1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
-module(gleam_stdlib).
-include_lib("eunit/include/eunit.hrl").
-export([should_equal/2, should_not_equal/2, should_be_ok/1, should_be_error/1,
atom_from_string/1, atom_create_from_string/1, atom_to_string/1,
map_get/2, iodata_append/2, iodata_prepend/2, identity/1,
decode_int/1, decode_string/1, decode_bool/1, decode_float/1,
decode_thunk/1, decode_atom/1, decode_list/1, decode_field/2,
decode_element/2, parse_int/1, parse_float/1, compare_strings/2,
string_pop_grapheme/1, string_starts_with/2, string_ends_with/2,
string_pad/4, decode_tuple2/1, decode_map/1, bit_string_int_to_u32/1,
bit_string_int_from_u32/1, bit_string_append/2, bit_string_part_/3]).
should_equal(Actual, Expected) -> ?assertEqual(Expected, Actual).
should_not_equal(Actual, Expected) -> ?assertNotEqual(Expected, Actual).
should_be_ok(A) -> ?assertMatch({ok, _}, A).
should_be_error(A) -> ?assertMatch({error, _}, A).
map_get(Map, Key) ->
case maps:find(Key, Map) of
error -> {error, nil};
OkFound -> OkFound
end.
atom_create_from_string(S) ->
binary_to_atom(S, utf8).
atom_to_string(S) ->
atom_to_binary(S, utf8).
atom_from_string(S) ->
try {ok, binary_to_existing_atom(S, utf8)} catch
error:badarg -> {error, atom_not_loaded}
end.
iodata_append(Iodata, String) -> [Iodata, String].
iodata_prepend(Iodata, String) -> [String, Iodata].
identity(X) -> X.
decode_error_msg(Type, Data) ->
{error, iolist_to_binary(io_lib:format("Expected ~s, got ~s", [Type, classify(Data)]))}.
classify(X) when is_atom(X) -> "an atom";
classify(X) when is_binary(X) -> "a binary";
classify(X) when is_integer(X) -> "an int";
classify(X) when is_float(X) -> "a float";
classify(X) when is_list(X) -> "a list";
classify(X) when is_boolean(X) -> "a bool";
classify(X) when is_function(X, 0) -> "a zero arity function";
classify(X) when is_tuple(X) -> ["a ", integer_to_list(tuple_size(X)), " element tuple"];
classify(_) -> "some other type".
decode_tuple2({_, _} = T) -> {ok, T};
decode_tuple2(Data) -> decode_error_msg("a 2 element tuple", Data).
decode_map(Data) when is_map(Data) -> {ok, Data};
decode_map(Data) -> decode_error_msg("a map", Data).
decode_atom(Data) when is_atom(Data) -> {ok, Data};
decode_atom(Data) -> decode_error_msg("an atom", Data).
decode_string(Data) when is_binary(Data) -> {ok, Data};
decode_string(Data) -> decode_error_msg("a string", Data).
decode_int(Data) when is_integer(Data) -> {ok, Data};
decode_int(Data) -> decode_error_msg("an int", Data).
decode_float(Data) when is_float(Data) -> {ok, Data};
decode_float(Data) -> decode_error_msg("a float", Data).
decode_bool(Data) when is_boolean(Data) -> {ok, Data};
decode_bool(Data) -> decode_error_msg("a bool", Data).
decode_thunk(Data) when is_function(Data, 0) -> {ok, Data};
decode_thunk(Data) -> decode_error_msg("a zero arity function", Data).
decode_list(Data) when is_list(Data) -> {ok, Data};
decode_list(Data) -> decode_error_msg("a list", Data).
decode_field(Data, Key) ->
case Data of
#{Key := Value} ->
{ok, Value};
_ ->
decode_error_msg(io_lib:format("a map with key `~p`", [Key]), Data)
end.
decode_element(Data, Position) when is_tuple(Data) ->
case catch element(Position + 1, Data) of
{'EXIT', _Reason} ->
decode_error_msg(["a tuple of at least ", integer_to_list(Position + 1), " size"], Data);
Value ->
{ok, Value}
end;
decode_element(Data, _Position) -> decode_error_msg("a tuple", Data).
parse_int(String) ->
case catch binary_to_integer(String) of
Int when is_integer(Int) -> {ok, Int};
_ -> {error, nil}
end.
parse_float(String) ->
case catch binary_to_float(String) of
Float when is_float(Float) -> {ok, Float};
_ -> {error, nil}
end.
compare_strings(Lhs, Rhs) ->
if
Lhs == Rhs ->
eq;
Lhs < Rhs ->
lt;
true ->
gt
end.
string_starts_with(_, <<>>) -> true;
string_starts_with(String, Prefix) when byte_size(Prefix) > byte_size(String) -> false;
string_starts_with(String, Prefix) ->
PrefixSize = byte_size(Prefix),
Prefix == binary_part(String, 0, PrefixSize).
string_ends_with(_, <<>>) -> true;
string_ends_with(String, Suffix) when byte_size(Suffix) > byte_size(String) -> false;
string_ends_with(String, Suffix) ->
SuffixSize = byte_size(Suffix),
Suffix == binary_part(String, byte_size(String) - SuffixSize, SuffixSize).
string_pad(String, Length, Dir, PadString) ->
unicode:characters_to_binary(string:pad(String, Length, Dir, PadString)).
string_pop_grapheme(String) ->
case string:next_grapheme(String) of
[ Next | Rest ] ->
{ok, {unicode:characters_to_binary([Next]), unicode:characters_to_binary(Rest)}};
_ -> {error, nil}
end.
bit_string_append(First, Second) ->
<<First/bitstring, Second/bitstring>>.
bit_string_part_(Bin, Pos, Len) ->
try {ok, binary:part(Bin, Pos, Len)} catch
error:badarg -> {error, nil}
end.
bit_string_int_to_u32(I) when 0 =< I, I < 4294967296 ->
{ok, <<I:32>>};
bit_string_int_to_u32(_) ->
{error, nil}.
bit_string_int_from_u32(<<I:32>>) ->
{ok, I};
bit_string_int_from_u32(_) ->
{error, nil}.
|