# Advent of Code 2021, Day 9 ## Short problem summary **Part 1.** Find the total "risk level" of all the local minima on a relief map, represented by a 100 $\times$ 100 array of integers from 1 to 9. Only orthogonal neighbors count. The risk level is the elevation plus one. **Part 2.** Find the product of the areas of the three largest basins on the relief map. Basins are regions bordered by the edges of the map or by points with elevation 9. Again, only orthogonal neighbors count. ## Setup I'm using [Nx](https://github.com/elixir-nx/nx/tree/main/nx#readme) tensors since this problem will require a lot of arbitrary indexing. ```elixir Mix.install([ {:nx, "~> 0.1.0-dev", github: "elixir-nx/nx", sparse: "nx", override: true} ]) ``` ```output :ok ``` Bringing in the data as a new 2D tensor: ```elixir floor = with {:ok, data} <- File.read("input.txt") do data |> String.trim() |> String.split("\n") |> Enum.flat_map(&String.graphemes/1) |> Enum.map(&String.to_integer/1) |> Enum.chunk_every(100) |> Nx.tensor(names: [:y, :x]) end ``` ```output #Nx.Tensor< s64[y: 100][x: 100] [ [7, 6, 5, 9, 9, 9, 1, 0, 9, 8, 9, 9, 9, 8, 7, 6, 5, 7, 9, 9, 1, 0, 1, 2, 9, 8, 7, 9, 9, 9, 9, 8, 7, 6, 4, 3, 2, 1, 2, 3, 4, 5, 9, 8, 7, 4, 3, 4, 5, 5, ...], ... ] > ``` ## Part 1 For a given coordinate $(x, y)$, we want to examine its orthogonal neighbors, but only the ones that exist within the map. ```elixir defmodule Day09.Part1 do def neighbors({x, y}) do [{x + 1, y}, {x - 1, y}, {x, y + 1}, {x, y - 1}] |> Enum.filter(fn {x, y} -> x >= 0 && x < 100 && y >= 0 && y < 100 end) end end ``` ```output {:module, Day09.Part1, <<70, 79, 82, 49, 0, 0, 7, ...>>, {:neighbors, 1}} ``` Now scan the whole array to check each cell's neighbors, and return the "risk level" for each local minimum, then accumulate the sum. ```elixir risk_level = for x <- 0..99, y <- 0..99, reduce: 0 do acc -> Day09.Part1.neighbors({x, y}) |> Enum.all?(fn {xn, yn} -> floor[x][y] < floor[xn][yn] end) |> if(do: acc + Nx.to_number(floor[x][y]) + 1, else: acc) end ``` ```output 591 ``` ## Part 2 Now we need to recursively walk outwards from each previously-unwalked point until we can't walk any further. An agent will keep track of the visited points. ```elixir defmodule Day09.Part2 do def walkable?({x, y} = coords, tensor, pid) do Nx.to_number(tensor[x][y]) < 9 && not Agent.get(pid, fn m -> Map.has_key?(m, coords) end) end def walk_it(coords, tensor, pid) do if walkable?(coords, tensor, pid) do Agent.update(pid, fn m -> Map.put(m, coords, true) end) for c <- Day09.Part1.neighbors(coords) do walk_it(c, tensor, pid) end |> Enum.reduce(1, fn x, acc -> acc + x end) else 0 end end end ``` ```output {:module, Day09.Part2, <<70, 79, 82, 49, 0, 0, 11, ...>>, {:walk_it, 3}} ``` ```elixir {:ok, tracker} = Agent.start_link(fn -> %{} end) for x <- 0..99, y <- 0..99 do Day09.Part2.walk_it({x, y}, floor, tracker) end |> Enum.sort(:desc) |> Enum.take(3) |> Enum.reduce(fn x, acc -> acc * x end) ``` ```output 1113424 ```