| Commit message (Collapse) | Author | Age |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, if unbuffered request body reading wasn't finished before
the request was redirected to a different location using error_page
or X-Accel-Redirect, and the request body is read again, this could
lead to disastrous effects, such as a duplicate post_handler call or
"http request count is zero" alert followed by a segmentation fault.
This happened in the following configuration (ticket #1819):
location / {
proxy_request_buffering off;
proxy_pass http://bad;
proxy_intercept_errors on;
error_page 502 = /error;
}
location /error {
proxy_pass http://backend;
}
|
|
|
|
|
| |
Fixed excessive CPU usage caused by a peer that continuously shuffles
priority of streams. Fix is to limit the number of PRIORITY frames.
|
|
|
|
|
|
| |
Fixed excessive memory growth and CPU usage if stream windows are
manipulated in a way that results in generating many small DATA frames.
Fix is to limit the number of simultaneously allocated DATA frames.
|
|
|
|
|
|
| |
Fixed uncontrolled memory growth if peer sends a stream of
headers with a 0-length header name and 0-length header value.
Fix is to reject headers with zero name length.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
An attack that continuously switches HTTP/2 connection between
idle and active states can result in excessive CPU usage.
This is because when a connection switches to the idle state,
all of its memory pool caches are freed.
This change limits the maximum allowed number of idle state
switches to 10 * http2_max_requests (i.e., 10000 by default).
This limits possible CPU usage in one connection, and also
imposes a limit on the maximum lifetime of a connection.
Initially reported by Gal Goldshtein from F5 Networks.
|
|
|
|
|
|
| |
Fixed uncontrolled memory growth in case peer is flooding us with
some frames (e.g., SETTINGS and PING) and doesn't read data. Fix
is to limit the number of allocated control frames.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Socket leak was observed in the following configuration:
error_page 400 = /close;
location = /close {
return 444;
}
The problem is that "return 444" triggers termination of the request,
and due to error_page termination thinks that it needs to use a posted
request to clear stack. But at the early request processing where 400
errors are generated there are no ngx_http_run_posted_requests() calls,
so the request is only terminated after an external event.
Variants of the problem include "error_page 497" instead (ticket #695)
and various other errors generated during early request processing
(405, 414, 421, 494, 495, 496, 501, 505).
The same problem can be also triggered with "return 499" and "return 408"
as both codes trigger ngx_http_terminate_request(), much like "return 444".
To fix this, the patch adds ngx_http_run_posted_requests() calls to
ngx_http_process_request_line() and ngx_http_process_request_headers()
functions, and to ngx_http_v2_run_request() and ngx_http_v2_push_stream()
functions in HTTP/2.
Since the ngx_http_process_request() function is now only called via
other functions which call ngx_http_run_posted_requests(), the call
there is no longer needed and was removed.
|
|
|
|
|
|
|
|
|
|
|
| |
There are clients which cannot handle HPACK's dynamic table size updates
as added in 12cadc4669a7 (1.13.6). Notably, old versions of OkHttp library
are known to fail on it (ticket #1397).
This change makes it possible to work with such clients by only sending
dynamic table size updates in response to SETTINGS_HEADER_TABLE_SIZE. As
a downside, clients which do not use SETTINGS_HEADER_TABLE_SIZE will
continue to maintain default 4k table.
|
|
|
|
|
|
| |
Instead of the connection scheme, use scheme from the original request.
This fixes pushes when SSL is terminated by a proxy server in front of
nginx.
|
|
|
|
|
| |
For HTTP/1, it keeps scheme from the absolute form of URI.
For HTTP/2, the :scheme request pseudo-header field value.
|
|
|
|
| |
The scheme is validated as per RFC 3986, Section 3.1.
|
| |
|
| |
|
| |
|
|
|
|
| |
Unified the style of validity checks in ngx_http_v2_validate_header().
|
|
|
|
|
|
| |
There is no need to calculate hashes of static strings at runtime. The
ngx_hash() macro can be used to do it during compilation instead, similarly
to how it is done in ngx_http_proxy_module.c for "Server" and "Date" headers.
|
|
|
|
|
|
| |
In particular, if a stream object allocation failed, and a client sent
the PRIORITY frame for this stream, ngx_http_v2_set_dependency() could
dereference a null pointer while trying to re-parent a dependency node.
|
|
|
|
|
| |
The Accept-Encoding, Accept-Language, and User-Agent header fields
are now copied from the original request to pushed requests.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Resources to be pushed are configured with the "http2_push" directive.
Also, preload links from the Link response headers, as described in
https://www.w3.org/TR/preload/#server-push-http-2, can be pushed, if
enabled with the "http2_push_preload" directive.
Only relative URIs with absolute paths can be pushed.
The number of concurrent pushes is normally limited by a client, but
cannot exceed a hard limit set by the "http2_max_concurrent_pushes"
directive.
|
|
|
|
| |
No functional changes.
|
|
|
|
|
| |
This is in line when the required pseudo-headers are missing, and
avoids spurious zero statuses in access.log.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The sync flag of HTTP/2 request body buffer is used when the size of request
body is unknown or bigger than configured "client_body_buffer_size". In this
case the buffer points to body data inside the global receive buffer that is
used for reading all HTTP/2 connections in the worker process. Thus, when the
sync flag is set, the buffer must be flushed to a temporary file, otherwise
the request body data can be overwritten.
Previously, the sync buffer wasn't flushed to a temporary file if the whole
body was received in one DATA frame with the END_STREAM flag and wasn't
copied into the HTTP/2 body preread buffer. As a result, the request body
might be corrupted (ticket #1384).
Now, setting r->request_body_in_file_only enforces writing the sync buffer
to a temporary file in all cases.
|
|
|
|
|
| |
This ensures slightly more readable debug logs on 80-character-wide
terminals.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change lets NGINX talk to clients with SETTINGS_HEADER_TABLE_SIZE
smaller than the default 4KB. Previously, NGINX would ACK the SETTINGS
frame with a small dynamic table size, but it would never send dynamic
table size update, leading to a connection-level COMPRESSION_ERROR.
Also, it allows clients to release 4KB of memory per connection, since
NGINX doesn't use HPACK's dynamic table when encoding headers, however
clients had to maintain it, since NGINX never signaled that it doesn't
use it.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
|
|
| |
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, SETTINGS ACK was sent immediately upon receipt of SETTINGS
frame, before already queued DATA frames created using old SETTINGS.
This incorrect behavior was source of interoperability issues, because
peers rely on the fact that new SETTINGS are in effect after receiving
SETTINGS ACK.
Reported by Feng Li.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
|
|
| |
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
|
|
|
|
| |
This avoids sending unnecessary SETTINGS ACK in case of PROTOCOL_ERROR.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
|
|
|
|
|
| |
Previously, new frames could be emitted in the middle of applying
new (and already acknowledged) SETTINGS params, which is illegal.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
|
|
| |
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
| |
|
|
|
|
|
|
|
| |
Particularly, this eliminates difference in behavior for requests without body
and deduplicates code.
Prodded by Piotr Sikora.
|
|
|
|
|
|
|
| |
It's required by RFC 7540. While there is no real harm from such frames,
that should help to detect broken clients.
Based on a patch by Piotr Sikora.
|
|
|
|
| |
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
All streams in connection must be finalized before the connection
itself can be finalized and all related memory is freed. That's
not always possible on the current event loop iteration.
Thus when the last stream is finalized, it sets the special read
event handler ngx_http_v2_handle_connection_handler() and posts
the event.
Previously, this handler didn't check the connection state and
could call the regular event handler on a connection that was
already in finalization stage. In the worst case that could
lead to a segmentation fault, since some data structures aren't
supposed to be used during connection finalization. Particularly,
the waiting queue can contain already freed streams, so the
WINDOW_UPDATE frame received by that moment could trigger
accessing to these freed streams.
Now, the connection error flag is explicitly checked in
ngx_http_v2_handle_connection_handler().
|
|
|
|
|
|
|
|
|
|
| |
In order to finalize stream the error flag is set on fake connection and
either "write" or "read" event handler is called. The read events of fake
connections are always ready, but it's not the case with the write events.
When the ready flag isn't set, the error flag can be not checked in some
cases and as a result stream isn't finalized. Now the ready flag is
explicilty set on write events for proper finalization in all cases.
|
|
|
|
| |
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
|
|
|
|
|
|
|
| |
Previously, flow control didn't account for padding in DATA frames,
which meant that its view of the world could drift from peer's view
by up to 256 bytes per received padded DATA frame, which could lead
to a deadlock.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
|
|
| |
The problem was introduced by 52bd8cc17f34.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A bug was introduced by 82efcedb310b that could lead to timing out of
responses or segmentation fault, when accept_mutex was enabled.
The output queue in HTTP/2 can contain frames from different streams.
When the queue is sent, all related write handlers need to be called.
In order to do so, the streams were added to the h2c->posted queue
after handling sent frames. Then this queue was processed in
ngx_http_v2_write_handler().
If accept_mutex is enabled, the event's "ready" flag is set but its
handler is not called immediately. Instead, the event is added to
the ngx_posted_events queue. At the same time in this queue can be
events from upstream connections. Such events can result in sending
output queue before ngx_http_v2_write_handler() is triggered. And
at the time ngx_http_v2_write_handler() is called, the output queue
can be already empty with some streams added to h2c->posted.
But after 82efcedb310b, these streams weren't processed if all frames
have already been sent and the output queue was empty. This might lead
to a situation when a number of streams were get stuck in h2c->posted
queue for a long time. Eventually these streams might get closed by
the send timeout.
In the worst case this might also lead to a segmentation fault, if
already freed stream was left in the h2c->posted queue. This could
happen if one of the streams was terminated but wasn't closed, due to
the HEADERS frame or a partially sent DATA frame left in the output
queue. If this happened the ngx_http_v2_filter_cleanup() handler
removed the stream from the h2c->waiting or h2c->posted queue on
termination stage, before the frame has been sent, and the stream
was again added to the h2c->posted queue after the frame was sent.
In order to fix all these problems and simplify the code, write
events of fake stream connections are now added to ngx_posted_events
instead of using a custom h2c->posted queue.
|
|
|
|
|
|
|
| |
Previously, a request body bigger than "client_body_buffer_size" wasn't written
into a temporary file if it has been pre-read entirely. The preread buffer
is freed after processing, thus subsequent use of it might result in sending
corrupted body or cause a segfault.
|
| |
|
|
|
|
|
|
| |
The new directive "http2_max_requests" is introduced. From users point of
view it works quite similar to "keepalive_requests" but has significantly
bigger default value that is more suitable for HTTP/2.
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, while shutting down gracefully, the HTTP/2 connections were
closed in transition to idle state after all active streams have been
processed. That might never happen if the client continued opening new
streams.
Now, nginx sends GOAWAY to all HTTP/2 connections and ignores further
attempts to open new streams. A worker process will quit as soon as
processing of already opened streams is finished.
|
|
|
|
|
|
| |
It is used at least by SOAP (M-POST method, defined by RFC 2774) and
by WebDAV versioning (VERSION-CONTROL and BASELINE-CONTROL methods,
defined by RFC 3253).
|
|
|
|
|
|
|
| |
It fixes potential connection leak if some unsent data was left in the SSL
buffer. Particularly, that could happen when a client canceled the stream
after the HEADERS frame has already been created. In this case no other
frames might be produced and the HEADERS frame alone didn't flush the buffer.
|