2, int *sizep); +bool *gseg_same(SEG * b1, SEG * b2, bool *result); /* ** R-tree suport functions */ -bool seg_same(SEG *a, SEG *b); -bool seg_contains_int(SEG *a, int *b); -bool seg_contains_float4(SEG *a, float4 *b); -bool seg_contains_float8(SEG *a, float8 *b); -bool seg_contains(SEG *a, SEG *b); -bool seg_contained(SEG *a, SEG *b); -bool seg_overlap(SEG *a, SEG *b); -bool seg_left(SEG *a, SEG *b); -bool seg_over_left(SEG *a, SEG *b); -bool seg_right(SEG *a, SEG *b); -bool seg_over_right(SEG *a, SEG *b); -SEG * seg_union(SEG *a, SEG *b); -SEG * seg_inter(SEG *a, SEG *b); -void rt_seg_size(SEG *a, float* sz); -float * seg_size(SEG *a); +bool seg_same(SEG * a, SEG * b); +bool seg_contains_int(SEG * a, int *b); +bool seg_contains_float4(SEG * a, float4 *b); +bool seg_contains_float8(SEG * a, float8 *b); +bool seg_contains(SEG * a, SEG * b); +bool seg_contained(SEG * a, SEG * b); +bool seg_overlap(SEG * a, SEG * b); +bool seg_left(SEG * a, SEG * b); +bool seg_over_left(SEG * a, SEG * b); +bool seg_right(SEG * a, SEG * b); +bool seg_over_right(SEG * a, SEG * b); +SEG *seg_union(SEG * a, SEG * b); +SEG *seg_inter(SEG * a, SEG * b); +void rt_seg_size(SEG * a, float *sz); +float *seg_size(SEG * a); /* ** Various operators */ -int32 seg_cmp(SEG *a, SEG *b); -bool seg_lt(SEG *a, SEG *b); -bool seg_le(SEG *a, SEG *b); -bool seg_gt(SEG *a, SEG *b); -bool seg_ge(SEG *a, SEG *b); -bool seg_different(SEG *a, SEG *b); - -/* +int32 seg_cmp(SEG * a, SEG * b); +bool seg_lt(SEG * a, SEG * b); +bool seg_le(SEG * a, SEG * b); +bool seg_gt(SEG * a, SEG * b); +bool seg_ge(SEG * a, SEG * b); +bool seg_different(SEG * a, SEG * b); + +/* ** Auxiliary funxtions */ -static int restore(char *s, float val, int n); -int significant_digits (char* s); +static int restore(char *s, float val, int n); +int significant_digits(char *s); /***************************************************************************** @@ -98,104 +99,113 @@ int significant_digits (char* s); SEG * seg_in(char *str) { - SEG * result = palloc(sizeof(SEG)); - set_parse_buffer( str ); - - /* - seg_yydebug = 1; - */ - if ( seg_yyparse(result) != 0 ) { - pfree ( result ); - return NULL; - } - return ( result ); + SEG *result = palloc(sizeof(SEG)); + + set_parse_buffer(str); + + /* + * seg_yydebug = 1; + */ + if (seg_yyparse(result) != 0) + { + pfree(result); + return NULL; + } + return (result); } /* * You might have noticed a slight inconsistency between the following * declaration and the SQL definition: - * CREATE FUNCTION seg_out(opaque) RETURNS opaque ... + * CREATE FUNCTION seg_out(opaque) RETURNS opaque ... * The reason is that the argument passed into seg_out is really just a * pointer. POSTGRES thinks all output functions are: - * char *out_func(char *); + * char *out_func(char *); */ char * -seg_out(SEG *seg) +seg_out(SEG * seg) { - char *result; - char *p; - - if (seg == NULL) return(NULL); - - p = result = (char *) palloc(40); - - if ( seg->l_ext == '>' || seg->l_ext == '<' || seg->l_ext == '~' ) { - p += sprintf(p, "%c", seg->l_ext); - } - - if ( seg->lower == seg->upper && seg->l_ext == seg->u_ext ) { - /* indicates that this interval was built by seg_in off a single point */ - p += restore(p, seg->lower, seg->l_sigd); - } - else { - if ( seg->l_ext != '-' ) { - /* print the lower boudary if exists */ - p += restore(p, seg->lower, seg->l_sigd); - p += sprintf(p, " "); - } - p += sprintf(p, ".."); - if ( seg->u_ext != '-' ) { - /* print the upper boudary if exists */ - p += sprintf(p, " "); - if ( seg->u_ext == '>' || seg->u_ext == '<' || seg->l_ext == '~' ) { - p += sprintf(p, "%c", seg->u_ext); + char *result; + char *p; + + if (seg == NULL) + return (NULL); + + p = result = (char *) palloc(40); + + if (seg->l_ext == '>' || seg->l_ext == '<' || seg->l_ext == '~') + p += sprintf(p, "%c", seg->l_ext); + + if (seg->lower == seg->upper && seg->l_ext == seg->u_ext) + { + + /* + * indicates that this interval was built by seg_in off a single + * point + */ + p += restore(p, seg->lower, seg->l_sigd); + } + else + { + if (seg->l_ext != '-') + { + /* print the lower boudary if exists */ + p += restore(p, seg->lower, seg->l_sigd); + p += sprintf(p, " "); + } + p += sprintf(p, ".."); + if (seg->u_ext != '-') + { + /* print the upper boudary if exists */ + p += sprintf(p, " "); + if (seg->u_ext == '>' || seg->u_ext == '<' || seg->l_ext == '~') + p += sprintf(p, "%c", seg->u_ext); + p += restore(p, seg->upper, seg->u_sigd); + } } - p += restore(p, seg->upper, seg->u_sigd); - } - } - return(result); + return (result); } float32 -seg_center(SEG *seg) +seg_center(SEG * seg) { - float32 result = (float32) palloc(sizeof(float32data)); + float32 result = (float32) palloc(sizeof(float32data)); - if (!seg) - return (float32) NULL; + if (!seg) + return (float32) NULL; - *result = ((float)seg->lower + (float)seg->upper)/2.0; - return (result); + *result = ((float) seg->lower + (float) seg->upper) / 2.0; + return (result); } float32 -seg_lower(SEG *seg) +seg_lower(SEG * seg) { - float32 result = (float32) palloc(sizeof(float32data)); + float32 result = (float32) palloc(sizeof(float32data)); - if (!seg) - return (float32) NULL; + if (!seg) + return (float32) NULL; - *result = (float)seg->lower; - return (result); + *result = (float) seg->lower; + return (result); } float32 -seg_upper(SEG *seg) +seg_upper(SEG * seg) { - float32 result = (float32) palloc(sizeof(float32data)); + float32 result = (float32) palloc(sizeof(float32data)); - if (!seg) - return (float32) NULL; + if (!seg) + return (float32) NULL; - *result = (float)seg->upper; - return (result); + *result = (float) seg->upper; + return (result); } /***************************************************************************** - * GiST functions + * GiST functions *****************************************************************************/ /* @@ -204,19 +214,20 @@ seg_upper(SEG *seg) ** the predicate x op query == FALSE, where op is the oper ** corresponding to strategy in the pg_amop table. */ -bool +bool gseg_consistent(GISTENTRY *entry, - SEG *query, - StrategyNumber strategy) + SEG * query, + StrategyNumber strategy) { - /* - ** if entry is not leaf, use gseg_internal_consistent, - ** else use gseg_leaf_consistent - */ - if (GIST_LEAF(entry)) - return(gseg_leaf_consistent((SEG *)(entry->pred), query, strategy)); - else - return(gseg_internal_consistent((SEG *)(entry->pred), query, strategy)); + + /* + * * if entry is not leaf, use gseg_internal_consistent, * else use + * gseg_leaf_consistent + */ + if (GIST_LEAF(entry)) + return (gseg_leaf_consistent((SEG *) (entry->pred), query, strategy)); + else + return (gseg_internal_consistent((SEG *) (entry->pred), query, strategy)); } /* @@ -226,49 +237,54 @@ gseg_consistent(GISTENTRY *entry, SEG * gseg_union(bytea *entryvec, int *sizep) { - int numranges, i; - SEG *out = (SEG *)NULL; - SEG *tmp; + int numranges, + i; + SEG *out = (SEG *) NULL; + SEG *tmp; #ifdef GIST_DEBUG - fprintf(stderr, "union\n"); + fprintf(stderr, "union\n"); #endif - numranges = (VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY); - tmp = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[0]).pred; - *sizep = sizeof(SEG); + numranges = (VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY); + tmp = (SEG *) (((GISTENTRY *) (VARDATA(entryvec)))[0]).pred; + *sizep = sizeof(SEG); - for (i = 1; i < numranges; i++) { - out = gseg_binary_union(tmp, (SEG *) - (((GISTENTRY *)(VARDATA(entryvec)))[i]).pred, - sizep); + for (i = 1; i < numranges; i++) + { + out = gseg_binary_union(tmp, (SEG *) + (((GISTENTRY *) (VARDATA(entryvec)))[i]).pred, + sizep); #ifdef GIST_DEBUG - /* - fprintf(stderr, "\t%s ^ %s -> %s\n", seg_out(tmp), seg_out((SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[i]).pred), seg_out(out)); - */ + + /* + * fprintf(stderr, "\t%s ^ %s -> %s\n", seg_out(tmp), seg_out((SEG + * *)(((GISTENTRY *)(VARDATA(entryvec)))[i]).pred), seg_out(out)); + */ #endif - if (i > 1) pfree(tmp); - tmp = out; - } + if (i > 1) + pfree(tmp); + tmp = out; + } - return(out); + return (out); } /* ** GiST Compress and Decompress methods for segments ** do not do anything. */ -GISTENTRY * +GISTENTRY * gseg_compress(GISTENTRY *entry) { - return(entry); + return (entry); } -GISTENTRY * +GISTENTRY * gseg_decompress(GISTENTRY *entry) { - return(entry); + return (entry); } /* @@ -278,287 +294,312 @@ gseg_decompress(GISTENTRY *entry) float * gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result) { - Datum ud; - float tmp1, tmp2; - - ud = (Datum)seg_union((SEG *)(origentry->pred), (SEG *)(newentry->pred)); - rt_seg_size((SEG *)ud, &tmp1); - rt_seg_size((SEG *)(origentry->pred), &tmp2); - *result = tmp1 - tmp2; - pfree((char *)ud); + Datum ud; + float tmp1, + tmp2; + + ud = (Datum) seg_union((SEG *) (origentry->pred), (SEG *) (newentry->pred)); + rt_seg_size((SEG *) ud, &tmp1); + rt_seg_size((SEG *) (origentry->pred), &tmp2); + *result = tmp1 - tmp2; + pfree((char *) ud); #ifdef GIST_DEBUG - fprintf(stderr, "penalty\n"); - fprintf(stderr, "\t%g\n", *result); + fprintf(stderr, "penalty\n"); + fprintf(stderr, "\t%g\n", *result); #endif - return(result); + return (result); } /* ** The GiST PickSplit method for segments -** We use Guttman's poly time split algorithm +** We use Guttman's poly time split algorithm */ GIST_SPLITVEC * gseg_picksplit(bytea *entryvec, - GIST_SPLITVEC *v) + GIST_SPLITVEC *v) { - OffsetNumber i, j; - SEG *datum_alpha, *datum_beta; - SEG *datum_l, *datum_r; - SEG *union_d, *union_dl, *union_dr; - SEG *inter_d; - bool firsttime; - float size_alpha, size_beta, size_union, size_inter; - float size_waste, waste; - float size_l, size_r; - int nbytes; - OffsetNumber seed_1 = 0, seed_2 = 0; - OffsetNumber *left, *right; - OffsetNumber maxoff; + OffsetNumber i, + j; + SEG *datum_alpha, + *datum_beta; + SEG *datum_l, + *datum_r; + SEG *union_d, + *union_dl, + *union_dr; + SEG *inter_d; + bool firsttime; + float size_alpha, + size_beta, + size_union, + size_inter; + float size_waste, + waste; + float size_l, + size_r; + int nbytes; + OffsetNumber seed_1 = 0, + seed_2 = 0; + OffsetNumber *left, + *right; + OffsetNumber maxoff; #ifdef GIST_DEBUG - fprintf(stderr, "picksplit\n"); + fprintf(stderr, "picksplit\n"); #endif - maxoff = ((VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY)) - 2; - nbytes = (maxoff + 2) * sizeof(OffsetNumber); - v->spl_left = (OffsetNumber *) palloc(nbytes); - v->spl_right = (OffsetNumber *) palloc(nbytes); - - firsttime = true; - waste = 0.0; - - for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i)) { - datum_alpha = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred); - for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j)) { - datum_beta = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[j].pred); - - /* compute the wasted space by unioning these guys */ - /* size_waste = size_union - size_inter; */ - union_d = (SEG *)seg_union(datum_alpha, datum_beta); - rt_seg_size(union_d, &size_union); - inter_d = (SEG *)seg_inter(datum_alpha, datum_beta); - rt_seg_size(inter_d, &size_inter); - size_waste = size_union - size_inter; - - pfree(union_d); - - if (inter_d != (SEG *) NULL) - pfree(inter_d); - - /* - * are these a more promising split that what we've - * already seen? - */ - - if (size_waste > waste || firsttime) { - waste = size_waste; - seed_1 = i; - seed_2 = j; - firsttime = false; - } + maxoff = ((VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY)) - 2; + nbytes = (maxoff + 2) * sizeof(OffsetNumber); + v->spl_left = (OffsetNumber *) palloc(nbytes); + v->spl_right = (OffsetNumber *) palloc(nbytes); + + firsttime = true; + waste = 0.0; + + for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i)) + { + datum_alpha = (SEG *) (((GISTENTRY *) (VARDATA(entryvec)))[i].pred); + for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j)) + { + datum_beta = (SEG *) (((GISTENTRY *) (VARDATA(entryvec)))[j].pred); + + /* compute the wasted space by unioning these guys */ + /* size_waste = size_union - size_inter; */ + union_d = (SEG *) seg_union(datum_alpha, datum_beta); + rt_seg_size(union_d, &size_union); + inter_d = (SEG *) seg_inter(datum_alpha, datum_beta); + rt_seg_size(inter_d, &size_inter); + size_waste = size_union - size_inter; + + pfree(union_d); + + if (inter_d != (SEG *) NULL) + pfree(inter_d); + + /* + * are these a more promising split that what we've already + * seen? + */ + + if (size_waste > waste || firsttime) + { + waste = size_waste; + seed_1 = i; + seed_2 = j; + firsttime = false; + } + } } - } - - left = v->spl_left; - v->spl_nleft = 0; - right = v->spl_right; - v->spl_nright = 0; - - datum_alpha = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_1].pred); - datum_l = (SEG *)seg_union(datum_alpha, datum_alpha); - rt_seg_size((SEG *)datum_l, &size_l); - datum_beta = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_2].pred);; - datum_r = (SEG *)seg_union(datum_beta, datum_beta); - rt_seg_size((SEG *)datum_r, &size_r); - - /* - * Now split up the regions between the two seeds. An important - * property of this split algorithm is that the split vector v - * has the indices of items to be split in order in its left and - * right vectors. We exploit this property by doing a merge in - * the code that actually splits the page. - * - * For efficiency, we also place the new index tuple in this loop. - * This is handled at the very end, when we have placed all the - * existing tuples and i == maxoff + 1. - */ - - maxoff = OffsetNumberNext(maxoff); - for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) { - + + left = v->spl_left; + v->spl_nleft = 0; + right = v->spl_right; + v->spl_nright = 0; + + datum_alpha = (SEG *) (((GISTENTRY *) (VARDATA(entryvec)))[seed_1].pred); + datum_l = (SEG *) seg_union(datum_alpha, datum_alpha); + rt_seg_size((SEG *) datum_l, &size_l); + datum_beta = (SEG *) (((GISTENTRY *) (VARDATA(entryvec)))[seed_2].pred);; + datum_r = (SEG *) seg_union(datum_beta, datum_beta); + rt_seg_size((SEG *) datum_r, &size_r); + /* - * If we've already decided where to place this item, just - * put it on the right list. Otherwise, we need to figure - * out which page needs the least enlargement in order to - * store the item. + * Now split up the regions between the two seeds. An important + * property of this split algorithm is that the split vector v has the + * indices of items to be split in order in its left and right + * vectors. We exploit this property by doing a merge in the code + * that actually splits the page. + * + * For efficiency, we also place the new index tuple in this loop. This + * is handled at the very end, when we have placed all the existing + * tuples and i == maxoff + 1. */ - - if (i == seed_1) { - *left++ = i; - v->spl_nleft++; - continue; - } else if (i == seed_2) { - *right++ = i; - v->spl_nright++; - continue; - } - - /* okay, which page needs least enlargement? */ - datum_alpha = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred); - union_dl = (SEG *)seg_union(datum_l, datum_alpha); - union_dr = (SEG *)seg_union(datum_r, datum_alpha); - rt_seg_size((SEG *)union_dl, &size_alpha); - rt_seg_size((SEG *)union_dr, &size_beta); - - /* pick which page to add it to */ - if (size_alpha - size_l < size_beta - size_r) { - pfree(datum_l); - pfree(union_dr); - datum_l = union_dl; - size_l = size_alpha; - *left++ = i; - v->spl_nleft++; - } else { - pfree(datum_r); - pfree(union_dl); - datum_r = union_dr; - size_r = size_alpha; - *right++ = i; - v->spl_nright++; + + maxoff = OffsetNumberNext(maxoff); + for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) + { + + /* + * If we've already decided where to place this item, just put it + * on the right list. Otherwise, we need to figure out which page + * needs the least enlargement in order to store the item. + */ + + if (i == seed_1) + { + *left++ = i; + v->spl_nleft++; + continue; + } + else if (i == seed_2) + { + *right++ = i; + v->spl_nright++; + continue; + } + + /* okay, which page needs least enlargement? */ + datum_alpha = (SEG *) (((GISTENTRY *) (VARDATA(entryvec)))[i].pred); + union_dl = (SEG *) seg_union(datum_l, datum_alpha); + union_dr = (SEG *) seg_union(datum_r, datum_alpha); + rt_seg_size((SEG *) union_dl, &size_alpha); + rt_seg_size((SEG *) union_dr, &size_beta); + + /* pick which page to add it to */ + if (size_alpha - size_l < size_beta - size_r) + { + pfree(datum_l); + pfree(union_dr); + datum_l = union_dl; + size_l = size_alpha; + *left++ = i; + v->spl_nleft++; + } + else + { + pfree(datum_r); + pfree(union_dl); + datum_r = union_dr; + size_r = size_alpha; + *right++ = i; + v->spl_nright++; + } } - } - *left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */ - - v->spl_ldatum = (char *)datum_l; - v->spl_rdatum = (char *)datum_r; + *left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */ + + v->spl_ldatum = (char *) datum_l; + v->spl_rdatum = (char *) datum_r; - return v; + return v; } /* ** Equality methods */ bool * -gseg_same(SEG *b1, SEG *b2, bool *result) +gseg_same(SEG * b1, SEG * b2, bool *result) { - if (seg_same(b1, b2)) - *result = TRUE; - else *result = FALSE; + if (seg_same(b1, b2)) + *result = TRUE; + else + *result = FALSE; #ifdef GIST_DEBUG - fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE" )); + fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE")); #endif - return(result); + return (result); } -/* +/* ** SUPPORT ROUTINES */ -bool -gseg_leaf_consistent(SEG *key, - SEG *query, - StrategyNumber strategy) +bool +gseg_leaf_consistent(SEG * key, + SEG * query, + StrategyNumber strategy) { - bool retval; + bool retval; #ifdef GIST_QUERY_DEBUG - fprintf(stderr, "leaf_consistent, %d\n", strategy); + fprintf(stderr, "leaf_consistent, %d\n", strategy); #endif - switch(strategy) { - case RTLeftStrategyNumber: - retval = (bool)seg_left(key, query); - break; - case RTOverLeftStrategyNumber: - retval = (bool)seg_over_left(key,query); - break; - case RTOverlapStrategyNumber: - retval = (bool)seg_overlap(key, query); - break; - case RTOverRightStrategyNumber: - retval = (bool)seg_over_right(key, query); - break; - case RTRightStrategyNumber: - retval = (bool)seg_right(key, query); - break; - case RTSameStrategyNumber: - retval = (bool)seg_same(key, query); - break; - case RTContainsStrategyNumber: - retval = (bool)seg_contains(key, query); - break; - case RTContainedByStrategyNumber: - retval = (bool)seg_contained(key,query); - break; - default: - retval = FALSE; - } - return(retval); + switch (strategy) + { + case RTLeftStrategyNumber: + retval = (bool) seg_left(key, query); + break; + case RTOverLeftStrategyNumber: + retval = (bool) seg_over_left(key, query); + break; + case RTOverlapStrategyNumber: + retval = (bool) seg_overlap(key, query); + break; + case RTOverRightStrategyNumber: + retval = (bool) seg_over_right(key, query); + break; + case RTRightStrategyNumber: + retval = (bool) seg_right(key, query); + break; + case RTSameStrategyNumber: + retval = (bool) seg_same(key, query); + break; + case RTContainsStrategyNumber: + retval = (bool) seg_contains(key, query); + break; + case RTContainedByStrategyNumber: + retval = (bool) seg_contained(key, query); + break; + default: + retval = FALSE; + } + return (retval); } -bool -gseg_internal_consistent(SEG *key, - SEG *query, - StrategyNumber strategy) +bool +gseg_internal_consistent(SEG * key, + SEG * query, + StrategyNumber strategy) { - bool retval; + bool retval; #ifdef GIST_QUERY_DEBUG - fprintf(stderr, "internal_consistent, %d\n", strategy); + fprintf(stderr, "internal_consistent, %d\n", strategy); #endif - switch(strategy) { - case RTLeftStrategyNumber: - case RTOverLeftStrategyNumber: - retval = (bool)seg_over_left(key,query); - break; - case RTOverlapStrategyNumber: - retval = (bool)seg_overlap(key, query); - break; - case RTOverRightStrategyNumber: - case RTRightStrategyNumber: - retval = (bool)seg_right(key, query); - break; - case RTSameStrategyNumber: - case RTContainsStrategyNumber: - retval = (bool)seg_contains(key, query); - break; - case RTContainedByStrategyNumber: - retval = (bool)seg_overlap(key, query); - break; - default: - retval = FALSE; - } - return(retval); + switch (strategy) + { + case RTLeftStrategyNumber: + case RTOverLeftStrategyNumber: + retval = (bool) seg_over_left(key, query); + break; + case RTOverlapStrategyNumber: + retval = (bool) seg_overlap(key, query); + break; + case RTOverRightStrategyNumber: + case RTRightStrategyNumber: + retval = (bool) seg_right(key, query); + break; + case RTSameStrategyNumber: + case RTContainsStrategyNumber: + retval = (bool) seg_contains(key, query); + break; + case RTContainedByStrategyNumber: + retval = (bool) seg_overlap(key, query); + break; + default: + retval = FALSE; + } + return (retval); } SEG * -gseg_binary_union(SEG *r1, SEG *r2, int *sizep) +gseg_binary_union(SEG * r1, SEG * r2, int *sizep) { - SEG *retval; + SEG *retval; - retval = seg_union(r1, r2); - *sizep = sizeof(SEG); + retval = seg_union(r1, r2); + *sizep = sizeof(SEG); - return (retval); + return (retval); } bool -seg_contains(SEG *a, SEG *b) +seg_contains(SEG * a, SEG * b) { - return ( (a->lower <= b->lower) && (a->upper >= b->upper) ); + return ((a->lower <= b->lower) && (a->upper >= b->upper)); } bool -seg_contained(SEG *a, SEG *b) +seg_contained(SEG * a, SEG * b) { - return ( seg_contains(b, a) ); + return (seg_contains(b, a)); } /***************************************************************************** @@ -566,209 +607,214 @@ seg_contained(SEG *a, SEG *b) *****************************************************************************/ bool -seg_same(SEG *a, SEG *b) +seg_same(SEG * a, SEG * b) { - return seg_cmp(a, b) == 0; + return seg_cmp(a, b) == 0; } -/* seg_overlap -- does a overlap b? +/* seg_overlap -- does a overlap b? */ bool -seg_overlap(SEG *a, SEG *b) +seg_overlap(SEG * a, SEG * b) { - return ( - ((a->upper >= b->upper) && (a->lower <= b->upper)) - || - ((b->upper >= a->upper) && (b->lower <= a->upper)) - ); + return ( + ((a->upper >= b->upper) && (a->lower <= b->upper)) + || + ((b->upper >= a->upper) && (b->lower <= a->upper)) + ); } -/* seg_overleft -- is the right edge of (a) located to the left of the right edge of (b)? +/* seg_overleft -- is the right edge of (a) located to the left of the right edge of (b)? */ bool -seg_over_left(SEG *a, SEG *b) +seg_over_left(SEG * a, SEG * b) { - return ( a->upper <= b->upper && !seg_left(a, b) && !seg_right(a, b)); + return (a->upper <= b->upper && !seg_left(a, b) && !seg_right(a, b)); } -/* seg_left -- is (a) entirely on the left of (b)? +/* seg_left -- is (a) entirely on the left of (b)? */ bool -seg_left(SEG *a, SEG *b) +seg_left(SEG * a, SEG * b) { - return ( a->upper < b->lower ); + return (a->upper < b->lower); } -/* seg_right -- is (a) entirely on the right of (b)? +/* seg_right -- is (a) entirely on the right of (b)? */ bool -seg_right(SEG *a, SEG *b) +seg_right(SEG * a, SEG * b) { - return ( a->lower > b->upper ); + return (a->lower > b->upper); } -/* seg_overright -- is the left edge of (a) located to the right of the left edge of (b)? +/* seg_overright -- is the left edge of (a) located to the right of the left edge of (b)? */ bool -seg_over_right(SEG *a, SEG *b) +seg_over_right(SEG * a, SEG * b) { - return (a->lower >= b->lower && !seg_left(a, b) && !seg_right(a, b)); + return (a->lower >= b->lower && !seg_left(a, b) && !seg_right(a, b)); } SEG * -seg_union(SEG *a, SEG *b) +seg_union(SEG * a, SEG * b) { - SEG *n; - - n = (SEG *) palloc(sizeof(*n)); - - /* take max of upper endpoints */ - if (a->upper > b->upper) - { - n->upper = a->upper; - n->u_sigd = a->u_sigd; - n->u_ext = a->u_ext; - } - else - { - n->upper = b->upper; - n->u_sigd = b->u_sigd; - n->u_ext = b->u_ext; - } - - /* take min of lower endpoints */ - if (a->lower < b->lower) - { - n->lower = a->lower; - n->l_sigd = a->l_sigd; - n->l_ext = a->l_ext; - } - else - { - n->lower = b->lower; - n->l_sigd = b->l_sigd; - n->l_ext = b->l_ext; - } - - return (n); + SEG *n; + + n = (SEG *) palloc(sizeof(*n)); + + /* take max of upper endpoints */ + if (a->upper > b->upper) + { + n->upper = a->upper; + n->u_sigd = a->u_sigd; + n->u_ext = a->u_ext; + } + else + { + n->upper = b->upper; + n->u_sigd = b->u_sigd; + n->u_ext = b->u_ext; + } + + /* take min of lower endpoints */ + if (a->lower < b->lower) + { + n->lower = a->lower; + n->l_sigd = a->l_sigd; + n->l_ext = a->l_ext; + } + else + { + n->lower = b->lower; + n->l_sigd = b->l_sigd; + n->l_ext = b->l_ext; + } + + return (n); } SEG * -seg_inter(SEG *a, SEG *b) +seg_inter(SEG * a, SEG * b) { - SEG *n; - - n = (SEG *) palloc(sizeof(*n)); - - /* take min of upper endpoints */ - if (a->upper < b->upper) - { - n->upper = a->upper; - n->u_sigd = a->u_sigd; - n->u_ext = a->u_ext; - } - else - { - n->upper = b->upper; - n->u_sigd = b->u_sigd; - n->u_ext = b->u_ext; - } - - /* take max of lower endpoints */ - if (a->lower > b->lower) - { - n->lower = a->lower; - n->l_sigd = a->l_sigd; - n->l_ext = a->l_ext; - } - else - { - n->lower = b->lower; - n->l_sigd = b->l_sigd; - n->l_ext = b->l_ext; - } - - return (n); + SEG *n; + + n = (SEG *) palloc(sizeof(*n)); + + /* take min of upper endpoints */ + if (a->upper < b->upper) + { + n->upper = a->upper; + n->u_sigd = a->u_sigd; + n->u_ext = a->u_ext; + } + else + { + n->upper = b->upper; + n->u_sigd = b->u_sigd; + n->u_ext = b->u_ext; + } + + /* take max of lower endpoints */ + if (a->lower > b->lower) + { + n->lower = a->lower; + n->l_sigd = a->l_sigd; + n->l_ext = a->l_ext; + } + else + { + n->lower = b->lower; + n->l_sigd = b->l_sigd; + n->l_ext = b->l_ext; + } + + return (n); } void -rt_seg_size(SEG *a, float *size) +rt_seg_size(SEG * a, float *size) { - if (a == (SEG *) NULL || a->upper <= a->lower) - *size = 0.0; - else - *size = (float) abs(a->upper - a->lower); - - return; + if (a == (SEG *) NULL || a->upper <= a->lower) + *size = 0.0; + else + *size = (float) abs(a->upper - a->lower); + + return; } float * -seg_size(SEG *a) +seg_size(SEG * a) { - float *result; + float *result; + + result = (float *) palloc(sizeof(float)); - result = (float *) palloc(sizeof(float)); - - *result = (float) abs(a->upper - a->lower); + *result = (float) abs(a->upper - a->lower); - return(result); + return (result); } /***************************************************************************** - * Miscellaneous operators + * Miscellaneous operators *****************************************************************************/ int32 -seg_cmp(SEG *a, SEG *b) +seg_cmp(SEG * a, SEG * b) { + /* * First compare on lower boundary position */ - if ( a->lower < b->lower ) + if (a->lower < b->lower) return -1; - if ( a->lower > b->lower ) + if (a->lower > b->lower) return 1; + /* * a->lower == b->lower, so consider type of boundary. * - * A '-' lower bound is < any other kind (this could only be relevant - * if -HUGE is used as a regular data value). - * A '<' lower bound is < any other kind except '-'. - * A '>' lower bound is > any other kind. + * A '-' lower bound is < any other kind (this could only be relevant if + * -HUGE is used as a regular data value). A '<' lower bound is < any + * other kind except '-'. A '>' lower bound is > any other kind. */ - if ( a->l_ext != b->l_ext ) + if (a->l_ext != b->l_ext) { - if ( a->l_ext == '-') + if (a->l_ext == '-') return -1; - if ( b->l_ext == '-') + if (b->l_ext == '-') return 1; - if ( a->l_ext == '<') + if (a->l_ext == '<') return -1; - if ( b->l_ext == '<') + if (b->l_ext == '<') return 1; - if ( a->l_ext == '>') + if (a->l_ext == '>') return 1; - if ( b->l_ext == '>') + if (b->l_ext == '>') return -1; } + /* * For other boundary types, consider # of significant digits first. */ - if ( a->l_sigd < b->l_sigd ) /* (a) is blurred and is likely to include (b) */ + if (a->l_sigd < b->l_sigd) /* (a) is blurred and is likely to include + * (b) */ return -1; - if ( a->l_sigd > b->l_sigd ) /* (a) is less blurred and is likely to be included in (b) */ + if (a->l_sigd > b->l_sigd) /* (a) is less blurred and is likely to be + * included in (b) */ return 1; + /* * For same # of digits, an approximate boundary is more blurred than * exact. */ - if ( a->l_ext != b->l_ext ) + if (a->l_ext != b->l_ext) { - if ( a->l_ext == '~' ) /* (a) is approximate, while (b) is exact */ + if (a->l_ext == '~') /* (a) is approximate, while (b) is exact */ return -1; - if ( b->l_ext == '~' ) + if (b->l_ext == '~') return 1; /* can't get here unless data is corrupt */ elog(ERROR, "seg_cmp: bogus lower boundary types %d %d", @@ -780,50 +826,54 @@ seg_cmp(SEG *a, SEG *b) /* * First compare on upper boundary position */ - if ( a->upper < b->upper ) + if (a->upper < b->upper) return -1; - if ( a->upper > b->upper ) + if (a->upper > b->upper) return 1; + /* * a->upper == b->upper, so consider type of boundary. * - * A '-' upper bound is > any other kind (this could only be relevant - * if HUGE is used as a regular data value). - * A '<' upper bound is < any other kind. - * A '>' upper bound is > any other kind except '-'. + * A '-' upper bound is > any other kind (this could only be relevant if + * HUGE is used as a regular data value). A '<' upper bound is < any + * other kind. A '>' upper bound is > any other kind except '-'. */ - if ( a->u_ext != b->u_ext ) + if (a->u_ext != b->u_ext) { - if ( a->u_ext == '-') + if (a->u_ext == '-') return 1; - if ( b->u_ext == '-') + if (b->u_ext == '-') return -1; - if ( a->u_ext == '<') + if (a->u_ext == '<') return -1; - if ( b->u_ext == '<') + if (b->u_ext == '<') return 1; - if ( a->u_ext == '>') + if (a->u_ext == '>') return 1; - if ( b->u_ext == '>') + if (b->u_ext == '>') return -1; } + /* * For other boundary types, consider # of significant digits first. * Note result here is converse of the lower-boundary case. */ - if ( a->u_sigd < b->u_sigd ) /* (a) is blurred and is likely to include (b) */ + if (a->u_sigd < b->u_sigd) /* (a) is blurred and is likely to include + * (b) */ return 1; - if ( a->u_sigd > b->u_sigd ) /* (a) is less blurred and is likely to be included in (b) */ + if (a->u_sigd > b->u_sigd) /* (a) is less blurred and is likely to be + * included in (b) */ return -1; + /* * For same # of digits, an approximate boundary is more blurred than * exact. Again, result is converse of lower-boundary case. */ - if ( a->u_ext != b->u_ext ) + if (a->u_ext != b->u_ext) { - if ( a->u_ext == '~' ) /* (a) is approximate, while (b) is exact */ + if (a->u_ext == '~') /* (a) is approximate, while (b) is exact */ return 1; - if ( b->u_ext == '~' ) + if (b->u_ext == '~') return -1; /* can't get here unless data is corrupt */ elog(ERROR, "seg_cmp: bogus upper boundary types %d %d", @@ -834,40 +884,40 @@ seg_cmp(SEG *a, SEG *b) } bool -seg_lt(SEG *a, SEG *b) +seg_lt(SEG * a, SEG * b) { - return seg_cmp(a, b) < 0; + return seg_cmp(a, b) < 0; } bool -seg_le(SEG *a, SEG *b) +seg_le(SEG * a, SEG * b) { - return seg_cmp(a, b) <= 0; + return seg_cmp(a, b) <= 0; } bool -seg_gt(SEG *a, SEG *b) +seg_gt(SEG * a, SEG * b) { - return seg_cmp(a, b) > 0; + return seg_cmp(a, b) > 0; } bool -seg_ge(SEG *a, SEG *b) +seg_ge(SEG * a, SEG * b) { - return seg_cmp(a, b) >= 0; + return seg_cmp(a, b) >= 0; } bool -seg_different(SEG *a, SEG *b) +seg_different(SEG * a, SEG * b) { - return seg_cmp(a, b) != 0; + return seg_cmp(a, b) != 0; } /***************************************************************************** - * Auxiliary functions + * Auxiliary functions *****************************************************************************/ /* The purpose of this routine is to print the floating point @@ -875,126 +925,150 @@ seg_different(SEG *a, SEG *b) * is similar to %.ng except it prints 8.00 where %.ng would * print 8 */ -static int restore ( char * result, float val, int n ) +static int +restore(char *result, float val, int n) { - static char efmt[8] = {'%', '-', '1', '5', '.', '#', 'e', 0}; - char buf[25] = { - '0', '0', '0', '0', '0', - '0', '0', '0', '0', '0', - '0', '0', '0', '0', '0', - '0', '0', '0', '0', '0', - '0', '0', '0', '0', '\0' - }; - char *p; - char *mant; - int exp; - int i, dp, sign; - - /* put a cap on the number of siugnificant digits to avoid - nonsense in the output */ - n = min(n, FLT_DIG); - - /* remember the sign */ - sign = ( val < 0 ? 1 : 0 ); - - efmt[5] = '0' + (n-1)%10; /* makes %-15.(n-1)e -- this format guarantees that - the exponent is always present */ - - sprintf(result, efmt, val); - - /* trim the spaces left by the %e */ - for( p = result; *p != ' '; p++ ); *p = '\0'; - - /* get the exponent */ - mant = (char *)strtok( strdup(result), "e" ); - exp = atoi(strtok( NULL, "e" )); - - if ( exp == 0 ) { - /* use the supplied mantyssa with sign */ - strcpy((char *)index(result, 'e'), ""); - } - else { - if ( abs( exp ) <= 4 ) { - /* remove the decimal point from the mantyssa and write the digits to the buf array */ - for( p = result + sign, i = 10, dp = 0; *p != 'e'; p++, i++ ) { - buf[i] = *p; - if( *p == '.' ) { - dp = i--; /* skip the decimal point */ - } - } - if (dp == 0) dp = i--; /* no decimal point was found in the above for() loop */ - - if ( exp > 0 ) { - if ( dp - 10 + exp >= n ) { - /* - the decimal point is behind the last significant digit; - the digits in between must be converted to the exponent - and the decimal point placed after the first digit - */ - exp = dp - 10 + exp - n; - buf[10+n] = '\0'; - - /* insert the decimal point */ - if ( n > 1 ) { - dp = 11; - for ( i = 23; i > dp; i-- ) { - buf[i] = buf[i-1]; - } - buf[dp] = '.'; - } - - /* adjust the exponent by the number of digits after the decimal point */ - if ( n > 1 ) { - sprintf(&buf[11+n], "e%d", exp + n - 1); - } - else { - sprintf(&buf[11], "e%d", exp + n - 1); - } - - if ( sign ) { - buf[9] = '-'; - strcpy(result, &buf[9]); - } - else { - strcpy(result, &buf[10]); - } - } - else { /* insert the decimal point */ - dp += exp; - for ( i = 23; i > dp; i-- ) { - buf[i] = buf[i-1]; - } - buf[11+n] = '\0'; - buf[dp] = '.'; - if ( sign ) { - buf[9] = '-'; - strcpy(result, &buf[9]); - } - else { - strcpy(result, &buf[10]); - } + static char efmt[8] = {'%', '-', '1', '5', '.', '#', 'e', 0}; + char buf[25] = { + '0', '0', '0', '0', '0', + '0', '0', '0', '0', '0', + '0', '0', '0', '0', '0', + '0', '0', '0', '0', '0', + '0', '0', '0', '0', '\0' + }; + char *p; + char *mant; + int exp; + int i, + dp, + sign; + + /* + * put a cap on the number of siugnificant digits to avoid nonsense in + * the output + */ + n = min(n, FLT_DIG); + + /* remember the sign */ + sign = (val < 0 ? 1 : 0); + + efmt[5] = '0' + (n - 1) % 10; /* makes %-15.(n-1)e -- this + * format guarantees that the + * exponent is always present */ + + sprintf(result, efmt, val); + + /* trim the spaces left by the %e */ + for (p = result; *p != ' '; p++); + *p = '\0'; + + /* get the exponent */ + mant = (char *) strtok(strdup(result), "e"); + exp = atoi(strtok(NULL, "e")); + + if (exp == 0) + { + /* use the supplied mantyssa with sign */ + strcpy((char *) index(result, 'e'), ""); } - } - else { /* exp <= 0 */ - dp += exp - 1; - buf[10+n] = '\0'; - buf[dp] = '.'; - if ( sign ) { - buf[dp-2] = '-'; - strcpy(result, &buf[dp-2]); + else + { + if (abs(exp) <= 4) + { + + /* + * remove the decimal point from the mantyssa and write the + * digits to the buf array + */ + for (p = result + sign, i = 10, dp = 0; *p != 'e'; p++, i++) + { + buf[i] = *p; + if (*p == '.') + { + dp = i--; /* skip the decimal point */ + } + } + if (dp == 0) + dp = i--; /* no decimal point was found in the above + * for() loop */ + + if (exp > 0) + { + if (dp - 10 + exp >= n) + { + + /* + * the decimal point is behind the last significant + * digit; the digits in between must be converted to + * the exponent and the decimal point placed after the + * first digit + */ + exp = dp - 10 + exp - n; + buf[10 + n] = '\0'; + + /* insert the decimal point */ + if (n > 1) + { + dp = 11; + for (i = 23; i > dp; i--) + buf[i] = buf[i - 1]; + buf[dp] = '.'; + } + + /* + * adjust the exponent by the number of digits after + * the decimal point + */ + if (n > 1) + sprintf(&buf[11 + n], "e%d", exp + n - 1); + else + sprintf(&buf[11], "e%d", exp + n - 1); + + if (sign) + { + buf[9] = '-'; + strcpy(result, &buf[9]); + } + else + strcpy(result, &buf[10]); + } + else + { /* insert the decimal point */ + dp += exp; + for (i = 23; i > dp; i--) + buf[i] = buf[i - 1]; + buf[11 + n] = '\0'; + buf[dp] = '.'; + if (sign) + { + buf[9] = '-'; + strcpy(result, &buf[9]); + } + else + strcpy(result, &buf[10]); + } + } + else + { /* exp <= 0 */ + dp += exp - 1; + buf[10 + n] = '\0'; + buf[dp] = '.'; + if (sign) + { + buf[dp - 2] = '-'; + strcpy(result, &buf[dp - 2]); + } + else + strcpy(result, &buf[dp - 1]); + } + } + + /* do nothing for abs(exp) > 4; %e must be OK */ + /* just get rid of zeroes after [eE]- and +zeroes after [Ee]. */ + + /* ... this is not done yet. */ } - else { - strcpy(result, &buf[dp-1]); - } - } - } - - /* do nothing for abs(exp) > 4; %e must be OK */ - /* just get rid of zeroes after [eE]- and +zeroes after [Ee]. */ - - /* ... this is not done yet. */ - } - return ( strlen ( result ) ); + return (strlen(result)); } @@ -1003,47 +1077,56 @@ static int restore ( char * result, float val, int n ) */ bool -seg_contains_int(SEG *a, int *b) +seg_contains_int(SEG * a, int *b) { - return ( (a->lower <= *b) && (a->upper >= *b) ); + return ((a->lower <= *b) && (a->upper >= *b)); } bool -seg_contains_float4(SEG *a, float4 *b) +seg_contains_float4(SEG * a, float4 *b) { - return ( (a->lower <= *b) && (a->upper >= *b) ); + return ((a->lower <= *b) && (a->upper >= *b)); } bool -seg_contains_float8(SEG *a, float8 *b) +seg_contains_float8(SEG * a, float8 *b) { - return ( (a->lower <= *b) && (a->upper >= *b) ); + return ((a->lower <= *b) && (a->upper >= *b)); } -/* find out the number of significant digits in a string representing +/* find out the number of significant digits in a string representing * a floating point number */ -int significant_digits ( char* s ) +int +significant_digits(char *s) { - char * p = s; - int n, c, zeroes; + char *p = s; + int n, + c, + zeroes; - zeroes = 1; - /* skip leading zeroes and sign */ - for ( c = *p; (c == '0' || c == '+' || c == '-') && c != 0; c = *(++p) ); + zeroes = 1; + /* skip leading zeroes and sign */ + for (c = *p; (c == '0' || c == '+' || c == '-') && c != 0; c = *(++p)); - /* skip decimal point and following zeroes */ - for ( c = *p; (c == '0' || c == '.' ) && c != 0; c = *(++p) ) { - if ( c != '.') zeroes++; - } + /* skip decimal point and following zeroes */ + for (c = *p; (c == '0' || c == '.') && c != 0; c = *(++p)) + { + if (c != '.') + zeroes++; + } - /* count significant digits (n) */ - for ( c = *p, n = 0; c != 0; c = *(++p) ) { - if ( !( (c >= '0' && c <= '9') || (c == '.') ) ) break; - if ( c != '.') n++; - } + /* count significant digits (n) */ + for (c = *p, n = 0; c != 0; c = *(++p)) + { + if (!((c >= '0' && c <= '9') || (c == '.'))) + break; + if (c != '.') + n++; + } - if (!n) return ( zeroes ); + if (!n) + return (zeroes); - return( n ); + return (n); } |